Data Structures and Algorithms II

Nate Annau

Table of Contents

1. Greedy ALGOTItRIS .. .oouiun ittt ittt ettt ettt ettt ea et eanteneeeneennes 2
B R 650 13T (o3 2
1.2, Interval SChedUlingt ettt et e e e e 3
130 HUuffman Codettt 7
1.4, Minimum Lateness i 12
1.5. Shortest Path and Minimum Spanning TIEEttt ettt ettt ettt e e 13

2. Divide and COMQUEToouunii ittt ittt ettt ettt ettt et eeaaeeenneenaneenns 15
P78 B U5V oY L Lot 510 15
2.2. Solving Recurrence Relationsoooiiiiiiiiiiiiiiii i 17
2.3. Matrix MUltipliCatiOnottt ettt e 20
2.4, QUICK SOt . ottt 22
2.5. Median and CLOSESt Pailttt ettt ettt 24

$h {DATETTIT(8) 111118111V 00 86000000086000006000000006000005638000603608060600608060600806860000800060300860060080086000¢ 27
3.1, INtrodUCHION .. oo e 27
3.2. Matrix Chain Product VA
3.3. Optimal Binary Search TTeesttt e 30
3.4. kK Hop Shortest Path 31
3.5. All Pairs Shortest Path Problem (APSP)t et e e e e et et 32

4. Complexity TREOTYttt ettt ettt e e et e e et e e e et et ae e e e e e aaeeeaaaaaenenaannnn 33
O S P 33
4.2. Examples of NP-Complete Problemsoooiii e e et e 34

5. Approximation AlGOrithimsoo.iniiiiii ittt ittt ittt e 37
5.1. p-Approximation ALGOrithIms 37

PAGE 1 oF 44

1. Greedy Algorithms

1.1. Introduction

Lecture 1 Jan 7

There’s no exact definition of a greedy algorithm, but the general idea is that we always take the most optimal local
step.

|)

If the number of quarters in some change is a, the number of dimes is b, the number of nickels is ¢, and pennies d,

then we want to choose a, b, ¢, d such that

1. a,b, c,d nonnegative integers
2. X =25a+10b+ 5c+d
3. Minimizea +b+c+d

The coin change problem asks for how to solve this optimally.

|)

We use as many quarters as possible, then use as many dimes as possible and so on.

Choose 2 quarters, leaving the remainder as 73 — 2 x 25 = 23
Choose 2 dimes with remainder 23 — 2 x 10 = 3

Choose 0 nickels

Choose 3 pennies, with remainder 0.

Solutionisa = 2,b=2,¢=0,d =3

N

r
|

Consider a nation called Zenobia where they have coins with value 12 and pennies and nickels as normal. Notice a
greedy algorithm here for X = 15 gives us the solution 15 = 12 + 1 4 1 4 1, which is not optimal because we have
the shorter decomposition 15 = 5 + 5 4 5. This shows that the optimality of the greedy algorithm for the coin

change problem is not clear.

l Prove that the greedy algorithm for the coin change problem is optimal.

Solution: Proof:

PAGE 2 oF 44

GREEDY ALGORITHMS INTRODUCTION — 1.1

We are given an undirected graph G = (V, E). A vertex cover of G is a subset C' C V of vertices so that every edge

of E has at least one of its endpoints in C.

Our problem is to find the smallest size vertex cover of a graph G.

Greedy Algorithm: pick the vertex v of maximum degree. Remove u and all of its neighbors and add it to the cover.

Repeat until there are no more vertices.
\. J/

Given a graph G = (V, E) with n vertices, we want to assign colors {1, 2, ..., k} such that no edge gets the same
color at both endpoints.

Vs
|

Our problem is to color a given graph with a minimum number of colors.

Greedy Algorithm: Consider the vertices in some order, i.e., vy, ..., v,,. Now assign v, the lowest available color not

used by v,’s neighbors among {v, ..., v;_; }, adding a fresh color if needed.

Suppose a trucker is driving from city A to city B along a route map with gas stations along the way. The trucker

would like to make the fewest possible stops along the way. Problem: Given any such route and locations of gas
stations, plan the trucker’s stops.

Greedy Algorithm: If he has some max distance R he can go, always take the gas station furthest along with
distance less than R.

A salesman needs to visit n cities, say x, Z, ..., Z,,. The salesman knows the travel cost between every pair of cities.

Starting at x,, the salesman must visit all other cities before returning to z,, at minimum total cost. In which order
should he visit?

Greedy Algorithm: Always travel to the nearest city that hasn’t been visited.

It turns out that only the Trucker’s Problem Greedy Algorithm is right — the other algorithms are not optimal.

1.2. Interval Scheduling

Lecture 2 Jan 9

PAGE 3 oF 44

GREEDY ALGORITHMS INTERVAL SCHEDULING — 1.2

1. Suppose we have a list of n activities that we want to schedule on a single resource (processor).
2. Each activity is specified by its start and end times.

3. Only one activity can be scheduled on the resource at a time.

4. Each activity uses the resource continuously between its start and end times.

Our goal is to schedule the maximum possible number of activities.

e
|

» Suppose we have 5 activities:
{(3,6),(1,4), (4,10), (6,8), (0,2)}

» these are like intervals on the number line
« A feasible schedule cannot have two activities that overlap (in time).
« For instance, we cannot accept both (1, 4) and (3, 6).
« However, (3, 6) and (6, 8) are acceptable, because second only begins when first ends.
+ The optimal solution in this exmaple has size 3.

Vs
\

We can formalize the problem as followed.

« We have a set of activities, which we denote by S = {1,2,...,n}

+ The ith activity is specificed by a tuple (s(3), f(i)) with s(i) < f(i),fori =1,...,n
« A feasible schedule is a subset in which no two activities overlap

+ Goal: find a feasible schedule of maximum size.

Notice a naive algorithm searches through all 2" subsets, and outputs the largest feasible one, but this is not efficient.
\. J/

We have a few possible greedy strategies:

1. FIFO: pick the one that starts first, remove overlapping activities and repeat

2. Shortest first: pick the activity with the shortest duration, remove overlapping activities and repeat

3. Min overlap first: Count the number of other jobs that overlap, then choose one with smallest overlap count

But if we analyze these, we see simple counterexamples for the first one (an activity that’s really long is first) and the
third one (a shorter interval in the middle that overlaps with 2 which could fit together). We could also construct an
example for the second.

Vs
\

PAGE 4 oF 44

GREEDY ALGORITHMS INTERVAL SCHEDULING — 1.2

The correct greedy strategy is to sort the process job in order by earliest finish time.

We sort jobs by order:

Pseudocode:

A = {1}; j = 1; // accept job 1
for 1 = 2 to n do
if s(i) >= f(j) then
A=A+ {i}; § =i
return A

. J

Activity | Start | Finish

1 1 4

2 3 5

3 0 6

4) 7

5 3 8

6 5 9

7 6 0]

8 8 11

9 8 12

10 2 13

11 12 14
+ The greedy algorithm first chooses 1, then skips 2 and 3
« Next it chooses 4, and skips 5, 6, and 7
« It should choose 8 and 11 (verify)

+ Suppose that OPT is an optimal solution for the problem. Ideally, we would like to show our algorithm always
returns the same output, namely A = OPT.

+ But there may be multiple optima, and the best we can hope for is that |A| = |OPT|

 The proofidea (typical for optimality of greedy algorithms) is to show the greedy algorithm stays ahead of the
optimal solution at all times

Vs
\

PAGE 5 OoF 44

GREEDY ALGORITHMS INTERVAL SCHEDULING — 1.2

1.2.8. Proposition
I The Earliest Finish Time Algorithm correctly solves the inveral scheduling problem.

Proof: Suppose a, ..., a;, are the indices of jobs in the greedy schedule, and b, ..., b,,, are jobs in an optimal schedule
OPT. We want to show &k = m. Mnemonically, a;’s are jobs picked by our algorithm while b,’s are the optimal
schedule jobs. (Note we list both in order of start times.)

« Our intuition should be that the greedy algorithm makes the resource free again as soon as possible. In particular,
f(ay) < f(by), that is, the greedy algorithm stays ahead. We formalize this as follows.

l For every i < k, we have f(a;) < f(b;).

Proof: We proceed by induction. Note the ¢ = 1 case is trivial. By the induction hypothesis, we have f(a; ;) <
f(biy)-
Notice f(b; ;) < s(b;) < f(b;) and f(a;) < s(a;) < f(ay).

