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1. Greedy Algorithms

1.1. Introduction

Lecture 1 Jan 7

1.1.1. Concept

There’s no exact definition of a greedy algorithm, but the general idea is that we always take the most optimal local
step.

1.1.2. Computational Problem

If the number of quarters in some change is 𝑎, the number of dimes is 𝑏, the number of nickels is 𝑐, and pennies 𝑑,
then we want to choose 𝑎, 𝑏, 𝑐, 𝑑 such that

1. 𝑎, 𝑏, 𝑐, 𝑑 nonnegative integers
2. 𝑋 = 25𝑎 + 10𝑏 + 5𝑐 + 𝑑
3. Minimize 𝑎 + 𝑏 + 𝑐 + 𝑑

The coin change problem asks for how to solve this optimally.

1.1.3. Algorithm

We use as many quarters as possible, then use as many dimes as possible and so on.

1. Choose 2 quarters, leaving the remainder as 73 − 2 × 25 = 23
2. Choose 2 dimes with remainder 23 − 2 × 10 = 3
3. Choose 0 nickels
4. Choose 3 pennies, with remainder 0.
5. Solution is 𝑎 = 2, 𝑏 = 2, 𝑐 = 0, 𝑑 = 3

1.1.4. Remark

Consider a nation called Zenobia where they have coins with value 12 and pennies and nickels as normal. Notice a
greedy algorithm here for 𝑋 = 15 gives us the solution 15 = 12 + 1 + 1 + 1, which is not optimal because we have
the shorter decomposition 15 = 5 + 5 + 5. This shows that the optimality of the greedy algorithm for the coin
change problem is not clear.

1.1.5. Exercise 1

Prove that the greedy algorithm for the coin change problem is optimal.

Solution: Proof:

⬜
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Greedy Algorithms Introduction — 1.1

1.1.6. Definition

We are given an undirected graph 𝐺 = (𝑉 , 𝐸). A vertex cover of 𝐺 is a subset 𝐶 ⊆ 𝑉  of vertices so that every edge
of 𝐸 has at least one of its endpoints in 𝐶 .

1.1.7. Computational Problem

Our problem is to find the smallest size vertex cover of a graph 𝐺.

Greedy Algorithm: pick the vertex 𝑢 of maximum degree. Remove 𝑢 and all of its neighbors and add it to the cover.
Repeat until there are no more vertices.

1.1.8. Definition

Given a graph 𝐺 = (𝑉 , 𝐸) with 𝑛 vertices, we want to assign colors {1, 2, …, 𝑘} such that no edge gets the same
color at both endpoints.

1.1.9. Computational Problem

Our problem is to color a given graph with a minimum number of colors.

Greedy Algorithm: Consider the vertices in some order, i.e., 𝑣1, …, 𝑣𝑛. Now assign 𝑣𝑖 the lowest available color not
used by 𝑣𝑖’s neighbors among {𝑣1, …, 𝑣𝑖−1}, adding a fresh color if needed.

1.1.10. Computational Problem

Suppose a trucker is driving from city 𝐴 to city 𝐵 along a route map with gas stations along the way. The trucker
would like to make the fewest possible stops along the way. Problem: Given any such route and locations of gas
stations, plan the trucker’s stops.

Greedy Algorithm: If he has some max distance 𝑅 he can go, always take the gas station furthest along with
distance less than 𝑅.

1.1.11. Computational Problem

A salesman needs to visit 𝑛 cities, say 𝑥1, 𝑥2, …, 𝑥𝑛. The salesman knows the travel cost between every pair of cities.
Starting at 𝑥1, the salesman must visit all other cities before returning to 𝑥1, at minimum total cost. In which order
should he visit?

Greedy Algorithm: Always travel to the nearest city that hasn’t been visited.

1.1.12. Remark

It turns out that only the Trucker’s Problem Greedy Algorithm is right – the other algorithms are not optimal.

1.2. Interval Scheduling

Lecture 2 Jan 9
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Greedy Algorithms Interval Scheduling — 1.2

1.2.1. Computational Problem

1. Suppose we have a list of 𝑛 activities that we want to schedule on a single resource (processor).
2. Each activity is specified by its start and end times.
3. Only one activity can be scheduled on the resource at a time.
4. Each activity uses the resource continuously between its start and end times.

Our goal is to schedule the maximum possible number of activities.

1.2.2. Example

• Suppose we have 5 activities:

{(3, 6), (1, 4), (4, 10), (6, 8), (0, 2)}

‣ these are like intervals on the number line
• A feasible schedule cannot have two activities that overlap (in time).
• For instance, we cannot accept both (1, 4) and (3, 6).
• However, (3, 6) and (6, 8) are acceptable, because second only begins when first ends.
• The optimal solution in this exmaple has size 3.

1.2.3. Remark

We can formalize the problem as followed.
• We have a set of activities, which we denote by 𝑆 = {1, 2, …, 𝑛}
• The 𝑖th activity is specificed by a tuple (𝑠(𝑖), 𝑓(𝑖)) with 𝑠(𝑖) ≤ 𝑓(𝑖), for 𝑖 = 1, …, 𝑛
• A feasible schedule is a subset in which no two activities overlap
• Goal: find a feasible schedule of maximum size.

Notice a naive algorithm searches through all 2𝑛 subsets, and outputs the largest feasible one, but this is not efficient.

1.2.4. Remark

We have a few possible greedy strategies:
1. FIFO: pick the one that starts first, remove overlapping activities and repeat
2. Shortest first: pick the activity with the shortest duration, remove overlapping activities and repeat
3. Min overlap first: Count the number of other jobs that overlap, then choose one with smallest overlap count

But if we analyze these, we see simple counterexamples for the first one (an activity that’s really long is first) and the
third one (a shorter interval in the middle that overlaps with 2 which could fit together). We could also construct an
example for the second.
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Greedy Algorithms Interval Scheduling — 1.2

1.2.5. Algorithm

The correct greedy strategy is to sort the process job in order by earliest finish time.

We sort jobs by order:

𝑓(𝑗1) ≤ 𝑓(𝑗2) ≤⋅ ⋅ ⋅≤ 𝑓(𝑗𝑛)

Pseudocode:

A = {1}; j = 1; // accept job 1
for i = 2 to n do
  if s(i) >= f(j) then
    A = A + {i}; j = i;
return A

1.2.6. Example

Activity Start Finish
1 1 4
2 3 5
3 0 6
4 5 7
5 3 8
6 5 9
7 6 10
8 8 11
9 8 12
10 2 13
11 12 14

• The greedy algorithm first chooses 1, then skips 2 and 3
• Next it chooses 4, and skips 5, 6, and 7
• It should choose 8 and 11 (verify)

1.2.7. Remark

• Suppose that OPT is an optimal solution for the problem. Ideally, we would like to show our algorithm always
returns the same output, namely 𝐴 ≡ OPT.

• But there may be multiple optima, and the best we can hope for is that |𝐴| = |OPT|
• The proof idea (typical for optimality of greedy algorithms) is to show the greedy algorithm stays ahead of the

optimal solution at all times
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Greedy Algorithms Interval Scheduling — 1.2

1.2.8. Proposition

The Earliest Finish Time Algorithm correctly solves the inveral scheduling problem.

Proof: Suppose 𝑎1, …, 𝑎𝑘 are the indices of jobs in the greedy schedule, and 𝑏1, …, 𝑏𝑚 are jobs in an optimal schedule
OPT. We want to show 𝑘 = 𝑚. Mnemonically, 𝑎𝑖’s are jobs picked by our algorithm while 𝑏𝑖’s are the optimal
schedule jobs. (Note we list both in order of start times.)

• Our intuition should be that the greedy algorithm makes the resource free again as soon as possible. In particular,
𝑓(𝑎1) ≤ 𝑓(𝑏1), that is, the greedy algorithm stays ahead. We formalize this as follows.

1.2.9. Lemma

For every 𝑖 ≤ 𝑘, we have 𝑓(𝑎𝑖) ≤ 𝑓(𝑏𝑖).

Proof: We proceed by induction. Note the 𝑖 = 1 case is trivial. By the induction hypothesis, we have 𝑓(𝑎𝑖−1) ≤
𝑓(𝑏𝑖−1).

Notice 𝑓(𝑏𝑖−1) ≤ 𝑠(𝑏𝑖) ≤ 𝑓(𝑏𝑖) and 𝑓(𝑎𝑖−1) ≤ 𝑠(𝑎𝑖) ≤ 𝑓(𝑎𝑖).

Therefore 𝑓(𝑎𝑖−1) ≤ 𝑠(𝑏𝑖), since clearly 𝑓(𝑏𝑖−1) ≤ 𝑠(𝑏𝑖). But notice 𝑠(𝑏𝑖) ≤ 𝑓(𝑏𝑖), which implies 𝑓(𝑎𝑖) ≤ 𝑓(𝑏𝑖)
as desired.

⬜

Notice by the lemma, 𝑓(𝑎𝑘) ≤ 𝑓(𝑏𝑘), but 𝑓(𝑏𝑘) ≤ 𝑓(𝑏𝑚), so 𝑓(𝑎𝑘) ≤ 𝑓(𝑏𝑚), implying 𝑘 ≤ 𝑚. But 𝑚 ≤ 𝑘 since OPT
is optimal, implying 𝑚 = 𝑘 as desired.

⬜

1.2.10. Runtime Analysis

The runtime of the previous algorithm is 𝑂(𝑛 log 𝑛) + 𝑂(𝑛) = 𝑂(𝑛 log 𝑛) because of the sorting and then iteration
through.

1.2.11. Remark

Consider the same setup with the following variant. Given a set of activities, what is the smallest number of machines
needed to schedule them all?

A natural greedy algorithm to try is the following: use EFT to find the maximum number of activities that can be
scheduled on one machine. Delete those and repeat the rest until no activities are left.

However, this algorithm fails because we can construct a setup where EFT uses 3 machines but the optimal solution is
2 machines.

Instead, a simpler greedy algorithm works:

Sort activities by start time
Put activity 1 on machine 1
for i = 2 to n:
  if i can be scheduled on any of the existing machines, add to that machine otherwise schedule
activity i on a new machine
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Greedy Algorithms Interval Scheduling — 1.2

1.2.12. Proposition

The previous algorithm is optimal.

Proof: Define the depth 𝑑 as the maximum number of activities working at the same time. Notice that OPT >= depth,
because we have to run all processes. Further, Greedy <= depth (since we only start on a new machine when there are
𝑑 − 1 processes running). Therefore, the Greedy algorithm has to be optimal.

⬜

1.3. Huffman Code

Lecture 3 Jan 14

1.3.1. Example

1. Suppose we have a signal digitized at some sampling rate, say 44 KHz.
2. This produces a sequence of real numbers 𝑠1, 𝑠2, …, 𝑠𝑇
3. Each 𝑠𝑖 is quantized - for example, to 256 different values
4. The quantized string 𝑇  over alphabet 𝐺 is encoded in binary
5. This last step uses Huffan encoding - we want to write this as compactly as possible

1.3.2. Example

Consider a data file with 100K characters. THe file contains only 6 different characters with the following frequency
distribution

Char a b c d e f
Freq(K) 45 13 12 16 9 5

Suppose the cost of storage or transmission is proportional to the number of bits.

