
Cryptography
Nate Annau

Table of Contents
1. Introduction . 2

1.1. Cryptographic Systems . 2
1.2. One Time Pad . 5
1.3. Computational Intractability . 10

2. Pseudorandomness . 15
2.1. Pseudorandom Generators . 15
2.2. One Way Functions . 17
2.3. Pseudorandom Functions . 20

3. Hash Functions . 24
3.1. Introduction . 24
3.2. Random Oracle Model . 25
3.3. Public Key Encryption . 26

Page 1 of 28

1. Introduction
Lecture 1 Jan 6

1.1. Cryptographic Systems

1.1.1. Definition: Cryptographic System

A cryptographic system is a structure or scheme consisting of a set of algorithms that converts plaintext to
ciphertext to encode or decode messages securely.

When constructing a cryptographic system we use the following process:
1) Problem
2) Definition
3) Construction
4) Proof

1.1.2. Definition: Encrypt, Decrypt, Ciphertext, Plaintext

Suppose we have a message 𝑀 written in plaintext, i.e., understandable language. If we encrypt the message, we
rewrite it in such a way that the data can be recovered (called decrypting), but it is difficult to know how to do this
without knowing some secret. The encrypted message is called ciphertext.

1.1.3. Definition: Private Key Encryption

How do we ensure that an eavesdropper Eve can’t intercept the message when Alice sends it to Bob? One way is to
generate a secret key which Alice and Bob share, which Alice uses to encrypt the plaintext and Bob uses to decrypt
the ciphertext.

1.1.4. Definition: Kerckhoff’s Principle

One might argue that we could just keep an encryption algorithm secret rather than using secret keys. However, this
is dangerous if an eavesdropper discovers the scheme. In general, Kerckhoff’s Principle states that an ideal
cryptographic system should be secure even if attackers know the algorithm, which necessarily involves some kind of
secret key.

Lecture 2 Jan 8

Page 2 of 28

Introduction Cryptographic Systems — 1.1

1.1.5. Definition: Encryption Scheme

An encryption scheme is a cryptographic system with the following three algorithms:
1) Key Generation

• takes an input 𝜆 (in unary)
• generates a key 𝑘 ∈ {0, 1}𝜆

2) Encryption
• input: (𝑘, 𝑚) where 𝑚 is the message
• output: ciphertext 𝑐

3) Decryption
• input: (𝑘, c)
• output: 𝑚

1.1.6. Definition: Probabilistic and Deterministic Algorithm

A probabilistic algorithm is an algorithm using some amount of randomness. We can write it 𝐴(𝑥; 𝑟) where 𝑥 is
the input, 𝑟 is some randomness, and 𝐴 is the algorithm.

A deterministic algorithm is a probabilistic algorithms that involves no randomness. Notice that deterministic
algorithms are a proper subset of probabilistic algorithms.

Note that we can say without loss of generality that the three main algorithms of an encryption scheme are
probabilistic.

1.1.7. Remark

We desire that our algorithm has these two properties:
1) Correctness, meaning 𝑚 = 𝑚′

2) Security, meaning given ct and not 𝑘, we cannot recover 𝑚.

1.1.8. Definition: Polynomial Runtime

An algorithm 𝐴 runs in polynomial time if ∃𝐶 ∈ ℕ such that ∀𝑥,

RUNTIME(𝐴(𝑥))
|𝑥|𝐶

< ∞.

Call the function RUNTIME(𝐴(𝑥)) by 𝑓(|𝑥|).

1.1.9. Definition: Polylog Runtime

An algorithm 𝐴 runs in polylog time if it runs in some polynomial in log 𝜆 time.

Page 3 of 28

Introduction Cryptographic Systems — 1.1

1.1.10. Remark

1) Notice that |𝑘| = ⌈log2 𝜆⌉
2) We want our algorithms to be efficient, which here just means they run in polynomial time.
3) We want our algorithms to be secure against an arbitrarily computationally capable Eve, at least to a realistic

degree.
4) We need a better metric for security, since if Eve can recover part of the message the encryption should not be

defined as secure. We might instead say that Eve should not be able to recover any information in 𝑚, but she still
might be able to figure out that the message belongs to some subset of possible plaintext messages, which isn’t
great either. This leads to a new definition for security.