Therefore f(a, ;) < s(b;), since clearly f(b,_;) < s(b,). But notice s(b;) < f(b;), which implies f(a;) < f(b;)
as desired.

]

. J

Notice by the lemma, f(a;) < f(by), but f(b;) < f(b,,), so f(a;) < f(b,,), implying k < m. But m < k since OPT
is optimal, implying m = k as desired.

[l

The runtime of the previous algorithm is O(nlogn) + O(n) = O(nlogn) because of the sorting and then iteration
through.

Consider the same setup with the following variant. Given a set of activities, what is the smallest number of machines
needed to schedule them all?

A natural greedy algorithm to try is the following: use EFT to find the maximum number of activities that can be
scheduled on one machine. Delete those and repeat the rest until no activities are left.

However, this algorithm fails because we can construct a setup where EFT uses 3 machines but the optimal solution is
2 machines.

Instead, a simpler greedy algorithm works:

Sort activities by start time
Put activity 1 on machine 1
for i = 2 to n:
if i can be scheduled on any of the existing machines, add to that machine otherwise schedule
activity i on a new machine

PAGE 6 OF 44

GREEDY ALGORITHMS INTERVAL SCHEDULING — 1.2

1.2.12. Proposition
I The previous algorithm is optimal.

Proof: Define the depth d as the maximum number of activities working at the same time. Notice that OPT >= depth,
because we have to run all processes. Further, Greedy <= depth (since we only start on a new machine when there are
d — 1 processes running). Therefore, the Greedy algorithm has to be optimal.

0

1.3. Huffman Code

Lecture 3 Jan 14

1. Suppose we have a signal digitized at some sampling rate, say 44 KHz.

2. This produces a sequence of real numbers s, 59, ..., 51

3. Each s, is quantized - for example, to 256 different values

4. The quantized string 7" over alphabet G is encoded in binary

5. This last step uses Huffan encoding - we want to write this as compactly as possible

Vs

Consider a data file with 100K characters. THe file contains only 6 different characters with the following frequency
distribution

Char a |b|c |d|el|f
FreqK) [45 |13 |12 |16 |9 |5

Suppose the cost of storage or transmission is proportional to the number of bits.

Vs

We want to design binary codes to achieve maximum compression. With 6 characters, we need at least 3 bits to
represent each. One possible set of such codes is

Char | a b @ d e f
Code | 000 | 001 [010 | 011 | 100 | 101

How can we reduce the storage as much as possible?

e
|

PAGE 7 OoF 44

GREEDY ALGORITHMS HurrFmaN CoDE — 1.3

The previous code used fixed length coding. What if we instead use shorter codes for more frequent letters? One
possible set of variable length codes is the following:

Char|a|b c d e f
VLC | 0101|100 | 111 | 1101 | 1100

With this coding scheme, we only need 224 Kbits:
1x45+3x13+3x12+3x16+4%x9+4x%x5

This is a 25% improvement over fixed length codes. In general, they can give huge savings.

e
|

« We have a potential problem with variable length codes-how do we know where the boundaries are?

+ For example if 0 encodes x and 00 encodes y, how do we interpret 000?

« We could put special markers between letters but that loses efficiency

+ Instead we will ensure our codes satisfy the following property: no codeword can be a prefix of another code

« {0, 000} are invalid prefix codes, but {0, 101, 100, 111, 1101, 1100} are valid

 To encode, just concatenate the codes for each letter of the file; to decode, extract the first valid codeword and
repeat

« Example: code for ‘abc’ is 0101100, and 001011101 uniquely decodes to ‘aabe’

e
|

We represent codes using a tree as follows:

+ Code for a letter is the sequence of bits between root and that leaf

+ Decoding algorithm: start at root and output leaf

« Prefix code: only leaf nodes correspond to codes, not internal nodes

Note that the constant length coding is a balanced binary tree where we always insert in the next position, whereas
variable length coding is not necessarily balanced.

Note that if a node has children, it cannot have an associated letter, because it will be a prefix of the children.

O
0/ \0

/N /N
® ¢ & ¢

e
|

Observe that the tree for an optimal code must be full: that is, each internal node has two children. Otherwise, we can
improve the code. Thus the fixed length code cannot be optimal!

PAGE 8 oF 44

GREEDY ALGORITHMS HurrFmaN CoDE — 1.3

Let C denote our alphabet (character set) and f(p) the frequency of a letter p. Let T" be the tree for a prefix code, and
dp(p) th depth of p in T'. The total number of bits (bit complexity) needed to encode our file using this code is:

B(T) = f(p)dr(p)

peC

We want a code that achieves the minimum possible value of B(T).
L

We can intuitively think of this as building the best tree 7" to represent binary codes.

.

Iniitally, each letter is represented by a single node tree, whose weight equals the letter’s frequency. We repeatedly
choose the smallest tree roots (by weight) and merge them. The new root’s weight is the sum of the two children’s
weights. If there are n letters in the alphabet, there are n — 1 merges.

1 Q < C(Q is a priority queue)

2 fori =1ton—1do

3 | z « allocateNode()

4 | = < left[z] < DeleteMin(Q)
5 | y « right[z] < DeleteMin(Q)
6 | f(2) « fla] + fly]

7 | Insert(Q, 2)

8 return FindMin(Q)

r
|

PAGE 9 oF 44

GREEDY ALGORITHMS HurrmaN CobpeE — 1.3

1.3.10. Example

Initial : e:9 :
Merge/Reorder b:13 f+e:14 | d:16 | a:45
Next d:16 c+b:25 | a:45

Next (f+e)+d:30
Next (c+b)+((f+e)+d):55

@ [£5] [e9] [ci2] [b:13] (16 [a:d5 © 2 BE 0
0 1

£5] [e9]

© @@ 23) 25 (30)

0 1 0 1 1

(£5] [e9] [ed2) B3) [@16

p—

(53)
e

(25)

1
: (30)
g 1 0 1
(14 L
0 1

(30)

(25)
o/ \I o/ \I
[e:9] (14)
; ;

£5] [e9]

1.3.11. Runtime Analysis

Note that this is O(n log n) because we initially sort and then do n heap operations.

PAGE 10 oF 44

GREEDY ALGORITHMS HurrFmaN CobE — 1.3

In an inductive proof, which character should we drop for induction? As a thought experiment, suppose we drop z,,.

Then by induction, we have an optimal solution for the problem on {z, ..., z,,_;}. This is a tree with n — 1 leaves.
Where should we attach x,,? Note attaching z,, to a leaf node will create a node with one child, which cannot be
optimal.

We have a better idea. Take the two lowest frequency characters x,,_; and z,,, and combine them into a new single
character z with frequency f(z) = f(z,,_;) + f(z,,). With z,,_,, z,, removed and replaced with z, we have a set of
size |C’| = n — 1. By induction, we find the optimal code tree of C”. This tree has z at some leaf. To obtain the tree
for C, we attach nodes z,,_; and z,, as children of z. We will show that given an optimal tree for C", this new tree is

optimal for C.
. J

I Suppose z and y are two letters of lowest frequency. Then, there exists an optimal prefix code in which codewords

for z and y have the same and maximum length in that the differ in only one character.
Proof: Idea: Suppose the optimal tree 7" does not satisfy the claim. We will modify it by making x and y sibling leaves
of maximum depth, and show that the change does not increase the total cost of the tree, which will prove the lemma.
Suppose a and b are two characters that are sibling leaves of max depth in 7'.

Without loss of generality, assume that
fla) < f(b) and f(z) < f(y).

Note because f(z) and f(y) are the two lowest frequencies, we can conclude that
f(@) < f(a) and f(y) < f(b).

(z, y, a, b need not be distinct.)

First transform T into 7" by swapping the positions of = and a. Since dr(a) > d(z) and f(a) > f(z), swapping
does not increase frequency times depth cost.

Then
B(T) — B(T") ZZ[()] — Y _[f()dr(p)]

= [f(w)d:r(l‘) + f(a)dr(a)] — [f()dr(z) + f(a)dr(a)]
= [f(z)dr(z) + f(a)dr(a)] — [f(z)dr(a) + f(a)dr(z)]
= [f(a) — f(z)] - [dr(a) — dr(z)]
>0
Therefore, if T' is optimal, so is 7”. Next, modify 7" to T” by exchanging y and b, and the same argument shows
B(T”) < B(T") < B(T). Thus T” is an optimal tree but has x and y as sibling leaves at the maximum depth.