1.3.3. Computational Problem

We want to design binary codes to achieve maximum compression. With 6 characters, we need at least 3 bits to
represent each. One possible set of such codes is

Char a b c d e f
Code 000 001 010 011 100 101

How can we reduce the storage as much as possible?
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Greedy Algorithms Huffman Code — 1.3

1.3.4. Concept

The previous code used fixed length coding. What if we instead use shorter codes for more frequent letters? One
possible set of variable length codes is the following:

Char a b c d e f
VLC 0 101 100 111 1101 1100

With this coding scheme, we only need 224 Kbits:

1 × 45 + 3 × 13 + 3 × 12 + 3 × 16 + 4 × 9 + 4 × 5

This is a 25% improvement over fixed length codes. In general, they can give huge savings.

1.3.5. Concept

• We have a potential problem with variable length codes–how do we know where the boundaries are?
• For example if 0 encodes 𝑥 and 00 encodes 𝑦, how do we interpret 000?
• We could put special markers between letters but that loses efficiency
• Instead we will ensure our codes satisfy the following property: no codeword can be a prefix of another code
• {0, 000} are invalid prefix codes, but {0, 101, 100, 111, 1101, 1100} are valid
• To encode, just concatenate the codes for each letter of the file; to decode, extract the first valid codeword and

repeat
• Example: code for ‘abc’ is 0101100, and 001011101 uniquely decodes to ‘aabe’

1.3.6. Concept

We represent codes using a tree as follows:
• Code for a letter is the sequence of bits between root and that leaf
• Decoding algorithm: start at root and output leaf
• Prefix code: only leaf nodes correspond to codes, not internal nodes

Note that the constant length coding is a balanced binary tree where we always insert in the next position, whereas
variable length coding is not necessarily balanced.

Note that if a node has children, it cannot have an associated letter, because it will be a prefix of the children.

100

86

a: 58 b: 28

14

c: 14 d: 12

1.3.7. Remark

Observe that the tree for an optimal code must be full: that is, each internal node has two children. Otherwise, we can
improve the code. Thus the fixed length code cannot be optimal!
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Greedy Algorithms Huffman Code — 1.3

1.3.8. Computational Problem

Let 𝐶 denote our alphabet (character set) and 𝑓(𝑝) the frequency of a letter 𝑝. Let 𝑇  be the tree for a prefix code, and
𝑑𝑇 (𝑝) th depth of 𝑝 in 𝑇 . The total number of bits (bit complexity) needed to encode our file using this code is:

𝐵(𝑇 ) = ∑
𝑝∈𝐶

𝑓(𝑝)𝑑𝑇 (𝑝)

We want a code that achieves the minimum possible value of 𝐵(𝑇 ).

1.3.9. Algorithm

We can intuitively think of this as building the best tree 𝑇  to represent binary codes.

Iniitally, each letter is represented by a single node tree, whose weight equals the letter’s frequency. We repeatedly
choose the smallest tree roots (by weight) and merge them. The new root’s weight is the sum of the two children’s
weights. If there are 𝑛 letters in the alphabet, there are 𝑛 − 1 merges.

1 𝑄 ← 𝐶 (𝑄 is a priority queue)
2 for 𝑖 = 1 to 𝑛 − 1 do
3 𝑧 ← allocateNode()
4 𝑥 ← left[𝑧] ← DeleteMin(𝑄)
5 𝑦 ← right[𝑧] ← DeleteMin(𝑄)
6 𝑓(𝑧) ← 𝑓[𝑥] + 𝑓[𝑦]
7 Insert(𝑄, 𝑧)
8 return FindMin(Q)
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Greedy Algorithms Huffman Code — 1.3

1.3.10. Example

1.3.11. Runtime Analysis

Note that this is 𝑂(𝑛 log 𝑛) because we initially sort and then do 𝑛 heap operations.
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Greedy Algorithms Huffman Code — 1.3

1.3.12. Remark

In an inductive proof, which character should we drop for induction? As a thought experiment, suppose we drop 𝑥𝑛.
Then by induction, we have an optimal solution for the problem on {𝑥1, …, 𝑥𝑛−1}. This is a tree with 𝑛 − 1 leaves.
Where should we attach 𝑥𝑛? Note attaching 𝑥𝑛 to a leaf node will create a node with one child, which cannot be
optimal.

We have a better idea. Take the two lowest frequency characters 𝑥𝑛−1 and 𝑥𝑛, and combine them into a new single
character 𝑧 with frequency 𝑓(𝑧) = 𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛). With 𝑥𝑛−1, 𝑥𝑛 removed and replaced with 𝑧, we have a set of
size |𝐶′| = 𝑛 − 1. By induction, we find the optimal code tree of 𝐶′. This tree has 𝑧 at some leaf. To obtain the tree
for 𝐶 , we attach nodes 𝑥𝑛−1 and 𝑥𝑛 as children of 𝑧. We will show that given an optimal tree for 𝐶′, this new tree is
optimal for 𝐶 .

1.3.13. Lemma

Suppose 𝑥 and 𝑦 are two letters of lowest frequency. Then, there exists an optimal prefix code in which codewords
for 𝑥 and 𝑦 have the same and maximum length in that the differ in only one character.

Proof: Idea: Suppose the optimal tree 𝑇  does not satisfy the claim. We will modify it by making 𝑥 and 𝑦 sibling leaves
of maximum depth, and show that the change does not increase the total cost of the tree, which will prove the lemma.

Suppose 𝑎 and 𝑏 are two characters that are sibling leaves of max depth in 𝑇 .

Without loss of generality, assume that

𝑓(𝑎) ≤ 𝑓(𝑏) and 𝑓(𝑥) ≤ 𝑓(𝑦).

Note because 𝑓(𝑥) and 𝑓(𝑦) are the two lowest frequencies, we can conclude that

𝑓(𝑥) ≤ 𝑓(𝑎) and 𝑓(𝑦) ≤ 𝑓(𝑏).

(𝑥, 𝑦, 𝑎, 𝑏 need not be distinct.)

First transform 𝑇  into 𝑇 ′ by swapping the positions of 𝑥 and 𝑎. Since 𝑑𝑇 (𝑎) ≥ 𝑑𝑇 (𝑥) and 𝑓(𝑎) ≥ 𝑓(𝑥), swapping
does not increase frequency times depth cost.

Then

𝐵(𝑇 ) − 𝐵(𝑇 ′) = ∑
𝑝

[𝑓(𝑝)𝑑𝑇 (𝑝)] − ∑
𝑝

[𝑓(𝑝)𝑑′
𝑇 (𝑝)]

= [𝑓(𝑥)𝑑𝑇 (𝑥) + 𝑓(𝑎)𝑑𝑇 (𝑎)] − [𝑓(𝑥)𝑑′
𝑇 (𝑥) + 𝑓(𝑎)𝑑′

𝑇 (𝑎)]
= [𝑓(𝑥)𝑑𝑇 (𝑥) + 𝑓(𝑎)𝑑𝑇 (𝑎)] − [𝑓(𝑥)𝑑𝑇 (𝑎) + 𝑓(𝑎)𝑑𝑇 (𝑥)]
= [𝑓(𝑎) − 𝑓(𝑥)] ⋅ [𝑑𝑇 (𝑎) − 𝑑𝑇 (𝑥)]
≥ 0

Therefore, if 𝑇  is optimal, so is 𝑇 ′. Next, modify 𝑇 ′ to 𝑇 ″ by exchanging 𝑦 and 𝑏, and the same argument shows
𝐵(𝑇 ″) ≤ 𝐵(𝑇 ′) ≤ 𝐵(𝑇 ). Thus 𝑇 ″ is an optimal tree but has 𝑥 and 𝑦 as sibling leaves at the maximum depth.

⬜
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1.3.14. Proposition

Huffman’s Algorithm is optimal.

Proof: We proceed by induction on the size of the alphabet |𝐶|. The base case of |𝐶| = 2 is trivial: we have a depth 1
tree with two leaves, each with code length 1.

By the structure lemma, the greedy choice is correct. Given input 𝐶 of size 𝑛, we remove the smallest keys 𝑥, 𝑦 and
instead add a new key 𝑧 with 𝑓(𝑧) = 𝑓(𝑥) + 𝑓(𝑦), getting a (𝑛 − 1) size set 𝐶′ = 𝐶 \ {𝑥, 𝑦} ∪ 𝑧. By induction,
Huffman’s Algorithm finds an optimal tree 𝑇 ′ for 𝐶′, one of whose leaves is 𝑧. We make 𝑥 and 𝑦 children of 𝑧,
obtaining a tree 𝑇  for the original input 𝐶 .

⬜

1.4. Minimum Lateness

Lecture 4 Jan 16

1.4.1. Computational Problem

• We have 𝑛 jobs to schedule on a single processor
• Each job 𝑗 comes with two requirements: processing time 𝑡𝑗 and a due date 𝑑𝑗
• That is, jobs do not have fixed start and finish times, and it is our scheduling algorithm’s task to select their start

times
• If job 𝑗 were to start at time 𝑠𝑗, then it will finish at time 𝑓𝑗 = 𝑠𝑗 + 𝑡𝑗
• The lateness of a job is defined by

ℓ𝑗 = max{0, 𝑓𝑗 − 𝑑𝑗}
• The maximum lateness of a schedule 𝑆 is

𝐿(𝑆) = max
𝑗

ℓ𝑗

• Goal: find a schedule with smallest maximum lateness 𝐿(𝑆)

1.4.2. Example

1 2 3 4 5 6
𝑡𝑗 3 2 1 4 3 2
𝑑𝑗 6 8 9 9 14 15

If we do 𝑑3 → 𝑑2 → 𝑑6 → 𝑑1 → 𝑑5 → 𝑑4, the first late job is job 1 and job 4 is also late. 𝑛! possible ways to schedule
jobs.
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1.4.3. Example

1. Consider a strategy where we take the shortest processing time first. But if we have the tuples (1, 100) and
(10, 10). The first job finishes at time 1 and the second job finishes at time 11, so the delay is 1. But if we did the
second job first and the first job after, we have 0 delay.

2. Consider sorting by the smallest slack 𝑑𝑗 − 𝑡𝑗 on (1, 2) and (10, 10). Note the first has slack 1 and the second slack
0, but we should’ve done the first one first.

1.4.4. Algorithm

We schedule jobs in ascending order of due dates.

1 Sort 𝑛 jobs by deadline 𝑑1 ≤ 𝑑2 ≤⋅ ⋅ ⋅≤ 𝑑𝑛
2 t = 0
3 for j = 1 to n
4 Assign job 𝑗 to interval [𝑡, 𝑡 + 𝑡𝑗]
5 𝑠𝑗 ← 𝑡, 𝑓𝑗 ← 𝑡 + 𝑡𝑗
6 𝑡 ≤ 𝑡 + 𝑡𝑗
7 output intervals [𝑠𝑗, 𝑓𝑗]

1.4.5. Proposition

The EDD algorithm is optimal.