1.1.11. Definition: Secure Encryption Scheme

Whatever an eavesdropper Eve learns from the ciphertext, she could have generated the same information herself. In
particular, if Eve tries to create a probability distribution of possible plaintext given the ciphertext, she must generate
the same distribution as a third party with no knowledge of the ciphertext.

1.1.12. Definition: Caesar Cipher

Let 𝑚 be a single letter in the English alphabet. Let the secret key 𝑘 ∈ {1, 2, …, 26}.

• To encrypt 𝑚, shift the letter 𝑘 places to the right. Call the resulting letter 𝑚′.
• To decrypt 𝑚′, shift the letter 𝑘 places to the left.

We can visualize this as turning a wheel. More generally, if 𝑚 is the 𝑛th letter in the English alphabet, then the
encrypted letter is 𝑚 + 𝑘 mod 26.

If there are many letters, we can apply the substitution for every letter in 𝑚. We ignore whitespace and are
capitalization invariant.

Notice this cipher can be easily bruteforced.

1.1.13. Example

Enc(2, 𝑐) = Enc(𝑘, 𝑐) = 𝑒 and Enc(𝑧, 𝑐) = 𝑏.

1.1.14. Definition: Vigenère Cipher

Similar to the Caesar cipher, except instead of a single key we have a longer key. The 𝑘-th element of the key shifts
the 𝑖-th element of the message.

This is insecure because we can perform a frequency analysis attack. Noting that the English language has commonly
occurring patterns, we can start cracking specific words.

1.1.15. Example

Suppose we have key (3, 20)

• Shift T by 3 places → W
• Shift h by 20 places → 𝑏

Page 4 of 28

Introduction Cryptographic Systems — 1.1

Lecture 3 Jan 13

1.1.16. Example: Polynomial Runtime

Suppose RUNTIME(𝐴(𝜆)) ≥ 𝜆. Thus if we write 𝜆 as a bit string, we have RUNTIME(𝐴(𝜆)) = 𝑓(log2(𝜆)) which
implies 𝑓(log2(𝜆)) ≥ 𝜆. But this implies that 𝑓 cannot be a polynomial, since in that case 𝑓 would be polylogarithmic
and always dominated by 𝜆.

1.2. One Time Pad

1.2.1. Definition: Exclusive Or

The Exclusive Or, or XOR, is a binary operation with the following truth table:

In 1 In 2 Out
0 0 0
0 1 1
1 0 1
1 1 0

We use the notation 𝑥 ⊕ 𝑦 to denote the exclusive or, with 𝑥, 𝑦 ∈ {0, 1}.

Note if 𝑥 = {0, 1}𝑛 and 𝑦 = {0, 1}𝑛 then we define 𝑥 ⊕ 𝑦 = (𝑥1 ⊕ 𝑦1, …, 𝑥𝑛 ⊕ 𝑦𝑛).

1.2.2. Example: Probabilistic XOR

Fix 𝑎 and pick 𝑏 uniformly at random. (Notationally, we can write 𝑏 ←
$

{0, 1}).

We want to find 𝑎 ⊕ 𝑏. Note that

Pr[𝑎 ⊕ 𝑏 = 0] = Pr[𝑎 ⊕ 𝑏 = 0 | 𝑏 = 0] ⋅ Pr[𝑏 = 0] + Pr[𝑎 ⊕ 𝑏 = 1 | 𝑏 = 1] ⋅ Pr[𝑏 = 1]

= 1
2
(Pr[𝑎 = 0] + Pr[𝑎 = 1])

= 1
2
(1

2
+ 1

2
)

= 1
2
.