[]

PAGE 11 oF 44

GREEDY ALGORITHMS HurrFmaN CoDE — 1.3

1.3.14. Proposition
I Huffman’s Algorithm is optimal.

Proof: We proceed by induction on the size of the alphabet |C|. The base case of |C| = 2 is trivial: we have a depth 1
tree with two leaves, each with code length 1.

By the structure lemma, the greedy choice is correct. Given input C' of size n, we remove the smallest keys z, y and
instead add a new key z with f(z) = f(z) + f(y)., getting a (n — 1) size set C’ = C'\ {z, y} U 2. By induction,
Huffman’s Algorithm finds an optimal tree 7 for C’, one of whose leaves is z. We make x and y children of z,
obtaining a tree T" for the original input C.

O

1.4. Minimum Lateness

Lecture 4 Jan 16

« We have n jobs to schedule on a single processor

« Each job j comes with two requirements: processing time ¢; and a due date d;

« That is, jobs do not have fixed start and finish times, and it is our scheduling algorithm’s task to select their start
times

« If job j were to start at time s, then it will finish at time f; = s, +1;

« The lateness of a job is defined by

o The maximum lateness of a schedule S is

L(S) = max/;
j

+ Goal: find a schedule with smallest maximum lateness L(S)

-
|

11213145 |6
t. 1312|1143 |2
d; 681991415

If we do d3 — dy — dg — dy — dy — dy, the first late job is job 1 and job 4 is also late. n! possible ways to schedule
jobs.

\

|

PAGE 12 oF 44

GREEDY ALGORITHMS MINIMUM LATENESS — 1.4

1. Consider a strategy where we take the shortest processing time first. But if we have the tuples (1, 100) and
(10, 10). The first job finishes at time 1 and the second job finishes at time 11, so the delay is 1. But if we did the
second job first and the first job after, we have 0 delay.

2. Consider sorting by the smallest slack d; — ¢, on (1,2) and (10, 10). Note the first has slack 1 and the second slack
0, but we should’ve done the first one first.

| J

We schedule jobs in ascending order of due dates.

1 Sort n jobs by deadline d; < dy <---<d,
2t=0

3 forj=1ton

4 | Assign job j to interval [t, t+ tj]

5 | sj ¢+t f ettt

6 lt<t+t;

output intervals s, f;]

3

Vs
\

1.4.5. Proposition
I The EDD algorithm is optimal.

Proof: By contradiction, suppose there is a better algorithm S*. Note that the greedy algorithm has d;, < d; if ¢ < .
Thus there must be some consecutive pair in S* such that d; > d; if ¢ < j (an inversion). This reduces to the
following claim: swapping inverted jobs reduces the number of inversions and does not increase max lateness.

Let £ be the lateness before the swap, and let £’ be it afterwards. Assume d; > d,. Note £} = £, Vk # i,jand £; < ¢,
Also

0= f—d,
=fi—d;
<fi—d,
<t

so S* is not optimal.

1.5. Shortest Path and Minimum Spanning Tree

Suppose we have a directed graph G = (V, E') where every edge e € E has a nonnegative cost cost(e). The length of

a path P between two nodes u and v is the sum of the edge costs in P.

PAGE 13 oF 44

GREEDY ALGORITHMS SHORTEST PATH AND MINIMUM SPANNING TREE — 1.5

1 Initiailize S = (), d(s) = 0 and d(u) = coVu # s
2 Insert vertices into a minheap @ with distance label d(u)
3 while S # V do

4
5
6
7

u := deleteMin(Q)
Adduto S
for each out neighbor v ¢ S of u do
| d(v) = min{d(u) + cost(u,v),d(v)}

1.5.3. Proposition

I Djikstra’s is correct.

Proof:

1.
2.
3.

O
SUppose we haev a graph G = (V, E)) where every edge has a cost ¢(e). A spanning subgraph is connected and
includes all vertices of G. We want to find the minimum spanning tree.

\

At any time d(v) is the shortest path distance to vVv € S.

Consider the instsant when v is added to S. Let (u, v) be the edge, with u € S, that last updated d(v).

Suppose for the sake of contradiction that d(u) + cost(u, v) is not the shortest distance to v. Instead a different
shorter path called P exists to v.

Since the path starts at S, it has to leave S at some node . Let y ¢ S be the edge that goes from S to S

But note that d(u) + cost(u,v) < d(x) + cost(z,y)

Since length(y, v) > 0, this contradicts our hypothesis that P is shorter than d(u) + cost(u, v), so d(v) is correct.

J

4
5

Vs

1 Sort the edges in increasing order and assume c(e;) < c(ey) <---< ¢(e,,)
2 = @
3 For e edge do

if e does not create a cycle do

| S=SU{e}

\

1.5.6. Proposition

I Kruskal’s is correct

Proof: Follows from cut property

PAGE 14 oF 44

2. Divide and Conquer

2.1. Introduction

Lecture 5 Jan 21

Divide and conquer problems have the following structure:
1. Break up the problem into multiple parts

2. Solve each part (sub problem) recursively

3. Combine sub problem solutions into overall solution

In a sorting problem we want to rearrange n elements in order. It has many applications and is often solved by divide

and conquer.

This is a classic divide and conquer algorithm
1. Divide the array into two halves

2. Recursively search each half
3. Merge two halves to make the whole array sorted

Note to merge two lists, we often use a temporary array to place elements into. We can do it with only constant extra

space, but it becomes much more complicated.

. J/

Define T'(n) as the number of steps to merge sort an input of size n. Then the runtime is expressed using

T(n) < zT(g) +en

where ¢ is some fixed constant and 7'(1) = 0. Assume 7 is a power of 2.

We can show that this implies T'(n) = O(nlogn), but we will show this later.

. J/

Given a list of n numbers a;, a, ..., a,,, an inversion is a pair (¢, j) where i < j but a; > a;.

An interesting problem is to count inversions in a list.

For example, given (1,3, 4,2, 5) the inversions are 3 — 2 and 4 — 2. There are (Z) pairs (if it’s in reverse order, this is

the number of out of order terms). This gives a trivial O(n?) algorithm, but can we do better?

PAGE 15 oF 44

DivipE AND CONQUER INTRODUCTION — 2.1

Suppose we have an array like

154810269 12 11 37
EN LIS i ltell 1 5 4 8 10 2 JEll 6 9 12 11 3 7}

Inversions in the first part:

5-4, 5-2, 4-2, 8-2, 10-2

and inversions in the second part:

6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7.

Notice if we sort those two lists, we can create two pointers traversing each list exactly once. We look at the first
element at the right and move on the left until we find an element larger than the element on the list - then the
number of spaces we moved is the number of inversions. This is O(n) time after the merge sort (which is O(nlogn))
so the algorithm is O(nlogn) overall.

| J

Suppose we want to multiply two long n digit numbers (such that the operation is not constant time in the processor).

Note the standard method is O(n?).

- J

Suppose we have n bit numbers X and Y. Let a be the n/2 bit number representing the leading bits of X, and b

represent the trailing bits. Note that X = 2*/2¢ + b. Similarly, let ¢ and d be the numbers corresponding to leading
and trailing n/2 bits of Y, s0 Y = n/2¢ 4 (.

Then
XY = (a2™2 4+ b)(c2"/% + d)
= ac2" + (ad + bc)2™/? + bd

Let X = 4729 and Y = 1326. Then a = 47, b = 29, ¢ = 13 and d = 26. Then ac = 611, ad = 1222, bc = 377 and
bd = 754. Therefore

XY =611-10* + 1599 - 102 + 754.

We split each number in 4 and we have some shifting operations, so the total number of operations is

T(n) = 4T(g) +0(n).

This is T'(n) = O(n?).

& J

PAGE 16 oF 44

DivipE AND CONQUER INTRODUCTION — 2.1

Karatsuba made an improvement to the previous algorithm. He noticed we only need ac, ad + bc and bd.

In particular,
(a —b)(c—d) = (ac+ bd) — (ad + bc).

Suppose we find ac, bd and (a — b)(c — d) — then we get ad + be. Now we’ve reduced the problem to 3 subproblems.
This gives

T(n) =3T(n/2) + O(n)

which gives T'(n) = O(n'%). (Note 1.59 = log, 3).

2.2. Solving Recurrence Relations

Lecture 6 Jan 23

One way to solve recurrence problems is to try to find a pattern.