Proof: By contradiction, suppose there is a better algorithm 𝑆∗. Note that the greedy algorithm has 𝑑𝑖 ≤ 𝑑𝑗 if 𝑖 < 𝑗.
Thus there must be some consecutive pair in 𝑆∗ such that 𝑑𝑖 > 𝑑𝑗 if 𝑖 < 𝑗 (an inversion). This reduces to the
following claim: swapping inverted jobs reduces the number of inversions and does not increase max lateness.

Let ℓ be the lateness before the swap, and let ℓ′ be it afterwards. Assume 𝑑𝑗 > 𝑑𝑖. Note ℓ′
𝑘 = ℓ𝑘∀𝑘 ≠ 𝑖, 𝑗 and ℓ′

𝑖 ≤ ℓ𝑖
Also

ℓ′
𝑖 = 𝑓 ′

𝑗 − 𝑑𝑗

= 𝑓𝑖 − 𝑑𝑗

≤ 𝑓𝑖 − 𝑑𝑖

≤ ℓ𝑖

so 𝑆∗ is not optimal.

⬜

1.5. Shortest Path and Minimum Spanning Tree

1.5.1. Computational Problem

Suppose we have a directed graph 𝐺 = (𝑉 , 𝐸) where every edge 𝑒 ∈ 𝐸 has a nonnegative cost cost(𝑒). The length of
a path 𝑃  between two nodes 𝑢 and 𝑣 is the sum of the edge costs in 𝑃 .
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1.5.2. Algorithm

1 Initiailize 𝑆 = ∅, 𝑑(𝑠) = 0 and 𝑑(𝑢) = ∞∀𝑢 ≠ 𝑠
2 Insert vertices into a minheap 𝑄 with distance label 𝑑(𝑢)
3 while 𝑆 ≠ 𝑉  do
4 𝑢 ≔ deleteMin(𝑄)
5 Add 𝑢 to 𝑆
6 for each out neighbor 𝑣 ∉ 𝑆 of 𝑢 do
7 𝑑(𝑣) = min{𝑑(𝑢) + cost(𝑢, 𝑣), 𝑑(𝑣)}

1.5.3. Proposition

Djikstra’s is correct.

Proof:
1. At any time 𝑑(𝑣) is the shortest path distance to 𝑣∀𝑣 ∈ 𝑆.
2. Consider the instsant when 𝑣 is added to 𝑆. Let (𝑢, 𝑣) be the edge, with 𝑢 ∈ 𝑆, that last updated 𝑑(𝑣).
3. Suppose for the sake of contradiction that 𝑑(𝑢) + cost(𝑢, 𝑣) is not the shortest distance to 𝑣. Instead a different

shorter path called 𝑃  exists to 𝑣.
4. Since the path starts at 𝑆, it has to leave 𝑆 at some node 𝑥. Let 𝑦 ∉ 𝑆 be the edge that goes from 𝑆 to 𝑆
5. But note that 𝑑(𝑢) + cost(𝑢, 𝑣) ≤ 𝑑(𝑥) + cost(𝑥, 𝑦)
6. Since length(𝑦, 𝑣) > 0, this contradicts our hypothesis that 𝑃  is shorter than 𝑑(𝑢) + cost(𝑢, 𝑣), so 𝑑(𝑣) is correct.

⬜

1.5.4. Computational Problem

SUppose we haev a graph 𝐺 = (𝑉 , 𝐸) where every edge has a cost 𝑐(𝑒). A spanning subgraph is connected and
includes all vertices of 𝐺. We want to find the minimum spanning tree.

1.5.5. Algorithm

1 Sort the edges in increasing order and assume 𝑐(𝑒1) ≤ 𝑐(𝑒2) ≤⋅ ⋅ ⋅≤ 𝑐(𝑒𝑚)
2 𝑆 = ∅
3 For 𝑒 edge do
4 if 𝑒 does not create a cycle do
5 𝑆 = 𝑆 ∪ {𝑒}

1.5.6. Proposition

Kruskal’s is correct

Proof: Follows from cut property

⬜
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2. Divide and Conquer

2.1. Introduction

Lecture 5 Jan 21

2.1.1. Concept

Divide and conquer problems have the following structure:
1. Break up the problem into multiple parts
2. Solve each part (sub problem) recursively
3. Combine sub problem solutions into overall solution

2.1.2. Example

In a sorting problem we want to rearrange 𝑛 elements in order. It has many applications and is often solved by divide
and conquer.

2.1.3. Algorithm

This is a classic divide and conquer algorithm
1. Divide the array into two halves
2. Recursively search each half
3. Merge two halves to make the whole array sorted

Note to merge two lists, we often use a temporary array to place elements into. We can do it with only constant extra
space, but it becomes much more complicated.

2.1.4. Runtime Analysis

Define 𝑇 (𝑛) as the number of steps to merge sort an input of size 𝑛. Then the runtime is expressed using

𝑇 (𝑛) ≤ 2𝑇(𝑛
2
) + 𝑐𝑛

where 𝑐 is some fixed constant and 𝑇 (1) = 0. Assume 𝑛 is a power of 2.

We can show that this implies 𝑇 (𝑛) = 𝑂(𝑛 log 𝑛), but we will show this later.

2.1.5. Definition

Given a list of 𝑛 numbers 𝑎1, 𝑎2, …, 𝑎𝑛, an inversion is a pair (𝑖, 𝑗) where 𝑖 < 𝑗 but 𝑎𝑖 > 𝑎𝑗.

2.1.6. Computational Problem

An interesting problem is to count inversions in a list.

For example, given (1, 3, 4, 2, 5) the inversions are 3 − 2 and 4 − 2. There are (𝑛
2) pairs (if it’s in reverse order, this is

the number of out of order terms). This gives a trivial 𝑂(𝑛2) algorithm, but can we do better?
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2.1.7. Algorithm

Suppose we have an array like

1 5 4 8 10 2 6 9 12 11 3 7

and we split it into 1 5 4 8 10 2  and 6 9 12 11 3 7 .

Inversions in the first part:

5-4, 5-2, 4-2, 8-2, 10-2

and inversions in the second part:

6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7.

Notice if we sort those two lists, we can create two pointers traversing each list exactly once. We look at the first
element at the right and move on the left until we find an element larger than the element on the list - then the
number of spaces we moved is the number of inversions. This is 𝑂(𝑛) time after the merge sort (which is 𝑂(𝑛 log 𝑛))
so the algorithm is 𝑂(𝑛 log 𝑛) overall.

2.1.8. Computational Problem

Suppose we want to multiply two long 𝑛 digit numbers (such that the operation is not constant time in the processor).

Note the standard method is 𝑂(𝑛2).

2.1.9. Algorithm

Suppose we have 𝑛 bit numbers 𝑋 and 𝑌 . Let 𝑎 be the 𝑛/2 bit number representing the leading bits of 𝑋, and 𝑏
represent the trailing bits. Note that 𝑋 = 2𝑛/2𝑎 + 𝑏. Similarly, let 𝑐 and 𝑑 be the numbers corresponding to leading
and trailing 𝑛/2 bits of 𝑌 , so 𝑌 = 2𝑛/2𝑐 + 𝑑.

Then

𝑋𝑌 = (𝑎2𝑛/2 + 𝑏)(𝑐2𝑛/2 + 𝑑)

= 𝑎𝑐2𝑛 + (𝑎𝑑 + 𝑏𝑐)2𝑛/2 + 𝑏𝑑

2.1.10. Example

Let 𝑋 = 4729 and 𝑌 = 1326. Then 𝑎 = 47, 𝑏 = 29, 𝑐 = 13 and 𝑑 = 26. Then 𝑎𝑐 = 611, 𝑎𝑑 = 1222, 𝑏𝑐 = 377 and
𝑏𝑑 = 754. Therefore

𝑋𝑌 = 611 ⋅ 104 + 1599 ⋅ 102 + 754.

2.1.11. Runtime Analysis

We split each number in 4 and we have some shifting operations, so the total number of operations is

𝑇 (𝑛) = 4𝑇(𝑛
2
) + 𝑂(𝑛).

This is 𝑇 (𝑛) = 𝑂(𝑛2).
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2.1.12. Algorithm

Karatsuba made an improvement to the previous algorithm. He noticed we only need 𝑎𝑐, 𝑎𝑑 + 𝑏𝑐 and 𝑏𝑑.

In particular,

(𝑎 − 𝑏)(𝑐 − 𝑑) = (𝑎𝑐 + 𝑏𝑑) − (𝑎𝑑 + 𝑏𝑐).

Suppose we find 𝑎𝑐, 𝑏𝑑 and (𝑎 − 𝑏)(𝑐 − 𝑑) – then we get 𝑎𝑑 + 𝑏𝑐. Now we’ve reduced the problem to 3 subproblems.
This gives

𝑇 (𝑛) = 3𝑇 (𝑛/2) + 𝑂(𝑛)

which gives 𝑇 (𝑛) = 𝑂(𝑛1.59). (Note 1.59 = log2 3).

2.2. Solving Recurrence Relations

Lecture 6 Jan 23

2.2.1. Concept

One way to solve recurrence problems is to try to find a pattern.

2.2.2. Example

Suppose 𝑇 (𝑛) = 2𝑇 (𝑛/2) + 𝑐𝑛. Thus

𝑇 (𝑛) = 2𝑇(𝑛
2
) + 𝑐𝑛

= 2(2𝑇 (𝑛/22) + 𝑐𝑛/2) + 𝑐𝑛

= 22𝑇(𝑛/22) + 2𝑐𝑛

= 22(2𝑇 (𝑛/23) + 𝑐𝑛/22) + 2𝑐𝑛

= 23𝑇(𝑛/23) + 3𝑐𝑛
⋮

𝑇 (𝑛) = 2𝑖𝑇(𝑛/2𝑖) + 𝑖𝑐𝑛

Now set 𝑖 = log2 𝑛 and use 𝑇 (1) = 1. Then we see 𝑇 (𝑛) = 𝑛 + 𝑐𝑛 log(𝑛)
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2.2.3. Example

𝑇 (𝑛) = 4𝑇 (𝑛/2) + 𝑐𝑛

= 4(4𝑇 (𝑛/22) + 𝑐𝑛/2) + 𝑐𝑛

= 42𝑇(𝑛/22) + 2𝑐𝑛 + 𝑐𝑛

= 42(4𝑇 (𝑛/23) + 𝑐𝑛/22) + 2𝑐𝑛 + 𝑐𝑛

= 43𝑇(𝑛/23) + 22𝑐𝑛 + 2𝑐𝑛 + 𝑐𝑛
⋮
= 4𝑖𝑇(𝑛/2𝑖) + 𝑐𝑛(2𝑖−1 + 2𝑖−2 + ⋅ ⋅ ⋅ +2 + 1)

= 4𝑖𝑇(𝑛/2𝑖) + 2𝑖𝑐𝑛

Now set 2𝑖 = 𝑛 ⇔ 𝑖 = log2 𝑛 and we get 𝑇 (𝑛) = 𝑛2 + 𝑐𝑛2 = 𝑂(𝑛2).