1.2.3. Definition: One Time Pad (Vernam’s Cipher)

• KeyGen(1𝑛) outputs 𝑘 ←
$

{0, 1}𝑛.
• Enc(𝑘, 𝑚) takes as input 𝑘, 𝑚 ∈ {0, 1}𝑛 and outputs 𝑐 = 𝑘 ⊕ 𝑚.
• Dec(𝑘, 𝑐) outputs 𝑚 = 𝑘 ⊕ 𝑐

Page 5 of 28

Introduction One Time Pad — 1.2

1.2.4. Proposition

In the One Time Pad, for all 𝑘, 𝑚 ∈ {0, 1}𝑛 it holds that Dec(𝑘, Enc(𝑘, 𝑚)) = 𝑚

Proof: Note that

Dec(𝑘, Enc(𝑘, 𝑚)) = Dec(𝑘, 𝑘 ⊕ 𝑚)
= 𝑘 ⊕ (𝑘 ⊕ 𝑚)
= (𝑘 ⊕ 𝑘) ⊕ 𝑚
= 0𝑛 ⊕ 𝑚
= 𝑚.

⬜

1.2.5. Remark

Let us informally analyze security from Eve’s view.

From the viewpoint of Eve, the following happens
• Alice has an 𝑛 bit message 𝑚
• Alice samples some key 𝑘 uniformly at random from the space of 𝑛 bit strings and then outputs 𝑐 = 𝑘 ⊕ 𝑚

1.2.6. Example: Eve’s View

Pr 𝑘 𝑐 = 𝑘 ⊕ 010
1/8 000 010
1/8 001 011
1/8 010 000
1/8 011 001
1/8 100 110
1/8 101 111
1/8 110 100
1/8 111 101

Note that Eve cannot deduce anything since the probabilities are all equal. In particular, ∀𝑠 ∈ {0, 1}3, the
probability that the ciphertext is 𝑠 is 1/8.

For all 𝑚, the ciphertext is uniformly distributed. But Eve herself can sample from this distribution without knowing
the message, which is intuitively what it means for the scheme to be secure.

Page 6 of 28

Introduction One Time Pad — 1.2

1.2.7. Definition: Correct Encryption Algorithm

An encryption scheme satisfies correctness if for all possible keys 𝑘 and for all possible messages 𝑚, the following
holds:

Pr[Dec(𝑘, Enc(𝑘, 𝑚)) = 𝑚] = 1.

We use probability because Enc is allowed to be a randomized algorithm.

1.2.8. Remark

Ideal properties for security:
• The secret key should be kept hidden from Eve
• The key is only used to encrypt plaintext
• The ciphertext cannot be decrypted without the key

1.2.9. Definition: Secure Encryption Algorithm

Note: this is only one definition, there are others to follow.

We say that an encryption algorithm is is one time uniform ciphertext secure if ∀𝑚 ∈ ℳ chosen by Eve, the
ciphertext is uniformly distributed (over the ciphertext space 𝒞), i.e., the following distributions are identical:
1) 𝒟1 ≔ {𝑐 ≔ Enc(𝑘, 𝑚); 𝑘 ← KeyGen(1𝜆)}
2) 𝒟2 ≔ {𝑐 ←

$
𝒞}

(Note an insecure scheme is one where these distributions are not the same.)

1.2.10. Example: Secure Encryption Scheme

Is the following secure?
• KeyGen(1𝑛) ≔ 𝑘 ←

$
{0, 1}𝑛

• Enc(𝑘, 𝑚) ≔ 𝑐 = 𝑘 ∧ 𝑚

It is not because for 𝑚 = 0𝑛, notice

Pr[𝑐 = 0𝑛 | 𝒟1] = 1

Pr[𝑐 = 0𝑛 | 𝒟2] = 1
2𝑛

so the distributions are not equal.

Page 7 of 28

Introduction One Time Pad — 1.2

1.2.11. Definition: Alternate Definition for Security

1.2.12. Example

Consider the following interactions between Eve and a challenger:

Eve sends the challenger a message 𝑚 and Eve sends back 𝑐. The goal of the challenger is to prevent Eve from
learning anything. The goal of Eve is to know the two distributions.

1) The challenger has a bit 𝑐 ≔ Enc(𝑘, 𝑚) and 𝑘 = KeyGen(1𝑛)
2) The challenger sends a bit selected at random 𝑐 ←

$
𝒞

An encryption scheme is secure if for any chosen 𝑚 by Eve, the above two scenarios seem identical to Eve.