Suppose T'(n) = 2T'(n/2) + cn. Thus
n
T(n) = 2T(§) +en

=2(2T(n/2%) + cn/2) + cn

= 22T(n/2?) + 2cn
=2%(2T(n/2%) + cn/2%) + 2cn
=23T(n/23) + 3cn

T(n) = 2'T(n/2%) + icn

Now set ¢ = log, n and use T'(1) = 1. Then we see T'(n) = n + cnlog(n)

. J/

PAGE 17 oF 44

DivipE AND CONQUER SOLVING RECURRENCE RELATIONS — 2.2

T(n) =4T(n/2) + cn
=4(4T(n/2%) 4+ cn/2) + cn
=4%T(n/2?) + 2cn + cn
= 4%(4T(n/23) + en/2%) + 2cn + cn
=43T(n/23) + 2%cn + 2cn + cn

=4'T(n/2") + cn(27 + 272 + -+ +24 1)
= 4'T(n/2%) + 2%cn

Now set 2¢ = n < i = log, n and we get T'(n) = n? + en? = O(n?).
T(n) =2T(n/4) +Vn
= 2(2T(n/4?) + v/n/4) + v

= 22T (n/4%) + 2v/n
= 23T (n/4%) + 3v/n

_ 2T (n/4") +ivn

Thus we want n = 4% so i = log, n. So thisis \/n + 3 logy n - \/n = O(y/nlogn).

Visualize the recursion as an infinite tree and figure out how to collapse it.

Supopse T'(n) = 4T (n/2) + cn and T'(1) = 1. At the ith level there are 4™ nodes but we only pay <% for each one, so

: : 2
the additional work we do at each step is 4;0,-" = 2@

Then if we set i = log, n we get that this is O(n?).

Our recurrence relation is T'(n) = 27 (n/2) + c¢n. Our base case is 7'(1) = 1. Our inductive hypothesis is T'(n) =
cn log n. We verify as follows:

T(2n) = 2T(2n/2) + 2¢cn
= 2cnlogn + 2¢n
= 2cnlog(2n/2) + 2¢cn
= 2cnlog(2n) — 2¢en + 2¢n
= 2cnlog(2n)

PAGE 18 oF 44

DivipE AND CONQUER SOLVING RECURRENCE RELATIONS — 2.2

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Suppose we have a recurrence relation of the form
Tmyzﬂ(%)+ﬂm“ﬁhﬂnz1

We are turning a problem n into a subproblems of size 7 each. Thus at each level there are
1 f(n)

2. af(n/b)

3. a®f(n/b?)

And in general a’ f(n/b") problems.
The number of leaves is then a'°™ = n!°% ¢, By the recursion step we get

logy, (n—1)

T(n) = ©(n'&:*) + Z aif(%)

i=0
This general sum is hard to bound so we limit ourselves to the situation where f looks like

f(n) = ©(nPlogFn) with p,k > 0 and a > 1 and b > 1 are constants

This breaks down to 3 cases:

logy, a

1. p < log, a. Thenn grows faster than f(n) so

T(n) = ©(n'&)
2. p = logy a. Both terms have the same growth rates so
T(n) = ©(n'°e»*logh*1 n)

logy, a

3. p > log, a. Thenn is slower than f(n) so

T(n) = 6(f(n))

- J

Merge Sort has T'(n) = 2T (n/2) + O(n).
l.a=b=2p=1landk=0
2. So log, a = 1 and thus p = log, a

3. Case 2 applies so
T(n) = O(nlogn)

Suppose T'(n) = T'(n/2) + ©(1).
La=1b=2p=0Fk=0.

2. Solog,a=0=p

3. Case 2s0T'(n) = ©(logn)

PAGE 19 oF 44

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

DivipE AND CONQUER SOLVING RECURRENCE RELATIONS — 2.2

(nlogn) = T(n) = O(nlog?n)
(n?) = Case 1: T(n) = ©(n'*s7)
ng) = Case 3: T'(n) = @(n%)
") —> No cases apply since k = —1

S

S

i
T
a
i

(
(
(
(

S

N N N N
//3_/
[l
[NCRIITGEEN N
INERNEENRENE

— — N

2.3. Matrix Multiplication

Lecture 7 Jan 28

We want to multiply two n X n matrices. One simple divide and conquer algorithm is to divide the matrices into 4

submatrices and multiply them, i.e. if we have
. (au am). B— (bn b12). C = (Cn 012)
5107 by bay Co1 Cop

11 = 11015 + ayoby

we can calculate C' via

et cetera, which gives

which is O(n?). Is there something better?

PAGE 20 oF 44

DivipE AND CONQUER MATRIX MULTIPLICATION — 2.3

Only 7 subproblems are needed:

P = (ay + ag)(byy + by,)

By = (ag + ag)by

Py = ay;(byy — bay)

Fy = ag@, b,

By = (ay + a15)by,

Fy = alag — ay)(byy + byy)

By = (a15 — ag)(by; + byy)
Then we can recover C' as follows:

en=h+E-FK+Fh

¢y =B+ K
ey =5B+F
¢y =P +F—F+E
\ J

The recurrence looks like

which solves to

Computer scientists use w for the current best possible exponent for matrix multiplication.

PAGE 21 oF 44

DivipE AND CONQUER MATRIX MULTIPLICATION — 2.3

2.4. Quick Sort
CpalAlpritm

When we perform a quick sort we partition first. This means that we select an element « as a pivot and place all

elements smaller than z on its left and all elements larger on its right.

The partition is easy to implement in O(n) via
+ Keep two pointers ¢ and j such that

» items to the left of 7 are less than z

» items from ¢ + 1 to j are bigger than x

» items to the right of j are not yet scanned

When j reaches end of array (pivot), swap with item at ¢ + 1

We pick a random index as our pivot. So our algorithm is

1 if p > g then return

2 i « random(p, q)

3 r <« Partition(A4, p, q,1)
4 Quicksort(A,p,r — 1)

5 Quicksort(A,r +1,q)

PAGE 22 oF 44

DivipE AND CONQUER QUICK SORT — 2.4

Our recurrence is
T(n) =T(ny) +T(ny) + O(n)
with n; + n, = n. A lucky case is that
T(n) = 2T(g) + O(n) = O(nlogn)
and an unlucky one is that
T(n)=T(n—1)+ O(n) = O(n?)
Note that fixing any position of our pivot, like always choosing the first element, fails to adversarial lists that can
always give us O(n?) time.
Let T'(n) denote the expected runtime of QuickSort. Assume elements are distinct. If the pivot is the ith smallest
element, we get i — 1 elements in L and n — ¢ in R—call this an ¢ split.
Thus
T(n) li(time with ¢ split) +n + 1
=— runtime wi i
n)=_ 2 u with ¢ sp n
1 & . ,
= ;Z(T(z—1)+T(n—z))+n+1
i—1
2 & ;
==Y T@E-1)+n+1
nia
2 n—1
== T{)+n+1
n
=0
Thus
n—1
nT(n) = 2ZT(2') +n2+n
i=0
n—2
(n—1)T(n—1)=2> T@)+(n—1)?%+(n—1)
i=0
SO
nT(n) =(n+1)T(n—1)+ 2n.
Thus
T(n) T(n—1) 2
= +
n+1 n n+1
T(n—2) 2 2
=—+ -+
n—1 n n+l
T(2) ~~2
L = 0O(1) + 2logn.)

PAGE 23 oF 44

DivipE AND CONQUER QUICK SORT — 2.4

2.5. Median and Closest Pair

Lecture 8 Jan 300

Given a set of n items, we define the rank of an item x as its position in the sorted order of the items.

Given a set of n items and integer 1 < k < n, find the item in the set with rank k. Assume all values are distinct. Note
that if we sort them, this is trivial, but this is O(n log n)—can we do better?

Note that it’s easy to find items or rank 1 or n in O(n) time:

1 if |A| = 1, return min = max = A[0]
2 Divide A into two equal subsets A;, A,
3 (min,, max,) := MIN-MAX(A4,)

4 (min,, max,) := MIN-MAX(A,)

5 if min; < min, then

6 | return min = min,

7 else

8 | return min = min,

9 if max; > max, then

10 | return max = max;

11 else

12| return max = max,

If we extend this algorithm to find the rank k item it takes O(kn) time, which in particular for the median takes

O(n?) time. We want something with a smaller runtime that we can use to find the ideal pivot for QuickSort, for

example.