2.2.4. Example

𝑇 (𝑛) = 2𝑇 (𝑛/4) +
√

𝑛

= 2(2𝑇 (𝑛/42) + √𝑛/4) +
√

𝑛

= 22𝑇(𝑛/42) + 2
√

𝑛

= 23𝑇(𝑛/43) + 3
√

𝑛
⋮
= 2𝑖𝑇(𝑛/4𝑖) + 𝑖

√
𝑛

Thus we want 𝑛 = 4𝑖 so 𝑖 = 1
2 log2 𝑛. So this is 

√
𝑛 + 1

2 log2 𝑛 ⋅
√

𝑛 = 𝑂(
√

𝑛 log 𝑛).

2.2.5. Concept

Visualize the recursion as an infinite tree and figure out how to collapse it.

2.2.6. Example

Supopse 𝑇 (𝑛) = 4𝑇 (𝑛/2) + 𝑐𝑛 and 𝑇 (1) = 1. At the 𝑖th level there are 4𝑛 nodes but we only pay 𝑐𝑛
2𝑖  for each one, so

the additional work we do at each step is 4𝑖𝑐𝑛
2𝑖 = 2𝑖𝑐𝑛.

Then if we set 𝑖 = log2 𝑛 we get that this is 𝑂(𝑛2).

2.2.7. Example

Our recurrence relation is 𝑇 (𝑛) = 2𝑇 (𝑛/2) + 𝑐𝑛. Our base case is 𝑇 (1) = 1. Our inductive hypothesis is 𝑇 (𝑛) =
𝑐𝑛 log 𝑛. We verify as follows:

𝑇 (2𝑛) = 2𝑇 (2𝑛/2) + 2𝑐𝑛
= 2𝑐𝑛 log 𝑛 + 2𝑐𝑛
= 2𝑐𝑛 log(2𝑛/2) + 2𝑐𝑛
= 2𝑐𝑛 log(2𝑛) − 2𝑐𝑛 + 2𝑐𝑛
= 2𝑐𝑛 log(2𝑛)
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2.2.8. Concept

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Suppose we have a recurrence relation of the form

𝑇 (𝑛) = 𝑎𝑇(𝑛
𝑏
) + 𝑓(𝑛) with 𝑇 (1) = 1

We are turning a problem 𝑛 into 𝑎 subproblems of size 𝑛𝑏  each. Thus at each level there are
1. 𝑓(𝑛)
2. 𝑎𝑓(𝑛/𝑏)
3. 𝑎2𝑓(𝑛/𝑏2)

And in general 𝑎𝑖𝑓(𝑛/𝑏𝑖) problems.

The number of leaves is then 𝑎log𝑏 𝑛 = 𝑛log𝑏 𝑎. By the recursion step we get

𝑇 (𝑛) = Θ(𝑛log𝑏 𝑎) + ∑
log𝑏(𝑛−1)

𝑖=0
𝑎𝑖𝑓( 𝑛

𝑏𝑖 )

This general sum is hard to bound so we limit ourselves to the situation where 𝑓  looks like

𝑓(𝑛) = Θ(𝑛𝑝 log𝑘 𝑛) with 𝑝, 𝑘 ≥ 0 and 𝑎 ≥ 1 and 𝑏 > 1 are constants

This breaks down to 3 cases:

1. 𝑝 < log𝑏 𝑎. Then 𝑛log𝑏 𝑎 grows faster than 𝑓(𝑛) so

𝑇 (𝑛) = Θ(𝑛log𝑏 𝑎)

2. 𝑝 = log𝑏 𝑎. Both terms have the same growth rates so

𝑇 (𝑛) = Θ(𝑛log𝑏 𝑎 log𝑘+1 𝑛)

3. 𝑝 > log𝑏 𝑎. Then 𝑛log𝑏 𝑎 is slower than 𝑓(𝑛) so

𝑇 (𝑛) = Θ(𝑓(𝑛))

2.2.9. Example

Merge Sort has 𝑇 (𝑛) = 2𝑇 (𝑛/2) + Θ(𝑛).
1. 𝑎 = 𝑏 = 2, 𝑝 = 1 and 𝑘 = 0
2. So log𝑏 𝑎 = 1 and thus 𝑝 = log𝑏 𝑎
3. Case 2 applies so

𝑇 (𝑛) = Θ(𝑛 log 𝑛)

2.2.10. Example

Suppose 𝑇 (𝑛) = 𝑇(𝑛/2) + Θ(1).
1. 𝑎 = 1, 𝑏 = 2, 𝑝 = 0, 𝑘 = 0.
2. So log𝑏 𝑎 = 0 = 𝑝
3. Case 2 so 𝑇 (𝑛) = Θ(log 𝑛)
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2.2.11. Example

1. 𝑇 (𝑛) = 2𝑇(𝑛
2 ) + Θ(𝑛 log 𝑛) ⟹ 𝑇(𝑛) = Θ(𝑛 log2 𝑛)

2. 𝑇 (𝑛) = 7𝑇(𝑛
2 ) + Θ(𝑛2) ⟹ Case 1 : 𝑇 (𝑛) = Θ(𝑛log 7)

3. 𝑇 (𝑛) = 4𝑇(𝑛
2 ) + Θ(𝑛5

2 ) ⟹ Case 3: 𝑇 (𝑛) = Θ(𝑛5
2 )

4. 𝑇 (𝑛) = 2𝑇(𝑛
2 ) + Θ( 𝑛

log 𝑛) ⟹ No cases apply since 𝑘 = −1

2.2.12. Example

• 𝑇 (𝑛) = 2𝑛𝑇(𝑛
2 ) + 𝑛 since 𝑎 non constant

• 𝑇 (𝑛) = 64𝑇(𝑛
8 ) − 𝑛2 log 𝑛 since 𝑓(𝑛) negative

• 𝑇 (𝑛) = 𝑇(𝑛
2 ) + 𝑛(2 − cos 𝑛)) since 𝑓(𝑛) has wrong form

2.3. Matrix Multiplication

Lecture 7 Jan 28

2.3.1. Computational Problem

We want to multiply two 𝑛 × 𝑛 matrices. One simple divide and conquer algorithm is to divide the matrices into 4
submatrices and multiply them, i.e. if we have

𝐴 = (𝑎11
𝑎21

𝑎12
𝑎22

); 𝐵 = (𝑏11
𝑏21

𝑏12
𝑏22

); 𝐶 = (𝑐11
𝑐21

𝑐12
𝑐22

)

we can calculate 𝐶 via

𝑐11 = 𝑎11𝑏11 + 𝑎12𝑏21

et cetera, which gives

𝑇 (𝑛) = 8𝑇(𝑛
2
) + 𝑂(𝑛2)

which is 𝑂(𝑛3). Is there something better?

Page 20 of 44



Divide and Conquer Matrix Multiplication — 2.3

2.3.2. Algorithm

Only 7 subproblems are needed:

𝑃1 = (𝑎11 + 𝑎22)(𝑏11 + 𝑏22)
𝑃2 = (𝑎21 + 𝑎22)𝑏11

𝑃3 = 𝑎11(𝑏12 − 𝑏22)
𝑃4 = 𝑎22(𝑏21−𝑏11)

𝑃5 = (𝑎11 + 𝑎12)𝑏22

𝑃6 = 𝑎(𝑎21 − 𝑎11)(𝑏11 + 𝑏12)
𝑃7 = (𝑎12 − 𝑎22)(𝑏21 + 𝑏22)

Then we can recover 𝐶 as follows:

𝑐11 = 𝑃1 + 𝑃4 − 𝑃5 + 𝑃7

𝑐12 = 𝑃3 + 𝑃5

𝑐21 = 𝑃2 + 𝑃4

𝑐22 = 𝑃1 + 𝑃3 − 𝑃2 + 𝑃6

2.3.3. Runtime Analysis

The recurrence looks like

𝑇 (𝑛) = 7𝑇(𝑛
2
) + 𝑂(𝑛2)

which solves to

𝕋(𝑛) = 𝑂(𝑛log2 7) = 𝑂(𝑛2.81)

2.3.4. Notation

Computer scientists use 𝜔 for the current best possible exponent for matrix multiplication.
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2.4. Quick Sort

2.4.1. Algorithm

When we perform a quick sort we partition first. This means that we select an element 𝑥 as a pivot and place all
elements smaller than 𝑥 on its left and all elements larger on its right.

The partition is easy to implement in 𝑂(𝑛) via
• Keep two pointers 𝑖 and 𝑗 such that

‣ items to the left of 𝑖 are less than 𝑥
‣ items from 𝑖 + 1 to 𝑗 are bigger than 𝑥
‣ items to the right of 𝑗 are not yet scanned

When 𝑗 reaches end of array (pivot), swap with item at 𝑖 + 1

We pick a random index as our pivot. So our algorithm is

1 if 𝑝 ≥ 𝑞 then return
2 𝑖 ← random(𝑝, 𝑞)
3 𝑟 ← Partition(𝐴, 𝑝, 𝑞, 𝑖)
4 Quicksort(𝐴, 𝑝, 𝑟 − 1)
5 Quicksort(𝐴, 𝑟 + 1, 𝑞)
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2.4.2. Runtime Analysis

Our recurrence is

𝑇 (𝑛) = 𝑇(𝑛1) + 𝑇 (𝑛2) + 𝑂(𝑛)

with 𝑛1 + 𝑛2 = 𝑛. A lucky case is that

𝑇 (𝑛) = 2𝑇(𝑛
2
) + 𝑂(𝑛) = 𝑂(𝑛 log 𝑛)

and an unlucky one is that

𝑇 (𝑛) = 𝑇(𝑛 − 1) + 𝑂(𝑛) = 𝑂(𝑛2)

Note that fixing any position of our pivot, like always choosing the first element, fails to adversarial lists that can
always give us 𝑂(𝑛2) time.

Let 𝑇 (𝑛) denote the expected runtime of QuickSort. Assume elements are distinct. If the pivot is the 𝑖th smallest
element, we get 𝑖 − 1 elements in 𝐿 and 𝑛 − 𝑖 in 𝑅—call this an 𝑖 split.

Thus

𝑇 (𝑛) = 1
𝑛

∑
𝑛

𝑖=1
(runtime with 𝑖 split) + 𝑛 + 1

= 1
𝑛

∑
𝑛

𝑖=1
(𝑇 (𝑖 − 1) + 𝑇(𝑛 − 𝑖)) + 𝑛 + 1

= 2
𝑛

∑
𝑛

𝑖=1
𝑇 (𝑖 − 1) + 𝑛 + 1

= 2
𝑛

∑
𝑛−1

𝑖=0
𝑇 (𝑖) + 𝑛 + 1

Thus

𝑛𝑇 (𝑛) = 2 ∑
𝑛−1

𝑖=0
𝑇 (𝑖) + 𝑛2 + 𝑛

(𝑛 − 1)𝑇 (𝑛 − 1) = 2 ∑
𝑛−2

𝑖=0
𝑇 (𝑖) + (𝑛 − 1)2 + (𝑛 − 1)

so

𝑛𝑇 (𝑛) = (𝑛 + 1)𝑇 (𝑛 − 1) + 2𝑛.