Lecture 4 Jan 15

1.2.13. Lemma

One Time Pad encryption scheme satisfies uniform ciphertext security.

Proof: Given a fixed plaintext 𝑚 and a fixed ciphertext 𝑐, we calculate the probability that 𝑐 is the encryption of 𝑚:

Pr[𝑐 = Enc(𝑘, 𝑚)] = Pr[𝑐 = 𝑚 ⊕ 𝑘] = Pr[𝑘 = 𝑚 ⊕ 𝑐] = 1
2𝑛

Note that the probability here is over the random choice of 𝑘 ∈ {0, 1}𝑛.

⬜

Page 8 of 28

Introduction One Time Pad — 1.2

1.2.14. Example: Double One Time Pad

Suppose our scheme is like this:

KeyGen(1𝑛) : 𝑘1 ←
$

{0, 1}𝑛, 𝑘2 ←
$

{0, 1}𝑛 and output (𝑘1, 𝑘2)
Enc((𝑘1, 𝑘2), 𝑚) : 𝑐1 = 𝑘1 ⊕ 𝑚, 𝑐2 = 𝑘2 ⊕ 𝑐1 and output 𝑐2

Dec((𝑘1, 𝑘2), 𝑐) : 𝑐1 = 𝑘2 ⊕ 𝑐, 𝑚 = 𝑘1 ⊕ 𝑐1 and output 𝑚.

We need to show that for each 𝑚, the distributions are identical:
1) {𝑐2 = 𝑘2 ⊕ 𝑐1; 𝑘 ← KeyGen(1𝑛), 𝑘2 ← KeyGen(1𝑛), 𝑐1 = 𝑘1 ⊕ 𝑚}
2) {𝑐2 ←

$
{0, 1}𝑛}

Proof: We consider the following set of distributions called hybrids:

ℋ1 : {𝑐2 = 𝑘2 ⊕ 𝑐1; 𝑘1 ← KeyGen(1𝑛), 𝑘2 ← KeyGen(1𝑛), 𝑐1 = 𝑘1 ⊕ 𝑚}

ℋ2 : {𝑐2 ←
$

{0, 1}𝑛; 𝑘1 ← KeyGen(1𝑛), 𝑐1 = 𝑘1 ⊕ 𝑚}

ℋ3 : {𝑐2 ←
$

{0, 1}𝑛}

Note ℋ1 and ℋ2 are the same because one time pad satisfies uniform encryption security and ℋ2 and ℋ3 are the
same trivially.

⬜

1.2.15. Definition: One Time Perfect Security

We say that an encryption scheme is one time perfectly secure if ∀𝑚0, 𝑚1 ∈ ℳ chosen by Eve, the following
distributions are identical:

𝒟1 ≔ {𝑐 ≔ Enc(𝑘, 𝑚0); 𝑘 ← KeyGen(1𝑛)}
𝒟2 ≔ {𝑐 ≔ Enc(𝑘, 𝑚1); 𝑘 ← KeyGen(1𝑛)}

Thus the ciphertext carries no information from Eve’s viewpoint.

Page 9 of 28

Introduction One Time Pad — 1.2

1.2.16. Theorem

One time uniform ciphertext security ⟹ one time perfect security

Proof: Consider the following distributions:

ℋ1 : {𝑐 ≔ Enc(𝑘, 𝑚0); 𝑘 ← KeyGen(1𝑛)}

ℋ2 : {𝑐 ←
$

𝒞}

ℋ3 : {𝑐 ≔ Enc(𝑘, 𝑚1); 𝑘 ← KeyGen(1𝑛)}

where ℋ1 ≡ ℋ2 and ℋ2 ≡ ℋ3 both follow from one time uniform ciphertext security.

Thus the one time pad satisfies one time perfect security.