1 Divide the items into [%1 groups of 5 (or less for final group) items each

Do

Find the median of each group (brute force)

w

Use SELECT to recursively find the median of the ¥ group medians
4 Partition the input by using median of median as pivot

o

Suppose low side of partition has s elements and high side has n — s elements
If k < s, recursively call SELECT(k) on low side; otherwise, recursively call SELECT(k — s) on high side

=)}

PAGE 24 oF 44

DivipE AND CONQUER MEDIAN AND CLOSEST PAIR — 2.5

\

There are ¥ groups and in the partition step, half of them have medians less than z. The group medians and elements

smaller form the top left quadrant and each have ?—6‘ elements. Symmetrically, the bottom right consists of :i—g. At

n

10 unknown.

most, we have

Thus our recursion looks like

So

n n
T(n) <c— —
(n)_c5+7c10+bn

n
< Qe—
_9010—|—bn

If we choose ¢ = 10b note that cn > 901"—0 + bn, so T has running time O(n).

Why not divide into groups of three instead? Then the recursion looks like

Given n points in the plane, find a pair with the smallest Euclidean distance between them.

Draw a vertical line L so that there are roughtly 4 points on each side. We then find the closest pair in each side

recursively.

The previous algorithm fails because there could be points close to the line that are closer together. Thus look at the
boundary of the line and consider some distance §, which § is the minimum of the distances in each of the partitions.
Now in our § width window, for each side we can say that all points are at least § distance apart. (This last claim
follows from creating g boxes within the partition).

Lecture 9 Feb 4

PAGE 25 oF 44

DivipE AND CONQUER MEDIAN AND CLOSEST PAIR — 2.5

1 Compute separation line L such that half the points are on on side and half on the other
2 §; = ClosestPair(left half)

d, = ClosestPair(right half)

0 = min{é;,05}

Delete all points further than ¢ from separation line L

[=)) B N O]

Sort remaining points by y coordinate

Scan points in y order and compare distance between each point and 11 neighbors. Update ¢ if any distances are
less than §

Return 0

o)

Note that this is O(nlog?n).

PAGE 26 oF 44

3. Dynamic Programming

3.1. Introduction

Lecture 10 Feb 11

Some problems are beyond the reach of greedy algorithms and divide and conquer. For example:

1. Weighted interval scheduling — each of the n jobs has an associated weight v,, and the goal is to maximize the
total weight of the schedule.

2. Find the shortest path from s to ¢ with at most k hops, where k is specified at input. The greedy style Djikstra’s

Algorithm doesn’t work.

A technique where a problem is broken down into subproblems and the results are saved. Note the time complexities

are generally worse than greedy algorithms.

+ We have a single processor and a list of n jobs

« Every job has a start time s, finish time f; and weight w;
« A feasible schedule is a subset of non overlapping jobs
« We want to find a feasible schedule with maximum possible total weight

Suppose we list the jobs in increasing finish time order. Define OPT(j) as the optimal solution to the subproblem
consisting of jobs 1,2, ..., j. This gives us n subproblems of increasing sizes; OPT(1) is trivial to compute, and
OPT(n) is the final answer we want. Note we want to compute OPT(j) using OPT(i) for 1 <14 < j— 1.

Now to compute OPT(j), we need to consider job j. Note that we have a binary choice: we either accept job j or we
don’t. If job j is included, then OPT(j) cannot include any previous jobs overlapping with it. If we don’t include it,
OPTY(j) is free to include any previous jobs.

Let p(j) be the largest index i < j such that job ¢ does not overlap with job j.

We write OPT(j) = max{v; + OPT(p(j)), OPT(j — 1)}. Note the first term accounts for choosing j and the
second doesn’t. We claim that together with OPT(0) = 0, this completes the DP solution.

PAGE 27 oF 44

DynAaMmic PROGRAMMING INTRODUCTION — 3.1

Note that if we tried to write a recursive algorithm like so:

1 Sort jobs so that f; < fy <---< f,

2 Compute p(1),p(2), ...,p(n)
3 Compute OPT(y):

4 |ifj=0

5 | return 0

6 | else

7 | | return max{v; + OPT(p(j)), OPT(j — 1)}

This doesn’t work!! The number of subproblems solved grows like the Fibonacci sequence, giving us exponential
runtime, since we are not caching the results.

\ J

Memoization means we store the result of each subproblem in a table so that we can lookup as needed.

This gives a better algorithm:

1 Sort jobs so that f; <---< f,
2 Compute p(1),...,p(n)

3 for j = 1ton,set M[j]=10
4 Initialize M[0] = 0.

5 Return M-ComputeOPT(n)

M-CompUuTEOPT(j):

1 if M[j] empty
2 | M[j] = max{v; + M-ComputeOPT(p(j)), M-ComputeOPT(j — 1)}
3 return M [j]

Ve
&

Sorting by finish time and compute p values takes O(nlogn) time.

Each entry of the array is computed only once, and each call either takes O(1) time or calls two subproblems.

Thus overall the algorithm is O(nlogn).

PAGE 28 oF 44

DynAaMmic PROGRAMMING INTRODUCTION — 3.1

We can also write the DP algorithm as a bottom-up unwound recursion, where entries are computed in increasing
problem size order:

1 Sort jobs st f; <---< f,,
Compute p(1), ..., p(n)
Iterative-WIS {
M[0] =0
foryj=1ton
| M[j) = max{v; + M{p(j)], M[j — 1]}

N s W N

3.2. Matrix Chain Product

Lecture 11 Feb 13

Suppose we have a sequence of matrices M, ..., M,,. We want to find the product M; x --- x M, . Note these are not
necessarily square matrices—we only know that adjacent matrices agree on dimension.

1 Let A be ap X g matrix and B a ¢ X r matrix
2 fori=1top

3 |[forj=1tor

4 | Cli, 5] =0

5 [fork=1togq

6 | C[i,j] + = Ali, k] - B[k, j]

7 return C

The cost of this multiplication is p x ¢ X 7.

Consider a 10 x 100 matrix M;, a 100 x 5 matrix M,, and a 5 x 50 matrix M. If we do ((M; M,)M;) we have cost
10-100 -5+ 105 - 50 = 7500. But if we do (M, (M5M5)) we have cost 100 - 5 - 50 + 10 - 100 - 50 = 75000.

. J/

2n—2
n—1

)%4".

If we tried to brute force all possibilities, we get the Catalan number (

PAGE 29 oF 44

DynAaMmic PROGRAMMING MATRIX CHAIN PRODUCT — 3.2

We can specify the input compactly as n + 1 numbers p, ..., p,, where M, is a p, X p; matrix, M, is a p; X py

matrix, and so on. In general, M, is a p, ; X p; matrix because all neighboring matrices agree on the dimension.

3.3. Optimal Binary Search Trees

Lecture 12 Feb 18

Our input is a lis% of n keys (words) wy, ..., w,, along with their respective relative search frequencies p, ..., p,, where

0 <p; <1land) p,. We want to minimize the (expected) total access cost. Accessing a key at depth d has search
i=1
cost d + 1, so if the word w; is placed at depth d; in the tree, the total search cost is

Zpi -(d; +1).
i=1
& J

Define subproblems of the form [, j] for all 1 <4 < j < n. Let S(4, j) be the optimal search tree cost for the
subproblem (w;;, ..., wj). We now need a recurrence to compute S(4, j) using smaller subproblems. The tree for
S(i, j) must use some word in (w;, ..., w;). Suppose that word is w,. for i <r < j.

We then have the following recurrence: S(i, j) = p, + S(i,r — 1) + S(r+ 1,j) + Z Py + Z D-
k=r+1
+ The root w, has depth 0 and search cost 1, so it contributes p,. - 1 to the overall cost

S(i,r — 1) and S(r + 1, j) are optimal solutions for their subproblems, but now their subtrees have become children
of w,., and so depth of every node has increased by 1, which accounts for the last term.
 The sum simplifies to

J
S(i,5) = S(i,r — 1)+ S(r+ L,5) + Y _ps
k=1

Note the last term does not depend on the two subtrees, so to minimize S(%, j) we must also use optimal solutions
S(i,r — 1) and S(r + 1, 7)
Finally, as before, we do not know r, but it must be one of w; and w;, so take the minimum over those possibilities:

S(i,7) = ‘min.{S(i,r— D+ S(r+1,5)+ Zpk}.