Thus

𝑇 (𝑛)
𝑛 + 1

= 𝑇(𝑛 − 1)
𝑛

+ 2
𝑛 + 1

= 𝑇(𝑛 − 2)
𝑛 − 1

+ 2
𝑛

+ 2
𝑛 + 1

⋮

= 𝑇 (2)
3

+ ∑
𝑛

𝑖=3

2
𝑖

= Θ(1) + 2 log 𝑛.
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2.5. Median and Closest Pair

Lecture 8 Jan 300

2.5.1. Definition

Given a set of 𝑛 items, we define the rank of an item 𝑥 as its position in the sorted order of the items.

2.5.2. Computational Problem

Given a set of 𝑛 items and integer 1 ≤ 𝑘 ≤ 𝑛, find the item in the set with rank 𝑘. Assume all values are distinct. Note
that if we sort them, this is trivial, but this is 𝑂(𝑛 log 𝑛)—can we do better?

2.5.3. Algorithm

Note that it’s easy to find items or rank 1 or 𝑛 in 𝑂(𝑛) time:

1 if |𝐴| = 1, return min = max = 𝐴[0]
2 Divide 𝐴 into two equal subsets 𝐴1, 𝐴2
3 (min1, max1) ≔ MIN-MAX(𝐴1)
4 (min2, max2) ≔ MIN-MAX(𝐴2)
5 if min1 ≤ min2 then
6 return min = min1
7 else
8 return min = min2
9 if max1 ≥ max2 then

10 return max = max1
11 else
12 return max = max2

2.5.4. Remark

If we extend this algorithm to find the rank 𝑘 item it takes 𝑂(𝑘𝑛) time, which in particular for the median takes
𝑂(𝑛2) time. We want something with a smaller runtime that we can use to find the ideal pivot for QuickSort, for
example.

2.5.5. Algorithm

1 Divide the items into ⌈𝑛
5 ⌉ groups of 5 (or less for final group) items each

2 Find the median of each group (brute force)
3 Use SELECT to recursively find the median of the 𝑛5  group medians
4 Partition the input by using median of median as pivot
5 Suppose low side of partition has 𝑠 elements and high side has 𝑛 − 𝑠 elements
6 If 𝑘 ≤ 𝑠, recursively call SELECT(𝑘) on low side; otherwise, recursively call SELECT(𝑘 − 𝑠) on high side
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2.5.6. Runtime Analysis

There are 𝑛5  groups and in the partition step, half of them have medians less than 𝑥. The group medians and elements
smaller form the top left quadrant and each have 3𝑛

10  elements. Symmetrically, the bottom right consists of 3𝑛
10 . At

most, we have 7𝑛
10  unknown.

Thus our recursion looks like

𝑇 (𝑛) ≤ 𝑇(𝑛
5
) + 𝑇(7𝑛

10
) + 𝑂(𝑛)

So

𝑇 (𝑛) ≤ 𝑐𝑛
5

+ 7𝑐 𝑛
10

+ 𝑏𝑛

≤ 9𝑐 𝑛
10

+ 𝑏𝑛

If we choose 𝑐 = 10𝑏 note that 𝑐𝑛 ≥ 9𝑐 𝑛
10 + 𝑏𝑛, so 𝑇  has running time 𝑂(𝑛).

2.5.7. Remark

Why not divide into groups of three instead? Then the recursion looks like 

2.5.8. Computational Problem

Given 𝑛 points in the plane, find a pair with the smallest Euclidean distance between them.

2.5.9. Algorithm

Draw a vertical line 𝐿 so that there are roughtly 𝑛2  points on each side. We then find the closest pair in each side
recursively.

2.5.10. Remark

The previous algorithm fails because there could be points close to the line that are closer together. Thus look at the
boundary of the line and consider some distance 𝛿, which 𝛿 is the minimum of the distances in each of the partitions.
Now in our 𝛿 width window, for each side we can say that all points are at least 𝛿 distance apart. (This last claim
follows from creating 𝛿

2  boxes within the partition).

Lecture 9 Feb 4
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2.5.11. Algorithm

1 Compute separation line 𝐿 such that half the points are on on side and half on the other
2 𝛿1 = ClosestPair(left half)
3 𝛿2 = ClosestPair(right half)
4 𝛿 = min{𝛿1, 𝛿2}
5 Delete all points further than 𝛿 from separation line 𝐿
6 Sort remaining points by 𝑦 coordinate

7
Scan points in 𝑦 order and compare distance between each point and 11 neighbors. Update 𝛿 if any distances are
less than 𝛿

8 Return 𝛿

Note that this is 𝑂(𝑛 log2 𝑛).
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3. Dynamic Programming

3.1. Introduction

Lecture 10 Feb 11

3.1.1. Remark

Some problems are beyond the reach of greedy algorithms and divide and conquer. For example:
1. Weighted interval scheduling — each of the 𝑛 jobs has an associated weight 𝑣𝑖, and the goal is to maximize the

total weight of the schedule.
2. Find the shortest path from 𝑠 to 𝑡 with at most 𝑘 hops, where 𝑘 is specified at input. The greedy style Djikstra’s

Algorithm doesn’t work.

3.1.2. Concept

A technique where a problem is broken down into subproblems and the results are saved. Note the time complexities
are generally worse than greedy algorithms.

3.1.3. Computational Problem

• We have a single processor and a list of 𝑛 jobs
• Every job has a start time 𝑠𝑗, finish time 𝑓𝑗 and weight 𝑤𝑗
• A feasible schedule is a subset of non overlapping jobs
• We want to find a feasible schedule with maximum possible total weight

3.1.4. Concept

Suppose we list the jobs in increasing finish time order. Define OPT(𝑗) as the optimal solution to the subproblem
consisting of jobs 1, 2, …, 𝑗. This gives us 𝑛 subproblems of increasing sizes; OPT(1) is trivial to compute, and
OPT(𝑛) is the final answer we want. Note we want to compute OPT(𝑗) using OPT(𝑖) for 1 ≤ 𝑖 ≤ 𝑗 − 1.

Now to compute OPT(𝑗), we need to consider job 𝑗. Note that we have a binary choice: we either accept job 𝑗 or we
don’t. If job 𝑗 is included, then OPT(𝑗) cannot include any previous jobs overlapping with it. If we don’t include it,
OPT(𝑗) is free to include any previous jobs.

3.1.5. Notation

Let 𝑝(𝑗) be the largest index 𝑖 < 𝑗 such that job 𝑖 does not overlap with job 𝑗.

3.1.6. Algorithm

We write OPT(𝑗) = max{𝑣𝑗 + OPT(𝑝(𝑗)), OPT(𝑗 − 1)}. Note the first term accounts for choosing 𝑗 and the
second doesn’t. We claim that together with OPT(0) = 0, this completes the DP solution.
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3.1.7. Remark

Note that if we tried to write a recursive algorithm like so:

1 Sort jobs so that 𝑓1 ≤ 𝑓2 ≤⋅ ⋅ ⋅≤ 𝑓𝑛
2 Compute 𝑝(1), 𝑝(2), …, 𝑝(𝑛)
3 Compute OPT(𝑗):
4 if 𝑗 = 0
5 return 0
6 else
7 return max{𝑣𝑗 + OPT(𝑝(𝑗)), OPT(𝑗 − 1)}

This doesn’t work!! The number of subproblems solved grows like the Fibonacci sequence, giving us exponential
runtime, since we are not caching the results.

3.1.8. Concept

Memoization means we store the result of each subproblem in a table so that we can lookup as needed.

This gives a better algorithm:

1 Sort jobs so that 𝑓1 ≤⋅ ⋅ ⋅≤ 𝑓𝑛
2 Compute 𝑝(1), …, 𝑝(𝑛)
3 for 𝑗 = 1 to 𝑛, set 𝑀[𝑗] = ∅
4 Initialize 𝑀[0] = 0.
5 Return M-ComputeOPT(𝑛)

M-ComputeOPT(𝑗):

1 if 𝑀[𝑗] empty
2 𝑀[𝑗] = max{𝑣𝑗 + M-ComputeOPT(𝑝(𝑗)), M-ComputeOPT(𝑗 − 1)}
3 return 𝑀[𝑗]

3.1.9. Runtime Analysis

Sorting by finish time and compute 𝑝 values takes 𝑂(𝑛 log 𝑛) time.

Each entry of the array is computed only once, and each call either takes 𝑂(1) time or calls two subproblems.

Thus overall the algorithm is 𝑂(𝑛 log 𝑛).
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3.1.10. Remark

We can also write the DP algorithm as a bottom-up unwound recursion, where entries are computed in increasing
problem size order:

1 Sort jobs st 𝑓1 ≤⋅ ⋅ ⋅≤ 𝑓𝑛
2 Compute 𝑝(1), …, 𝑝(𝑛)
3 Iterative-WIS {
4 M[0] = 0
5 for 𝑗 = 1 to 𝑛
6 𝑀[𝑗] = max{𝑣𝑗 + 𝑀[𝑝(𝑗)], 𝑀[𝑗 − 1]}
7 }

3.2. Matrix Chain Product

Lecture 11 Feb 13

3.2.1. Computational Problem

Suppose we have a sequence of matrices 𝑀1, …, 𝑀𝑛. We want to find the product 𝑀1 × ⋅ ⋅ ⋅ × 𝑀𝑛. Note these are not
necessarily square matrices—we only know that adjacent matrices agree on dimension.

3.2.2. Algorithm

1 Let 𝐴 be a 𝑝 × 𝑞 matrix and 𝐵 a 𝑞 × 𝑟 matrix
2 for 𝑖 = 1 to 𝑝
3 for 𝑗 = 1 to 𝑟
4 𝐶[𝑖, 𝑗] = 0
5 for 𝑘 = 1 to 𝑞
6 𝐶[𝑖, 𝑗] + = 𝐴[𝑖, 𝑘] ⋅ 𝐵[𝑘, 𝑗]
7 return C

The cost of this multiplication is 𝑝 × 𝑞 × 𝑟.

3.2.3. Example

Consider a 10 × 100 matrix 𝑀1, a 100 × 5 matrix 𝑀2, and a 5 × 50 matrix 𝑀3. If we do ((𝑀1𝑀2)𝑀3) we have cost
10 ⋅ 100 ⋅ 5 + 10 ⋅ 5 ⋅ 50 = 7500. But if we do (𝑀1(𝑀2𝑀3)) we have cost 100 ⋅ 5 ⋅ 50 + 10 ⋅ 100 ⋅ 50 = 75000.

3.2.4. Remark

If we tried to brute force all possibilities, we get the Catalan number (2𝑛−2
𝑛−1 ) ≈ 4𝑛.
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3.2.5. Algorithm

We can specify the input compactly as 𝑛 + 1 numbers 𝑝0, …, 𝑝𝑛 where 𝑀1 is a 𝑝0 × 𝑝1 matrix, 𝑀2 is a 𝑝1 × 𝑝2
matrix, and so on. In general, 𝑀𝑖 is a 𝑝𝑖−1 × 𝑝𝑖 matrix because all neighboring matrices agree on the dimension.