⬜

1.2.17. Remark

The converse is false. Counterexample:

• KeyGen(1𝑛) : 𝑘 ←
$

{0, 1}𝑛

• Enc(𝑘, 𝑚) : Compute 𝑐′ = 𝑘 ⊕ 𝑚 and output 𝑐 = 𝑐′‖00
• Dec(𝑘, 𝑐) : Compute 𝑐′ = 𝑐[0 : 𝑛] and output 𝑚 = 𝑘 ⊕ 𝑐′

Note the distribution is not uniform but it is one time perfectly secure.

1.2.18. Remark

There are some serious issues with one time pad:

• Key must be as long as the plaintext
• A key cannot be used to encrypt more than one plaintext

1.3. Computational Intractability

1.3.1. Remark

A brute force attack for an 𝑛 bit key should take 𝑂(2𝑛) time.

An attack should be made computationally infeasible for an algorithm to be secure, not necessarily impossible.

Page 10 of 28

Introduction Computational Intractability — 1.3

1.3.2. Example: Efficient vs Inefficient Algorithms

Efficient algorithms (polynomial time):
1) GCD
2) Arithmetic mod 𝑁
3) Inverses mod 𝑁
4) Exonentials mod 𝑁

Ineffcient algorithms:
1) Factoring integers
2) Discrete logarithm
3) Square roots mod composite 𝑁
4) Solving “noisy” linear equations

1.3.3. Remark

If people can guess a key, it’s bad even if there’s a low probability. Thus we want a new definition of security to
follow these two factors:
• Attacks that are expensive as a brute force attack
• Attacks whose success probability is as low as a blind guess attack

Lecture 5 Jan 22

1.3.4. Example

If an adversary’s probility f breaking one time perfect security is 1
𝑛 , then if they receive 𝑛2 ciphertexts, that should be

able to break 𝑛 messages on average. This is because the expectation is 1
𝑛 ⋅ 𝑛2 = 𝑛.

1.3.5. Definition: Negligible Function

A function 𝜈(⋅) is negligible if for every polynomial 𝑝(⋅), we have

lim
𝑛→∞

𝑝(𝑛)𝜈(𝑛) = 0.

Alternatively, 𝜈(𝑛) is negligible if ∀𝑐∃𝑛0 such that ∀𝑛 > 𝑛0, 𝜈(𝑛) ≤ 1
𝑛𝑐 .

Page 11 of 28

Introduction Computational Intractability — 1.3

1.3.6. Proposition

Let 𝑓 and 𝑔 be negligible. Show that 𝑓 + 𝑔 is negligible.

Proof: We need to show that ∀𝑐∃𝑛0 such that ∀𝑛 > 𝑛0, 𝑓(𝑛) + 𝑔(𝑛) ≤ 1
𝑛𝑐 .

Fix 𝑐 ∈ ℕ. Since 𝑓 and 𝑔 are negligible we know ∃𝑛𝑓 , 𝑛𝑔 such that ∀𝑛 > 𝑛𝑓 , 𝑓(𝑛) ≤ 1
𝑛𝑐+1 and ∀𝑛 > 𝑛𝑔, 𝑔(𝑛) ≤

1
𝑛𝑐+1 .

Then if 𝑛 > max{𝑛𝑓 , 𝑛𝑔, 2} we have

𝑓(𝑛) + 𝑔(𝑛) ≤ 1
𝑛𝑐+1 + 1

𝑛𝑐+1 = (2
𝑛

)(1
𝑛𝑐) ≤ 1

𝑛𝑐

⬜

1.3.7. Proposition

Let 𝜈 be a negligible function and 𝑝 be a polynomial such that 𝑝(𝑛) ≥ 0∀𝑛 > 0. Show that 𝜈(𝑛) ⋅ 𝑝(𝑛) is
negligible.

Proof: Since 𝑝 is a polynomial, we know ∃𝑛𝑝, 𝑐𝑝 such that ∀𝑛 > 𝑛𝑝, 𝑝(𝑛) ≤ 𝑛𝑐𝑝 . Since 𝜈 is negligible, we know that
∃𝑛𝜈 corresponding to 𝑐 + 𝑐𝑝 such that ∀𝑛 > 𝑛𝜈 , 𝜈(𝑛) ≤ 1

𝑛𝑐+𝑐𝑝 . For a given 𝑐, let 𝑛0 = max{𝑛𝜈 , 𝑛𝑝}. Then ∀𝑛 > 𝑛0
we have

𝜈(𝑛)𝑝(𝑛) ≤ 1
𝑛𝑐+𝑐𝑝

⋅ 𝑛𝑐𝑝 ≤ 1
𝑛𝑐 .