1<r<
= k=i

2

« We have an n? size table and each entry takes O(n) time, so the total runtime is O(n?).

PAGE 30 oF 44

DynAaMmic PROGRAMMING OPTIMAL BINARY SEARCH TREES — 3.3

3.4. k Hop Shortest Path

Suppose we have a directed graph G = (V, E), where each edge (u, v) has a positive weight (length) ¢(u, v). Given a
source node s and integer k£ > 1, we want to find the shortest path from s to each v using at most k hops.

Our choice of subproblems is the following: for all nodes v € V and j < k:

d(v, j) = shortest path from s to v using at most j hops.

Initially define d(v,0) = oo for all v # s. The recurrence for computing d() values is

d(v,j) = min{d(v,j —1), min (d(u,j—1) + £(u, 'U))}

(u,v)eE

We arrive at v from some previous node u along a shortest (j — 1) hop path, and add one more hop and length
£(u,v); or there is no better j hop path than a j — 1 hop path.

| J

We fill entries of an n X k size array d column by column. The first column stores shortest paths using at most 1 hop.

The jth column is computed using only entries from the j — 1 column. The kth column of this array contains shortest

k hop distances from s to every v. Since each array entry takes time o< deg(v), it takes at must O (E deg(v)) =
v

O(F) time to compute them. So, the algorithm runs in time O(|V| - | E|).

Vs
\

If we instead wanted the longest path, we might try to replace the mins with maxes. But this problem is significantly
harder, since if there are cycles, the DP won’t recognize them but they clearly make longest paths infinite.

Although this doesn’t work in the general case due to cycles, if the input graph G is acyclic, then the DP corectly
finds the longest paths. We can relabel the vertices of G as vy, ..., v,, so that for every edge (vi, vj) € E, we have i <
j- Such an ordering can be found by Topological Sort. Now we process vertices in this order and compute longest
paths using

d(vj) = (v%?‘))éE{d(vi) + e(”z’v“j)}

0]

Note since we visit each edge exactly once, our time complexity is O(|E]|).

PAGE 31 oF 44

DynAaMmic PROGRAMMING k Hop SHORTEST PATH — 3.4

3.5. All Pairs Shortest Path Problem (APSP)

Given a graph G = (V, E) with edge weights w(e), we want to compute the shortest path distances between all pairs

of vertices. Our number of vertices is n = |V'| and number of edges is m = |E)|.

A naive algorithm runs O(n?) separate shortest path algorithms, one for each pair. If all edge weights w(e) are
positive, then we can use Djikstra; otherwise use Bellman Ford.

Then the total runtime is O(nmlogn) or O(n?m) depending on which one we use.

List vertices in any order, labeled 1, ..., n. Define d(i, j, k) by the length of the shortest path in G from i to j whose
intermediate nodes are all from the subset {1, 2, ..., k}.

We initialize d(i, j,0) = w(i, j); if there is no edge from ¢ to j, assign d(3, j,0) = co. The final distances we want are
d(i,j,m).

To compute d(i, j, k), consider the node k.

« If the shortest path does not go through k, we have d(i, j, k) = d(i, j, k — 1).

« If it does go through k, the shortest path through k is the shortest path from ¢ to k together with the shortest path
from k to j. Thus we have d(i, 7, k) = d(i,k, k — 1) + d(k,j, k — 1).

1 D=W
2 fork=1ton

3 |fori=1ton

4 forj=1ton
6 return D

PAGE 32 oF 44

4. Complexity Theory

4.1. P vs NP

Lecture 13 Feb idk

For some problems, no polynomial time algorithm will ever be found. The collection of such problems is very large.
These problems are called NP-Complete, and a polynomial time solution for any problem in this class will imply
polynomial time algorithms for all NP-Complete problems.

Informally, NP problems are problems whose solutions have a solution verifiable in polynomial time.

For example,

+ does a graph G have a simple (loopless) path of length K?
« is a number composite or prime?
+ Does a graph have a vertex cover of size C?

Non-examples
+ Graph G does not contain a simple path of length more than K
« Does White have a winning strategy in chess?

Clearly, P C N P, where P is the set of polynomial algorithms. In a sense, N P-Complete problems can be thought of
as the “hardest” prolems in NP, since a solution of any of one f them in polynomial time implies they can all be solved
in polynomial time. So either P = NP or P # NP.

To prove a problem is NP-Complete, the main tool is reduction.

Reduction from a problem A to a problem B is a polynomial time algorithm R that transforms inputs of A to
equivalent inputs to B. When such a reduction exists, we write A < B. More precisely, given x € A, the algorithm R

produces an input R(z) € B such that z is TRUE for A if and only if R(x) is TRUE for B.
\ y

Given A < B:
« If B is known to be easy, A is easy too
o If A is known to be hard, B is hard too.

For NP-Completeness reductions, we use the second implication.
\. J/

PAGE 33 oF 44

COMPLEXITY THEORY PvsNP —4.1

In each case, the first problem is not NP Complete and the second variation is.

Trees
+ MST: given a weighted graph and integer K, is there a tree of weight < K connecting all the nodes?

» Traveling Salesman Problem: given a weighted graph and integer K, is there a (simple) cycle of weight < K
visiting all the nodes?

Tours
+ Euler Tour: given a directed graph, is there a closed path visiting every edge exactly once?
+ Hamilton Tour: given a directed graph, is there a closed path visiting every node exactly once?

Circuits
« Given a boolean circuit and 0/1 values for inputs, is the output TRUE?
 Given a boolean circuit, is there a 0/1 setting of inputs for which the ouput is 1?

| J

Missed Lecture Feb 25

4.2. Examples of NP-Complete Problems

Lecture N Feb 27

PAGE 34 oF 44

COMPLEXITY THEORY ExAMPLES OF NP-COMPLETE PROBLEMS — 4.2

Given a directed graph G = (V, E), is there a simple cycle T visiting each vertex of V' exactly once?

We will reduce 3SAT to this problem. Recall 3SAT looks like ¢ = ¢; Acy A -+ A ¢, where ¢; = (mil VI, vV mi3).

We begin by describing a graph with 2" different cycles, each one corresponding to one of the 2" possible truth
assignments for the z;’s. Now construct n paths £, ..., F,, where F, consists of nodes v; ;, ..., v; ; for b = 3k + 3,
where we recall that £ is the number of clauses.

Note that a Hamiltonian cycle in this graph looks like taking F, left-right or right-left, then moving to F,_ ;. Thus
there are 2 choices for each P, and there are n of them, so there are 2" possible Hamiltonian cycles.

Now each P, represents whether we traveled left or right. Le. z; V 5, V 3 means we traveled right along P, left
along z,, and right along z3. Le. for each clause c;, reserve two adjacent node positions 3j and 3j + 1 in each path
where c¢; can be spliced.

1. If z; is not negated, then add edges v; 53, — ¢; and ¢; = v; 5,4

2. If z; is negated in c;, then add edges v; 3;,1 — ¢; and ¢; — v, 5.

This completes the construction. Note the number of nodes is (3k + 3)n + 2 + k.

In the forward direction, suppose 3SAT is satisfiable. Then we form a Hamiltonian cycle following our plan. Since
each clause c; is satisfied, there will be at least oen path F; going in the correct direction relative to ¢;, so we can
correctly splice ¢; into its edges.

Conversely, suppose the graph has a Hamiltonian cycle. If the cycle enters a node ¢; on an edge from v; 3, it must

4,35>
depart on an edge v, 3,4 If not, then v; 5;.; will have only one unvisited neighbor left, namely v, 5,5, and so the
tour will not be able to visit this node and maintain the Hamiltonian property. Symmetrically, if the tour enters

v; 341, it must depart immediately to v, 5;. Thus, direction of travel along each path F, tells us how to set z; to satisfy

the formula.
|\ J

Given a set of integers a4, ..., a,,, and an integer parameter k, decide if there is a subset of integers that sum exactly to

k. It’s easily in N P: just check if the numbers in the solution sum to k. We will reduce the vertex covering problem to
this problem. The outline is as follows:

1. Start with G and parameter k

2. Create a sequence of integers and parameter k’

3. Prove that G has a vertex cover of size k if and only if some subset of integers sum to &’

Let C be the set of vertices corresponding to z;’s in the sum and E’ C E be the

Given a set of integers a4, ..., a,,, determine if there is a partition into two subsets with equal sums. Is there a subset

I C{1,2,...,n} such that > a, =) a,. Observe this is just a special case of subset sum where £ is half the total
iel i€l

sum, so it’s NP-Complete.