3.3. Optimal Binary Search Trees

Lecture 12 Feb 18

3.3.1. Computational Problem

Our input is a list of 𝑛 keys (words) 𝑤1, …, 𝑤𝑛 along with their respective relative search frequencies 𝑝1, …, 𝑝𝑛 where
0 ≤ 𝑝𝑖 ≤ 1 and ∑

𝑛

𝑖=1
𝑝𝑖. We want to minimize the (expected) total access cost. Accessing a key at depth 𝑑 has search

cost 𝑑 + 1, so if the word 𝑤𝑖 is placed at depth 𝑑𝑖 in the tree, the total search cost is

∑
𝑛

𝑖=1
𝑝𝑖 ⋅ (𝑑𝑖 + 1).

3.3.2. Algorithm

Define subproblems of the form [𝑖, 𝑗] for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. Let 𝑆(𝑖, 𝑗) be the optimal search tree cost for the
subproblem (𝑤𝑖, …, 𝑤𝑗). We now need a recurrence to compute 𝑆(𝑖, 𝑗) using smaller subproblems. The tree for
𝑆(𝑖, 𝑗) must use some word in (𝑤𝑖, …, 𝑤𝑗). Suppose that word is 𝑤𝑟 for 𝑖 ≤ 𝑟 ≤ 𝑗.

We then have the following recurrence: 𝑆(𝑖, 𝑗) = 𝑝𝑟 + 𝑆(𝑖, 𝑟 − 1) + 𝑆(𝑟 + 1, 𝑗) + ∑
𝑟−1

𝑘=𝑖
𝑝𝑘 + ∑

𝑗

𝑘=𝑟+1
𝑝𝑘.

• The root 𝑤𝑟 has depth 0 and search cost 1, so it contributes 𝑝𝑟 ⋅ 1 to the overall cost.
• 𝑆(𝑖, 𝑟 − 1) and 𝑆(𝑟 + 1, 𝑗) are optimal solutions for their subproblems, but now their subtrees have become children

of 𝑤𝑟, and so depth of every node has increased by 1, which accounts for the last term.
• The sum simplifies to

𝑆(𝑖, 𝑗) = 𝑆(𝑖, 𝑟 − 1) + 𝑆(𝑟 + 1, 𝑗) + ∑
𝑗

𝑘=𝑖
𝑝𝑘

• Note the last term does not depend on the two subtrees, so to minimize 𝑆(𝑖, 𝑗) we must also use optimal solutions
𝑆(𝑖, 𝑟 − 1) and 𝑆(𝑟 + 1, 𝑗)

• Finally, as before, we do not know 𝑟, but it must be one of 𝑤𝑖 and 𝑤𝑗, so take the minimum over those possibilities:

𝑆(𝑖, 𝑗) = min
𝑖≤𝑟≤𝑗

{𝑆(𝑖, 𝑟 − 1) + 𝑆(𝑟 + 1, 𝑗) + ∑
𝑗

𝑘=𝑖
𝑝𝑘}.

• We have an 𝑛2 size table and each entry takes 𝑂(𝑛) time, so the total runtime is 𝑂(𝑛3).
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3.4. 𝑘 Hop Shortest Path

3.4.1. Computational Problem

Suppose we have a directed graph 𝐺 = (𝑉 , 𝐸), where each edge (𝑢, 𝑣) has a positive weight (length) ℓ(𝑢, 𝑣). Given a
source node 𝑠 and integer 𝑘 ≥ 1, we want to find the shortest path from 𝑠 to each 𝑣 using at most 𝑘 hops.

3.4.2. Algorithm

Our choice of subproblems is the following: for all nodes 𝑣 ∈ 𝑉  and 𝑗 ≤ 𝑘:

𝑑(𝑣, 𝑗) = shortest path from 𝑠 to 𝑣 using at most 𝑗 hops.

Initially define 𝑑(𝑣, 0) = ∞ for all 𝑣 ≠ 𝑠. The recurrence for computing 𝑑() values is

𝑑(𝑣, 𝑗) = min{𝑑(𝑣, 𝑗 − 1), min
(𝑢,𝑣)∈𝐸

(𝑑(𝑢, 𝑗 − 1) + ℓ(𝑢, 𝑣))}.

We arrive at 𝑣 from some previous node 𝑢 along a shortest (𝑗 − 1) hop path, and add one more hop and length
ℓ(𝑢, 𝑣); or there is no better 𝑗 hop path than a 𝑗 − 1 hop path.

3.4.3. Runtime Analysis

We fill entries of an 𝑛 × 𝑘 size array 𝑑 column by column. The first column stores shortest paths using at most 1 hop.
The 𝑗th column is computed using only entries from the 𝑗 − 1 column. The 𝑘th column of this array contains shortest
𝑘 hop distances from 𝑠 to every 𝑣. Since each array entry takes time ∝ deg(𝑣), it takes at must 𝑂(∑

𝑣
deg(𝑣)) =

𝑂(𝐸) time to compute them. So, the algorithm runs in time 𝑂(|𝑉 | ⋅ |𝐸|).

3.4.4. Remark

If we instead wanted the longest path, we might try to replace the mins with maxes. But this problem is significantly
harder, since if there are cycles, the DP won’t recognize them but they clearly make longest paths infinite.

3.4.5. Algorithm

Although this doesn’t work in the general case due to cycles, if the input graph 𝐺 is acyclic, then the DP corectly
finds the longest paths. We can relabel the vertices of 𝐺 as 𝑣1, …, 𝑣𝑛 so that for every edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, we have 𝑖 <
𝑗. Such an ordering can be found by Topological Sort. Now we process vertices in this order and compute longest
paths using

𝑑(𝑣𝑗) = max
(𝑣𝑖,𝑣𝑗)∈𝐸

{𝑑(𝑣𝑖) + ℓ(𝑣𝑖, 𝑣𝑗)}

Note since we visit each edge exactly once, our time complexity is 𝑂(|𝐸|).
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3.5. All Pairs Shortest Path Problem (APSP)

3.5.1. Computational Problem

Given a graph 𝐺 = (𝑉 , 𝐸) with edge weights 𝑤(𝑒), we want to compute the shortest path distances between all pairs
of vertices. Our number of vertices is 𝑛 = |𝑉 | and number of edges is 𝑚 = |𝐸|.

3.5.2. Remark

A naive algorithm runs 𝑂(𝑛2) separate shortest path algorithms, one for each pair. If all edge weights 𝑤(𝑒) are
positive, then we can use Djikstra; otherwise use Bellman Ford.

Then the total runtime is 𝑂(𝑛𝑚 log 𝑛) or 𝑂(𝑛2𝑚) depending on which one we use.

3.5.3. Algorithm

List vertices in any order, labeled 1, …, 𝑛. Define 𝑑(𝑖, 𝑗, 𝑘) by the length of the shortest path in 𝐺 from 𝑖 to 𝑗 whose
intermediate nodes are all from the subset {1, 2, …, 𝑘}.

We initialize 𝑑(𝑖, 𝑗, 0) = 𝑤(𝑖, 𝑗); if there is no edge from 𝑖 to 𝑗, assign 𝑑(𝑖, 𝑗, 0) = ∞. The final distances we want are
𝑑(𝑖, 𝑗, 𝑛).

To compute 𝑑(𝑖, 𝑗, 𝑘), consider the node 𝑘.
• If the shortest path does not go through 𝑘, we have 𝑑(𝑖, 𝑗, 𝑘) = 𝑑(𝑖, 𝑗, 𝑘 − 1).
• If it does go through 𝑘, the shortest path through 𝑘 is the shortest path from 𝑖 to 𝑘 together with the shortest path

from 𝑘 to 𝑗. Thus we have 𝑑(𝑖, 𝑗, 𝑘) = 𝑑(𝑖, 𝑘, 𝑘 − 1) + 𝑑(𝑘, 𝑗, 𝑘 − 1).

1 𝐷 = 𝑊
2 for 𝑘 = 1 to 𝑛
3 for 𝑖 = 1 to 𝑛
4 for 𝑗 = 1 to 𝑛
5 𝑑(𝑖, 𝑗, 𝑘) = min{𝑑(𝑖, 𝑗, 𝑘 − 1), 𝑑(𝑖, 𝑘, 𝑘 − 1) + 𝑑(𝑘, 𝑗, 𝑘 − 1)}
6 return 𝐷
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4. Complexity Theory

4.1. P vs NP

Lecture 13 Feb idk

4.1.1. Remark

For some problems, no polynomial time algorithm will ever be found. The collection of such problems is very large.
These problems are called NP-Complete, and a polynomial time solution for any problem in this class will imply
polynomial time algorithms for all NP-Complete problems.

Informally, NP problems are problems whose solutions have a solution verifiable in polynomial time.

4.1.2. Example

For example,
• does a graph 𝐺 have a simple (loopless) path of length 𝐾?
• is a number composite or prime?
• Does a graph have a vertex cover of size 𝐶?

Non-examples
• Graph 𝐺 does not contain a simple path of length more than 𝐾
• Does White have a winning strategy in chess?

4.1.3. Remark

Clearly, 𝑃 ⊆ 𝑁𝑃 , where 𝑃  is the set of polynomial algorithms. In a sense, 𝑁𝑃 -Complete problems can be thought of
as the “hardest” prolems in NP, since a solution of any of one f them in polynomial time implies they can all be solved
in polynomial time. So either 𝑃 = 𝑁𝑃  or 𝑃 ≠ 𝑁𝑃 .

4.1.4. Concept

To prove a problem is NP-Complete, the main tool is reduction.

Reduction from a problem 𝐴 to a problem 𝐵 is a polynomial time algorithm 𝑅 that transforms inputs of 𝐴 to
equivalent inputs to 𝐵. When such a reduction exists, we write 𝐴 ≤ 𝐵. More precisely, given 𝑥 ∈ 𝐴, the algorithm 𝑅
produces an input 𝑅(𝑥) ∈ 𝐵 such that 𝑥 is TRUE for 𝐴 if and only if 𝑅(𝑥) is TRUE for 𝐵.

4.1.5. Remark

Given 𝐴 ≤ 𝐵:
• If 𝐵 is known to be easy, 𝐴 is easy too
• If 𝐴 is known to be hard, 𝐵 is hard too.

For NP-Completeness reductions, we use the second implication.
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4.1.6. Example

In each case, the first problem is not NP Complete and the second variation is.

Trees
• MST: given a weighted graph and integer 𝐾 , is there a tree of weight ≤ 𝐾 connecting all the nodes?
• Traveling Salesman Problem: given a weighted graph and integer 𝐾 , is there a (simple) cycle of weight ≤ 𝐾

visiting all the nodes?

Tours
• Euler Tour: given a directed graph, is there a closed path visiting every edge exactly once?
• Hamilton Tour: given a directed graph, is there a closed path visiting every node exactly once?

Circuits
• Given a boolean circuit and 0/1 values for inputs, is the output TRUE?
• Given a boolean circuit, is there a 0/1 setting of inputs for which the ouput is 1?

Missed Lecture Feb 25

4.2. Examples of NP-Complete Problems

Lecture N Feb 27
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Complexity Theory Examples of NP-Complete Problems — 4.2

4.2.1. Computational Problem

Given a directed graph 𝐺 = (𝑉 , 𝐸), is there a simple cycle 𝑇  visiting each vertex of 𝑉  exactly once?