⬜

1.3.8. Definition: Ensemble

A sequence {𝑋𝑛}𝑛∈ℕ is called an ensemble if for each 𝑛 ∈ ℕ, 𝑋𝑛 is a probability distribution over {0, 1}∗.

1.3.9. Example

Suppose Adversary 𝒜 tries to guess whether a sample was drawn from two distributions 𝑋 and 𝑌 . If 𝑋 is the
uniform distribution on {0, 1}𝑛 and 𝑌 is a fixed point distribution, then if the adversarial guesses a string of all zeros,
it can tell them apart almost all of the time.

Lecture 6 Jan 27

1.3.10. Definition: Probabilistic Polynomial Time (PPT)

Decision problems solvable by a probabilistic Turing machine in polynomial time.

Page 12 of 28

Introduction Computational Intractability — 1.3

1.3.11. Definition: Computational Indistinguishability

Let 𝑋 = {𝑋𝑛}𝑛∈ℕ and 𝑌 = {𝑌𝑛}𝑛∈ℕ be probability ensembles.

Then 𝑋 and 𝑌 are computationally indistinguishability if ∀ PPT 𝒜, ∃𝜈(⋅) such that

|Pr[𝑥 ← 𝑋𝑛; 𝒜(1𝑛, 𝑥) = 1] − Pr[𝑦 ← 𝑌𝑛; 𝒜(1𝑛, 𝑦) = 1]| ≤ 𝜈(𝑛).

where the adversary 𝒜 is trying to guess the distribution given the 𝑛 in the ensemble.

This quantity is called the advantage or bias of 𝒜.

1.3.12. Example

Let 𝑋1 be a uniform distribution on {0, 1}𝐿 and 𝑌1 be a fixed point distribution, so that ∃𝑦∗ ∈ {0, 1}𝐿 so Pr[𝑦∗ ←
𝑌1] = 1.

Define 𝒜(1𝑛, 𝑦) so that if it receives 𝑦∗ it outputs 1, otherwise it outputs 0. Therefore Pr[1 ← 𝒜(1𝑛, 𝑦) : 𝑦 ← 𝑌1] = 1
but Pr[1 ← 𝒜(1𝑛, 𝑥) : 𝑥 ← 𝑋1] = 1

2𝐿 . Now let 𝜈(𝑛) be a negligible function. Observe lim𝑛→∞|1 − 1
2𝐿 | = 1 but

lim𝑛→∞ 𝜈(𝑛) = 0, implying ∃𝑁 such that ∀𝑛 > 𝑁 , |1 − 1
2𝐿 | > 𝜈(𝑛), showing that 𝑋1 and 𝑌1 are computationally

indistinguishable.

1.3.13. Notation

{𝑋𝑛} ≈
𝑐

{𝑌𝑛} means computational indistinguishability.

1.3.14. Proposition

If we apply an efficient operation on 𝑋 and 𝑌 , they remain computationally indistinguishable. In other words,
∀ nonuniform PPT 𝑀 ,

{𝑋𝑛} ≈
𝑐

{𝑌𝑛} ⟹ {𝑀(𝑋𝑛)} ≈
𝑐

{𝑀(𝑌𝑛)}

Proof: Suppose by contradiction that {𝑀(𝑋𝑛)} and {𝑀(𝑌𝑛)} were computationally distinguishable. Then if 𝒜 is the
distinguisher, notice 𝒜(𝑀(𝑋)) allows us to distinguish 𝑋𝑛 and 𝑌𝑛, a contradiction.