PAGE 35 oF 44

COMPLEXITY THEORY ExAMPLES OF NP-COMPLETE PROBLEMS — 4.2

Given items of size aq, a,, ..., a,, and an unlimited supply of bins, each of size B, we want to pack items into the

fewest possible bins. The decision version is to decide if the items can be packed into k or fewer bins. The problem in
NP and for NP-Completeness we reduce the Partition problem to it. Given an instance of Partition, create items of size
aq, ..., a,. Then if we have k = 2 bins with each one having capacity g where S = Y a;, we can see the reduction.

i

Subset sum is a special case of the Knapsack Problem. Given a set of n items, each with an integer size s; and an
integer value v;, and a knapsack of size K, the goal is to select a subset of items with maximum total value whose size
is < K. Given an instance of subset sum {ay, ..., a,,, k}, set each size and value equal to a, and set the knapsack size
to be k.

But we saw a dynamic programming algorithm to solve the Knapsack Problem, so how is this possible? This

algorithm runs in O(nk), but we should actually be considering the size of the input length of k, which is log k. Thus
the true running time is like O(n?k). Still, this makes the problem “weakly NP Complete” (and same for the subset
sum and partition).

PAGE 36 oF 44

5. Approximation Algorithms

5.1. p-Approximation Algorithms

Lecture n Mar 4

Given an NP-Complete problem, we want a way that finds a good solution in polynomial time (note finding the
optimal is impossible in polynomial time). Thus, we can allow the output to be suboptimal, but want a guarantee on
the solution quality. To do this, we can use the ratio between the true optimum and the algorithm’s worst case
solution.

-

Our goal is to minimize a function. Denote our approximation algorithm by A and a problem instance by . We will
use cost(A,) for the quality of A’s solution for z, and cost(OPT, x) for the optimal solution. Thus our measure of A’s
approximation quality is
cost(A, x)
cost(OPT, x)

The smallest value is 1, in which A = OPT.

Note that this varies over z, but we want to consider worst case scenarios. Thus for a particular input size n, we want
to consider

p(n) = max cost(A,)
z cost(OPT,z)’

J

Recall the vertex cover problem. We attempt to find an approximate solution.

Note cost(A) is the size of the vertex cover found by A, and cost(OPT) is the size of the vertex cover found by OPT.

Then p(n) is the worst case ratio of - (f;s(t(g’g%ﬂ)

over all n node graphs.

One clear problem is that it’s not clear how we can even know the denominator. We can try to estimate it.

Two natural greedy algorithms are:

PAGE 37 oF 44

APPROXIMATION ALGORITHMS p-APPROXIMATION ALGORITHMS — 5.1

1 while graph nonempty:

2 | choose an edge (u, v)

add both » and v to cover C'

4 | delete all edges covered by u and v

w

5 return C

7’
.

1 while graph nonempty:

2 | choose v of maximum degree
3 | add v to cover C'

4 | delete all edges covered by v

5 return C

.

.

We begin by analyzing the second algorithm. Consider a bipartite graph G,, = (L + R, E), where

1. L is a set of n vertices 1,2, ...,n

2. Foreachi = 2,3,...,n, add |R,| = |n/i] vertices where each vertex of R, is connected to 7 distinct vertices of L
3. Vertices of R, have degree i; R, has n/2 vertices, each of degree 2, and so on.

Observe Algorithm 2 will pick all vertices of R, starting with R,,. THe size is § + % + --- +1 = Q(nlogn). But, the
optimal can just pick all vertices of L, which gives a vertex cover of size n. Therefore, the worst case approximation
ratio is at least p(n) = Q(log n) which goes to co as n — oo.

You can also show an upper bound: p(n) = ©(logn), which can come from greedy Set Cover analysis.

I Algorithm 1 has p(n) = 2.

Proof: Let A be the set of edges picked by the greedy algorithm.

1. No two edges in A share a vertex, so OPT must have size at least |A]|.

2. The size of the greedy set cover is 2 | A|; it adds 2 vertices for each edge of A.
3. Therefore, we always have p(n) < 2.

Then it’s easy to show examples with ratio 2, so p(n) = 2.

s
o

PAGE 38 oF 44

APPROXIMATION ALGORITHMS p-APPROXIMATION ALGORITHMS — 5.1

We assume that edges of G obey the triangle inequality. Now take the maximum path length in the graph: we can add
all missing edges to the graph and give them cost w(z, y) equal to the length of the shortest path in G between them.
Thus we can always make our graph complete.

We can approximate 7" using the MST. Pick an arbitrary node as the start point and do an in-order traversal of 7. This
is not a proper tour since it revisits vertices, so we modify 7" so that if we reach a vertex that has already been
visited, we find the shortest edge to another element in the MST.

Now observe

cost(tour) < cost(7T”) < 2 cost(MST) < 2 cost(TSP)

Therefore we have p(n) = 2.

This works for the triangle inequality case, but what about when this does not apply, i.e., in a complete graph?

Lecture n Mar 6

Unless P = N P, for the TSP without the triangle ineuqality, there is no poly time algorithm with approximation
ratio p(N) < MVM < oo.

Proof: We show that if a TSP can be approximated within any fixed ratio in polynomial time, then we can solve the
HAM CYCLE problem in polynomial time.

Given an instance G = (V, E) of HAM, construct a TSP instance G’ as follows. The vertices and edges of G’ =
(V, E) are exactly the same as those of G. The graph G does not have edge weights, but for G we assign edge
weights as follows. Set w(e) = life € E, and w(e) = (nM + 1) if e ¢ E. Now we wonder if G’ contains a TSP of
cost < n. If G contains a HAM cycle, then simply using the edges of that cycle we get a TSP of cost n in G’. The
approximation algorithm A, in order to deliver its approximation guarantee, must return a tour with cost < nM.
Since each edge not in G has cost > nM, the cycle cannot use that edge. So the only tours that lead to acceptable
approximation are the HAM cycles in G.

Conversely, if TSP returns a tour that costs more than nM, it must be forced to use at least one edge of weight
(nM + 1), which means G does nto contain a HAM cycle.

L O

PAGE 39 oF 44

APPROXIMATION ALGORITHMS p-APPROXIMATION ALGORITHMS — 5.1

Recall the maximum clique problem is that given a graph G = (V, E'), we want to find the largest subset of nodes in
which every pair has an edge between them.

In particular, suppose a graph contains a clique of size n/10. Note that in the greedy we can return two vertices
joined by an edge, so it returns 2.

No one has been able to find an algorithm with an approximation ratio better than n!~¢ for £ nonzero. Also, a
theoretical result shows that if there exists a poly time algorithm that can approximate the clique within factor
O(n'~¢), then P = NP.

Vs
\

Suppose we have items some amount of items and some weights. We want to select a subset of those items I C
{1,2,...,n} such that
LY w<W
i€l
2.)" v, is maximized
i€l

The problem is called the 0 / 1 Knapsack because inclusion of items is binary. Note that Subset Sum is a special case of

knapsack where w; = v, V4, implying the Knapsack is N P-complete.

e
-

Define subproblems A[i, w| for all 0 < ¢ < n and 0 < w < W. Initialize A[0, w] = A[i,0] = 0 for all and w. We then
have the DP recurrence relation

Ali, w] = max{A[i — 1, w],v; + A[i — 1,w — w;]}

We don’t select item 4 in the first entry, and in the second we select it. This is done in O(nW) total time; however,
this is not polynomial time. It should really be a polynomial function of n and log W, the size of the input. This is also
why the subset sum and knapsack problems are called weakly N P complete: for small values they have polynomial
algorithms.

Vs
\

One greedy algorithm is to sort the items in decreasing order of value and add to the knapsack if they fit. This gives
an arbitrarily large ratio, because we can set items to have weights 2, 3, ..., n each with weight W — 1, and another
item 1 with weight W, whereas the optimal algorithm would choose the n — 1 items but we choose 1 item.

We can also try sorting by ratio v/w, but this also results in an arbitrarily large ratio, since we can choose value 1 + €.