We will reduce 3SAT to this problem. Recall 3SAT looks like 𝜙 = 𝑐1 ∧ 𝑐2 ∧ ⋅ ⋅ ⋅ ∧ 𝑐𝑘 where 𝑐𝑖 = (𝑥𝑖1
∨ 𝑥𝑖2

∨ 𝑥𝑖3
).

We begin by describing a graph with 2𝑛 different cycles, each one corresponding to one of the 2𝑛 possible truth
assignments for the 𝑥𝑖’s. Now construct 𝑛 paths 𝑃1, …, 𝑃𝑛, where 𝑃𝑖 consists of nodes 𝑣𝑖,1, …, 𝑣𝑖,𝑏 for 𝑏 = 3𝑘 + 3,
where we recall that 𝑘 is the number of clauses.

Note that a Hamiltonian cycle in this graph looks like taking 𝑃𝑖 left-right or right-left, then moving to 𝑃𝑖+1. Thus
there are 2 choices for each 𝑃𝑖 and there are 𝑛 of them, so there are 2𝑛 possible Hamiltonian cycles.

Now each 𝑃𝑖 represents whether we traveled left or right. I.e. 𝑥1 ∨ 𝑥2 ∨ 𝑥3 means we traveled right along 𝑃1, left
along 𝑥2, and right along 𝑥3. I.e. for each clause 𝑐𝑗, reserve two adjacent node positions 3𝑗 and 3𝑗 + 1 in each path
where 𝑐𝑗 can be spliced.
1. If 𝑥𝑖 is not negated, then add edges 𝑣𝑖,3𝑗 → 𝑐𝑗 and 𝑐𝑗 → 𝑣𝑖,3𝑗+1
2. If 𝑥𝑖 is negated in 𝑐𝑗, then add edges 𝑣𝑖,3𝑗+1 → 𝑐𝑗 and 𝑐𝑗 → 𝑣𝑖,3𝑗.

This completes the construction. Note the number of nodes is (3𝑘 + 3)𝑛 + 2 + 𝑘.

In the forward direction, suppose 3SAT is satisfiable. Then we form a Hamiltonian cycle following our plan. Since
each clause 𝑐𝑗 is satisfied, there will be at least oen path 𝑃𝑖 going in the correct direction relative to 𝑐𝑗, so we can
correctly splice 𝑐𝑗 into its edges.

Conversely, suppose the graph has a Hamiltonian cycle. If the cycle enters a node 𝑐𝑗 on an edge from 𝑣𝑖,3𝑗, it must
depart on an edge 𝑣𝑖,3𝑗+1. If not, then 𝑣𝑖,3𝑗+1 will have only one unvisited neighbor left, namely 𝑣𝑖,3𝑗+2, and so the
tour will not be able to visit this node and maintain the Hamiltonian property. Symmetrically, if the tour enters
𝑣𝑖,3𝑗+1, it must depart immediately to 𝑣𝑖,3𝑗. Thus, direction of travel along each path 𝑃𝑖 tells us how to set 𝑥𝑖 to satisfy
the formula.

4.2.2. Computational Problem

Given a set of integers 𝑎1, …, 𝑎𝑛, and an integer parameter 𝑘, decide if there is a subset of integers that sum exactly to
𝑘. It’s easily in 𝑁𝑃 : just check if the numbers in the solution sum to 𝑘. We will reduce the vertex covering problem to
this problem. The outline is as follows:
1. Start with 𝐺 and parameter 𝑘
2. Create a sequence of integers and parameter 𝑘′

3. Prove that 𝐺 has a vertex cover of size 𝑘 if and only if some subset of integers sum to 𝑘′

Let 𝐶 be the set of vertices corresponding to 𝑥𝑖’s in the sum and 𝐸′ ⊂ 𝐸 be the

4.2.3. Computational Problem

Given a set of integers 𝑎1, …, 𝑎𝑛, determine if there is a partition into two subsets with equal sums. Is there a subset
𝐼 ⊆ {1, 2, …, 𝑛} such that ∑

𝑖∈𝐼
𝑎𝑖 = ∑

𝑖∈𝐼
𝑎𝑖. Observe this is just a special case of subset sum where 𝑘 is half the total

sum, so it’s NP-Complete.
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4.2.4. Computational Problem

Given items of size 𝑎1, 𝑎2, …, 𝑎𝑛 and an unlimited supply of bins, each of size 𝐵, we want to pack items into the
fewest possible bins. The decision version is to decide if the items can be packed into 𝑘 or fewer bins. The problem in
NP and for NP-Completeness we reduce the Partition problem to it. Given an instance of Partition, create items of size
𝑎1, …, 𝑎𝑛. Then if we have 𝑘 = 2 bins with each one having capacity 𝑆2  where 𝑆 = ∑

𝑖
𝑎𝑖, we can see the reduction.

4.2.5. Computational Problem

Subset sum is a special case of the Knapsack Problem. Given a set of 𝑛 items, each with an integer size 𝑠𝑖 and an
integer value 𝑣𝑖, and a knapsack of size 𝐾 , the goal is to select a subset of items with maximum total value whose size
is ≤ 𝐾 . Given an instance of subset sum {𝑎1, …, 𝑎𝑛, 𝑘}, set each size and value equal to 𝑎𝑖 and set the knapsack size
to be 𝑘.

4.2.6. Remark

But we saw a dynamic programming algorithm to solve the Knapsack Problem, so how is this possible? This
algorithm runs in 𝑂(𝑛𝑘), but we should actually be considering the size of the input length of 𝑘, which is log 𝑘. Thus
the true running time is like 𝑂(𝑛2𝑘). Still, this makes the problem “weakly NP Complete” (and same for the subset
sum and partition).
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5. Approximation Algorithms

5.1. 𝜌-Approximation Algorithms

Lecture n Mar 4

5.1.1. Computational Problem

Given an NP-Complete problem, we want a way that finds a good solution in polynomial time (note finding the
optimal is impossible in polynomial time). Thus, we can allow the output to be suboptimal, but want a guarantee on
the solution quality. To do this, we can use the ratio between the true optimum and the algorithm’s worst case
solution.

5.1.2. Concept

Our goal is to minimize a function. Denote our approximation algorithm by 𝐴 and a problem instance by 𝑥. We will
use cost(𝐴, 𝑥) for the quality of 𝐴’s solution for 𝑥, and cost(OPT, 𝑥) for the optimal solution. Thus our measure of 𝐴’s
approximation quality is

cost(𝐴, 𝑥)
cost(OPT, 𝑥)

The smallest value is 1, in which 𝐴 = OPT.

Note that this varies over 𝑥, but we want to consider worst case scenarios. Thus for a particular input size 𝑛, we want
to consider

𝜌(𝑛) = max
𝑥

cost(𝐴, 𝑥)
cost(OPT, 𝑥)

.

5.1.3. Example

Recall the vertex cover problem. We attempt to find an approximate solution.

Note cost(𝐴) is the size of the vertex cover found by 𝐴, and cost(OPT) is the size of the vertex cover found by OPT.
Then 𝜌(𝑛) is the worst case ratio of cost(𝐴)

cost(OPT)  over all 𝑛 node graphs.

One clear problem is that it’s not clear how we can even know the denominator. We can try to estimate it.

Two natural greedy algorithms are:
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5.1.4. Algorithm

1 while graph nonempty:
2 choose an edge (𝑢, 𝑣)
3 add both 𝑢 and 𝑣 to cover 𝐶
4 delete all edges covered by 𝑢 and 𝑣
5 return 𝐶

5.1.5. Algorithm

1 while graph nonempty:
2 choose 𝑣 of maximum degree
3 add 𝑣 to cover 𝐶
4 delete all edges covered by 𝑣
5 return C

We begin by analyzing the second algorithm. Consider a bipartite graph 𝐺𝑛 = (𝐿 + 𝑅, 𝐸), where
1. 𝐿 is a set of 𝑛 vertices 1, 2, …, 𝑛
2. For each 𝑖 = 2, 3, …, 𝑛, add |𝑅𝑖| = ⌊𝑛/𝑖⌋ vertices where each vertex of 𝑅𝑖 is connected to 𝑖 distinct vertices of 𝐿
3. Vertices of 𝑅𝑖 have degree 𝑖; 𝑅2 has 𝑛/2 vertices, each of degree 2, and so on.

Observe Algorithm 2 will pick all vertices of 𝑅, starting with 𝑅𝑛. THe size is 𝑛2 + 𝑛
3 + ⋅ ⋅ ⋅ +1 = Ω(𝑛 log 𝑛). But, the

optimal can just pick all vertices of 𝐿, which gives a vertex cover of size 𝑛. Therefore, the worst case approximation
ratio is at least 𝜌(𝑛) = Ω(log 𝑛) which goes to ∞ as 𝑛 → ∞.

You can also show an upper bound: 𝜌(𝑛) = Θ(log 𝑛), which can come from greedy Set Cover analysis.

5.1.6. Theorem

Algorithm 1 has 𝜌(𝑛) = 2.

Proof: Let 𝐴 be the set of edges picked by the greedy algorithm.
1. No two edges in 𝐴 share a vertex, so OPT must have size at least |𝐴|.
2. The size of the greedy set cover is 2 |𝐴|; it adds 2 vertices for each edge of 𝐴.
3. Therefore, we always have 𝜌(𝑛) ≤ 2.

Then it’s easy to show examples with ratio 2, so 𝜌(𝑛) = 2.

⬜
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5.1.7. Example

We assume that edges of 𝐺 obey the triangle inequality. Now take the maximum path length in the graph: we can add
all missing edges to the graph and give them cost 𝑤(𝑥, 𝑦) equal to the length of the shortest path in 𝐺 between them.
Thus we can always make our graph complete.

We can approximate 𝑇  using the MST. Pick an arbitrary node as the start point and do an in-order traversal of 𝑇 . This
is not a proper tour since it revisits vertices, so we modify 𝑇 ′ so that if we reach a vertex that has already been
visited, we find the shortest edge to another element in the MST.

Now observe

cost(tour) ≤ cost(𝑇 ′) ≤ 2 cost(MST) ≤ 2 cost(TSP)

Therefore we have 𝜌(𝑛) = 2.

5.1.8. Remark

This works for the triangle inequality case, but what about when this does not apply, i.e., in a complete graph?

Lecture n Mar 6

5.1.9. Theorem

Unless 𝑃 = 𝑁𝑃 , for the TSP without the triangle ineuqality, there is no poly time algorithm with approximation
ratio 𝜌(𝑁) ≤ 𝑀∀𝑀 < ∞.

Proof: We show that if a TSP can be approximated within any fixed ratio in polynomial time, then we can solve the
HAM CYCLE problem in polynomial time.

Given an instance 𝐺 = (𝑉 , 𝐸) of HAM, construct a TSP instance 𝐺′ as follows. The vertices and edges of 𝐺′ =
(𝑉 , 𝐸) are exactly the same as those of 𝐺. The graph 𝐺 does not have edge weights, but for 𝐺′ we assign edge
weights as follows. Set 𝑤(𝑒) = 1 if 𝑒 ∈ 𝐸, and 𝑤(𝑒) = (𝑛𝑀 + 1) if 𝑒 ∉ 𝐸. Now we wonder if 𝐺′ contains a TSP of
cost ≤ 𝑛. If 𝐺 contains a HAM cycle, then simply using the edges of that cycle we get a TSP of cost 𝑛 in 𝐺′. The
approximation algorithm 𝐴, in order to deliver its approximation guarantee, must return a tour with cost ≤ 𝑛𝑀 .
Since each edge not in 𝐺 has cost > 𝑛𝑀 , the cycle cannot use that edge. So the only tours that lead to acceptable
approximation are the HAM cycles in 𝐺.

Conversely, if TSP returns a tour that costs more than 𝑛𝑀 , it must be forced to use at least one edge of weight
(𝑛𝑀 + 1), which means 𝐺 does nto contain a HAM cycle.

⬜
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5.1.10. Example

Recall the maximum clique problem is that given a graph 𝐺 = (𝑉 , 𝐸), we want to find the largest subset of nodes in
which every pair has an edge between them.

In particular, suppose a graph contains a clique of size 𝑛/10. Note that in the greedy we can return two vertices
joined by an edge, so it returns 2.

No one has been able to find an algorithm with an approximation ratio better than 𝑛1−𝜀 for 𝜀 nonzero. Also, a
theoretical result shows that if there exists a poly time algorithm that can approximate the clique within factor
𝑂(𝑛1−𝜀), then 𝑃 = 𝑁𝑃 .

5.1.11. Computational Problem

Suppose we have items some amount of items and some weights. We want to select a subset of those items 𝐼 ⊆
{1, 2, …, 𝑛} such that
1. ∑

𝑖∈𝐼
𝑤𝑖 ≤ 𝑊

2. ∑
𝑖∈𝐼

𝑣𝑖 is maximized

The problem is called the 0 / 1 Knapsack because inclusion of items is binary. Note that Subset Sum is a special case of
knapsack where 𝑤𝑖 = 𝑣𝑖∀𝑖, implying the Knapsack is 𝑁𝑃 -complete.

5.1.12. Algorithm

Define subproblems 𝐴[𝑖, 𝑤] for all 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑤 ≤ 𝑊 . Initialize 𝐴[0, 𝑤] = 𝐴[𝑖, 0] = 0 for all 𝑖 and 𝑤. We then
have the DP recurrence relation

𝐴[𝑖, 𝑤] = max{𝐴[𝑖 − 1, 𝑤], 𝑣𝑖 + 𝐴[𝑖 − 1, 𝑤 − 𝑤𝑖]}

We don’t select item 𝑖 in the first entry, and in the second we select it. This is done in 𝑂(𝑛𝑊) total time; however,
this is not polynomial time. It should really be a polynomial function of 𝑛 and log 𝑊 , the size of the input. This is also
why the subset sum and knapsack problems are called weakly 𝑁𝑃  complete: for small values they have polynomial
algorithms.

5.1.13. Example

One greedy algorithm is to sort the items in decreasing order of value and add to the knapsack if they fit. This gives
an arbitrarily large ratio, because we can set items to have weights 2, 3, …, 𝑛 each with weight 𝑊 − 1, and another
item 1 with weight 𝑊 , whereas the optimal algorithm would choose the 𝑛 − 1 items but we choose 1 item.

We can also try sorting by ratio 𝑣/𝑤, but this also results in an arbitrarily large ratio, since we can choose value 1 + 𝜀.

However, a third approach is to run the first greedy algorithm, then run the second greedy algorithm, and take
whichever has the better solution. Amazingly, this gives 𝜌(𝑛) = 2
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5.1.14. Proposition

The combined greedy approach fulfills 𝜌(𝑛) = 2.

Proof: First ignore items with 𝑤𝑖 > 𝑊  since they can never fit. Next, modify our greedy algorithms so that they stop
at the first item that doesn’t fit in the knapsack. Let 𝑉1, 𝑉2 be the values returned by the greedy algorithms,
respectively. Notice that if 𝑉1 + 𝑉2 ≥ OPT, we would have max{𝑉1, 𝑉2} ≥ OPT

2 , the result we want to obtain.

Let 𝐼  be the subset of items picked by the ratio greedy algorithm, and let 𝑗 be the first item that didn’t fit. Then
observe

∑
𝑖∈𝐼

𝑣𝑖 = 𝑉2

and

𝑉1 ≥ 𝑣𝑗.

Observe this second claim follows from the fact that the first item the first greedy algorithm picks up must be at least
as valuable as 𝑣𝑗.

Observe OPT cannot exceed 𝑉2 + 𝑣𝑗, so 𝑉2 or 𝑣𝑗 must be at least OPT /2.

⬜

5.1.15. Computational Problem

Suppose we have a set of 𝑚 identical machines 𝑀1, …, 𝑀𝑚 and a set of 𝑛 jobs, where job 𝑗 needs 𝑝𝑗 time for
processing. The goal is to schedule the jobs on these machines in a way such that we minimize the latest completion
time. Formally, suppose our algorithm assigns the subset of jobs 𝐴𝑖 ⊆ {1, 2, …, 𝑛} to machine 𝑀𝑖. Then, the finish
time for 𝑀𝑖 is 𝑇𝑖 = ∑

𝑗∈𝐴𝑖

𝑝𝑗. We will call 𝑇𝑖 the load of machine 𝑀𝑖. The maximum load across all machines is called

the makespan of the algorithm, that is, 𝑇 = max𝑖{𝑇𝑖}. This is an 𝑁𝑃 -complete problem.

5.1.16. Algorithm

List jobs in some order, then assign the next job 𝑗 to the machine with the smallest current load.

1 for 𝑗 = 1, …, 𝑛
2 Let 𝑀𝑖 be the machine with the current minimum load 𝑇𝑖
3 Add job 𝑗 to machine 𝑖; i.e., set 𝐴𝑖 = 𝐴𝑖 ∪ {𝑗} and 𝑇𝑖 = 𝑇𝑖 + 𝑝𝑗

5.1.17. Example

Suppose we have 3 machines with sizes 2, 3, 4, 6, 2, 3. Our assignment is 𝐴1 = {2, 6}, 𝐴2 = {3, 2}, 𝐴3 = {4, 3},
with makespan 8, whereas the optimal is 7, achieved by (3, 4), (6), (2, 2, 3).

What is the worst case approximation of this algorithm?

Lecture N Mar 10
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5.1.18. Proposition

The worst case approximation is 𝜌(𝑛) = 2.

Proof: Let 𝑇  be the makespan of the greedy approach, and let 𝑇 ∗ be the optimal makespan. One possible lower
bound on 𝑇 ∗ is

𝑇 ∗ ≥ 1
𝑚

∑
𝑗

𝑝𝑗.

Further, 𝑇 ∗ ≥ max𝑗{𝑝𝑗}.

Let 𝑀𝑖 have the max load in greedy assignment, and 𝑗 be the last job assigned to 𝑀𝑖. Then the load of 𝑀𝑖, given by
(𝑇𝑖 − 𝑝𝑗), was the smallest among all machines when 𝑗 was assigned. Thus adding up all the loads we have

𝑚(𝑇𝑖 − 𝑝𝑗) ≤ ∑
𝑛

𝑘=1
𝑝𝑘 ⟹ 𝑇𝑖 − 𝑝𝑗 ≤ 1

𝑚
∑

𝑛

𝑘=1
𝑝𝑘

so

𝑇𝑖 ≤ 𝑝𝑗 + 1
𝑚

∑
𝑛

𝑘=1
𝑝𝑘 ≤ 2𝑇 ∗.

⬜

5.1.19. Remark

Note there is a better approximation with a different greedy algorithm: if we sort in decreasing length order, we can
show 𝜌(𝑛) = 3

2 .

5.1.20. Computational Problem

Suppose we have 𝑁  items of sizes 𝑠1, 𝑠2, …, 𝑠𝑁 , where we assume 0 < 𝑠𝑖 ≤ 1; we also have an infinite supply of unit
size bins. There are two variations:
• online bin packing: items arrive one at a time (unordered) and each must be put in a bin before considering the next

item
• offline bin packing: all items given upfront
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5.1.21. Lemma

There exist inputs that can force any online bin packing algorithm to use at least 43  of the optimal number of bins.

Proof: Consider an input sequence consisting of
• 𝐼1: a sequence of 𝑀  items of size 12 − 𝜀, possibly followed by
• 𝐼2: a sequence of 𝑀  items of size 12 + 𝜀

Simultaneously, suppose the online algorithm has used 𝑏 bins after processing 𝐼1. The optimal clearly uses 𝑀2  bins, so
if the online algorithm beats the ratio we have

𝑏
𝑀/2

< 4
3

⇔ 𝑏
𝑀

< 2
3
.

After all items have been processed, note all items in 𝐼2 have size > 1
2 , so every bin created after the first 𝑏 bins will

have exactly one item in it. Thus, the first 𝑏 bins can have 2 items and the remaining bins have 1 item each, packing
2𝑀  requires at least 2𝑀 − 𝑏 bins. We know that optimal uses 𝑀  bins, and if it beats the 43  ratio then (2𝑀 − 𝑏) <
4
3𝑀 ⇔ 𝑏

𝑀 > 2
3 . Contradiction.

⬜

5.1.22. Algorithm

When processing the next item, check if it fits in same same bin as the last item; otherwise, start a new bin.

5.1.23. Theorem

Suppose optimal uses 𝑀  bins. Then Next Fit uses at most 2𝑀  bins, and there are inputs that force Next Fit to
use 2𝑀 − 2 bins.

Proof: The sum of items in neighboring bins is > 1 clearly. Because at most half the space is wasted, Next Fit
uses at most 2𝑀  bins. For a lower bound, consider a sequence where 𝑠𝑖 = {

1
2 if 𝑖 odd
2
𝑁 if 𝑖 even (assuming 4 ∣ 𝑁 ). The

optimal will use 𝑁4 + 1 bins, but Next Fit will use 𝑁2  bins.

⬜

5.1.24. Algorithm

Check all previous bins to see if next item will fit. Start a new bin when it does not.

The upper bound is 1.7𝑀  bins. For a lower bound, consider the sequence of 6𝑀  items of size 17 + 𝜀, followed by 6𝑀
items of size 13 + 𝜀, followed by 6𝑀  items of size 12 + 𝜀. We should pack each bin from one from each group, since
1
7 + 1

3 + 1
2 + 3𝜀 < 1.

But first fit will give (1 + 3 + 6)𝑀 = 10𝑀  bins, giving a lower bound of 10
6  on the approximation ratio.

5.1.25. Algorithm

Place the next item in the tightest spot (that is, so that the smallest empty space is left.)

The same analysis for First Fit also applies to Best Fit.
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5.1.26. Remark

Note that even the offline bin packing problem is NP-Complete, so we look at approximation algorithms. Consider
offline analogues of first fit and best fit, called first fit decreasing and best fit decreasing.

5.1.27. Theorem

First Fit Decreasing uses at most 4𝑀+1
3  if the optimal number is 𝑀 .
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