However, a third approach is to run the first greedy algorithm, then run the second greedy algorithm, and take

whichever has the better solution. Amazingly, this gives p(n) = 2

Vs
\

PAGE 40 oF 44

APPROXIMATION ALGORITHMS p-APPROXIMATION ALGORITHMS — 5.1

5.1.14. Proposition
I The combined greedy approach fulfills p(n) = 2.

Proof: First ignore items with w, > W since they can never fit. Next, modify our greedy algorithms so that they stop
at the first item that doesn’t fit in the knapsack. Let V], V; be the values returned by the greedy algorithms,

respectively. Notice that if V] + V;, > OPT, we would have max{V;, V,} > %, the result we want to obtain.
Let I be the subset of items picked by the ratio greedy algorithm, and let j be the first item that didn’t fit. Then

observe
Z v; =V,
el
and
Vi> e

Observe this second claim follows from the fact that the first item the first greedy algorithm picks up must be at least

as valuable as ;.

Observe OPT cannot exceed V; + v, so V, or v; must be at least OPT /2.

O

Suppose we have a set of m identical machines M, ..., M,, and a set of n jobs, where job j needs p; time for

processing. The goal is to schedule the jobs on these machines in a way such that we minimize the latest completion
time. Formally, suppose our algorithm assigns the subset of jobs A; C {1,2,...,n} to machine M. Then, the finish

time for M, is T; = »_ p;. We will call T; the load of machine M;. The maximum load across all machines is called
JEA;
the makespan of the algorithm, that is, 7" = max, {7 }. This is an N P-complete problem.
- J

List jobs in some order, then assign the next job j to the machine with the smallest current load.

1 forj=1,...,n

2 | Let M, be the machine with the current minimum load T}

3 | Add job j to machine i; ie., set A; = A; U{j} and T; = T; + p,

Suppose we have 3 machines with sizes 2, 3,4, 6, 2, 3. Our assignment is A; = {2,6}, A, = {3,2}, A; = {4,3},
with makespan 8, whereas the optimal is 7, achieved by (3,4), (6), (2,2, 3).

What is the worst case approximation of this algorithm?
\. J/

Lecture N Mar 10

PAGE 41 oF 44

APPROXIMATION ALGORITHMS p-APPROXIMATION ALGORITHMS — 5.1

5.1.18. Proposition
I The worst case approximation is p(n) = 2.

Proof: Let T" be the makespan of the greedy approach, and let 7* be the optimal makespan. One possible lower
bound on T™ is

1

Further, T* > max; {pj}.

Let M, have the max load in greedy assignment, and j be the last job assigned to M,. Then the load of M;, given by
(T; — pj), was the smallest among all machines when j was assigned. Thus adding up all the loads we have

n 1 n
(T p) €3 =T <=3
k=1 k=1

1 n
T, Spj+52pk < 2T™*.
k=1

O
Note there is a better approximation with a different greedy algorithm: if we sort in decreasing length order, we can
show p(n) = 3.
\. J/

Suppose we have N items of sizes s, S5, ..., Sy, Where we assume 0 < s; < 1; we also have an infinite supply of unit
size bins. There are two variations:

« online bin packing: items arrive one at a time (unordered) and each must be put in a bin before considering the next
item
« offline bin packing: all items given upfront

\

|

PAGE 42 oF 44

APPROXIMATION ALGORITHMS p-APPROXIMATION ALGORITHMS — 5.1

l There exist inputs that can force any online bin packing algorithm to use at least % of the optimal number of bins.

Proof: Consider an input sequence consisting of
+ I,: asequence of M items of size % — &, possibly followed by
« I,: a sequence of M items of size 1 + ¢

Simultaneously, suppose the online algorithm has used b bins after processing ;. The optimal clearly uses % bins, so
if the online algorithm beats the ratio we have
b - 4 - b - 2

M/2 "3 "M "3
After all items have been processed, note all items in I, have size > %, so every bin created after the first b bins will
have exactly one item in it. Thus, the first b bins can have 2 items and the remaining bins have 1 item each, packing
2M requires at least 2V — b bins. We know that optimal uses M bins, and if it beats the % ratio then (2M —b) <
%M & % > % Contradiction.

L]

Vs
|

When processing the next item, check if it fits in same same bin as the last item; otherwise, start a new bin.

Suppose optimal uses M bins. Then Next Fit uses at most 2M bins, and there are inputs that force Next Fit to
use 2M — 2 bins.

Proof: The sum of items in neighboring bins is > 1 clearly. Because at most half the space is wasted, Next Fit

1ig4
g if i odd (assuming 4 | N). The

uses at most 2M bins. For a lower bound, consider a sequence where s; = < 3 P,
N

optimal will use % + 1 bins, but Next Fit will use % bins.

L]

Vs
\

Check all previous bins to see if next item will fit. Start a new bin when it does not.

The upper bound is 1.7M bins. For a lower bound, consider the sequence of 6M items of size % + ¢, followed by 6\
items of size % + ¢, followed by 6 M items of size % + £. We should pack each bin from one from each group, since
FHi+3+3e<l

But first fit will give (1 + 3 + 6)M = 10M bins, giving a lower bound of & on the approximation ratio.

Vs
\

Place the next item in the tightest spot (that is, so that the smallest empty space is left.)

The same analysis for First Fit also applies to Best Fit.

PAGE 43 orF 44

APPROXIMATION ALGORITHMS p-APPROXIMATION ALGORITHMS — 5.1

Note that even the offline bin packing problem is NP-Complete, so we look at approximation algorithms. Consider
offline analogues of first fit and best fit, called first fit decreasing and best fit decreasing.

l First Fit Decreasing uses at most 4MT+1 if the optimal number is M.

PAGE 44 oF 44

	Greedy Algorithms
	Introduction
	Concept
	Computational Problem
	Algorithm
	Remark
	Exercise
	Definition
	Computational Problem
	Definition
	Computational Problem
	Computational Problem
	Computational Problem
	Remark

	Interval Scheduling
	Computational Problem
	Example
	Remark
	Remark
	Algorithm
	Example
	Remark
	Proposition
	Lemma
	Runtime Analysis
	Remark
	Proposition

	Huffman Code
	Example
	Example
	Computational Problem
	Concept
	Concept
	Concept
	Remark
	Computational Problem
	Algorithm
	Example
	Runtime Analysis
	Remark
	Lemma
	Proposition

	Minimum Lateness
	Computational Problem
	Example
	Example
	Algorithm
	Proposition

	Shortest Path and Minimum Spanning Tree
	Computational Problem
	Algorithm
	Proposition
	Computational Problem
	Algorithm
	Proposition

	Divide and Conquer
	Introduction
	Concept
	Example
	Algorithm
	Runtime Analysis
	Definition
	Computational Problem
	Algorithm
	Computational Problem
	Algorithm
	Example
	Runtime Analysis
	Algorithm

	Solving Recurrence Relations
	Concept
	Example
	Example
	Example
	Concept
	Example
	Example
	Concept
	Example
	Example
	Example
	Example

	Matrix Multiplication
	Computational Problem
	Algorithm
	Runtime Analysis
	Notation

	Quick Sort
	Algorithm
	Runtime Analysis

	Median and Closest Pair
	Definition
	Computational Problem
	Algorithm
	Remark
	Algorithm
	Runtime Analysis
	Remark
	Computational Problem
	Algorithm
	Remark
	Algorithm

	Dynamic Programming
	Introduction
	Remark
	Concept
	Computational Problem
	Concept
	Notation
	Algorithm
	Remark
	Concept
	Runtime Analysis
	Remark

	Matrix Chain Product
	Computational Problem
	Algorithm
	Example
	Remark
	Algorithm

	Optimal Binary Search Trees
	Computational Problem
	Algorithm

	k Hop Shortest Path
	Computational Problem
	Algorithm
	Runtime Analysis
	Remark
	Algorithm

	All Pairs Shortest Path Problem (APSP)
	Computational Problem
	Remark
	Algorithm

	Complexity Theory
	P vs NP
	Remark
	Example
	Remark
	Concept
	Remark
	Example

	Examples of NP-Complete Problems
	Computational Problem
	Computational Problem
	Computational Problem
	Computational Problem
	Computational Problem
	Remark

	Approximation Algorithms
	ρ-Approximation Algorithms
	Computational Problem
	Concept
	Example
	Algorithm
	Algorithm
	Theorem
	Example
	Remark
	Theorem
	Example
	Computational Problem
	Algorithm
	Example
	Proposition
	Computational Problem
	Algorithm
	Example
	Proposition
	Remark
	Computational Problem
	Lemma
	Algorithm
	Theorem
	Algorithm
	Algorithm
	Remark
	Theorem