⬜

1.3.15. Lemma: Hybrid Lemma

Let 𝑋1, …, 𝑋𝑚 be distribution ensembles for 𝑚 = poly(𝑛). If for every 𝑖 ∈ {1, …, 𝑚 − 1}, 𝑋𝑖 and 𝑋𝑖+1 are
computationally indistinguishable, then 𝑋1 and 𝑋𝑚 are computationally indistinguishable.

Proof: Transitivity via triangle inequality + apply repeatedly.

⬜

Page 13 of 28

Introduction Computational Intractability — 1.3

1.3.16. Definition: Multi-Message Security

For all messages {(𝑚𝑖
0, 𝑚𝑖

1)}𝑖∈[𝑞(𝑛)]
, where 𝑞 has a polynomial runtime and 𝑛 is a security parameter, the following

distributions are identical:
• {Enc(𝑠, 𝑚1

0), …, Enc(𝑠, 𝑚𝑞(𝑛)
0)}

• {Enc(𝑠, 𝑚1
1), …, Enc(𝑠, 𝑚𝑞(𝑛)

1)}

Note this implies that the encryption algorithm must be probabilistic, because the simple attack of letting 𝑚1
0 =⋅ ⋅ ⋅=

𝑚𝑞(𝑛)
0 would break it otherwise.

Page 14 of 28

2. Pseudorandomness

2.1. Pseudorandom Generators

2.1.1. Computational Problem

Suppose you have 𝑛 uniformly random bits: 𝑥 = 𝑥1‖⋅ ⋅ ⋅‖𝑥𝑛. We want to find a deterministic polynomial time
algorithm 𝐺 such that
• 𝐺(𝑥) outputs 𝑛 + 1 bits 𝑦 = 𝑦1‖⋅ ⋅ ⋅‖𝑦𝑛+1
• 𝑦 looks “as good as” a truly random string 𝑟 = 𝑟1

That is, the following are computationally indistinguishable:

{𝐺(𝑥) : 𝑥 ←
$

{0, 1}𝑛}; {𝑟 : 𝑟 ←
$

{0, 1}𝑛+1}

2.1.2. Definition: Pseudorandom Generator (PRG)

A deterministic algorithm 𝐺 is called a pseudorandom generator (PRG) if
• 𝐺 can be computed in polynomial time
• |𝐺(𝑥)| > |𝑥|
• {𝐺(𝑥) : 𝑥 ←

$
{0, 1}𝑛} ≈

𝑐
{𝑈ℓ(𝑛)} where ℓ(𝑛) = |𝐺(0𝑛)|

The stretch of 𝐺 is defined to be |𝐺(𝑥)| − |𝑥|

2.1.3. Definition: Pseudo One Time Pad

We use a PRG with the ideas of one time pad for the following:
• Gen(1𝑛):

‣ 𝑠 ←
$

{0, 1}𝑛

‣ outputs 𝑘 = 𝑠
• Enc(𝑘, 𝑥 ∈ {0, 1}𝑛):

‣ output 𝑐 = 𝐺(𝑠) ⊕ 𝑥
• Dec(𝑘, 𝑐):

‣ output 𝑚 = 𝐺(𝑠) ⊕ 𝑐

Correctness is clear.

Page 15 of 28

Pseudorandomness Pseudorandom Generators — 2.1

2.1.4. Proposition

Pseudo One Time Pad is Secure

Proof: We proceed using the Hybrid Argument. Let 𝑥 ∈ {0, 1}𝑚. Then

ℋ1 = {𝐺(𝑆) ⊕ 𝑋 : 𝑆 ←
$

{0, 1}𝑛}

ℋ2 = {𝑧 ⊕ 𝑋 : 𝑧 ←
$

{0, 1}𝑛}

ℋ3 = 𝑈{0,1}𝑛

Note ℋ1 ≈
𝑐

ℋ2 by Proposition 1.3.14. Then ℋ2 ≈
𝑐

ℋ3 since one time pad satisfies one time uniform ciphertext
security.

⬜

Lecture 8 Feb 5

2.1.5. Algorithm

We can convert a PRG with a 1 bit stretch 𝐺one to a PRG with an 𝑚 bit stretch 𝐺poly by iteratively passing the initial
PRG:

1 𝑆0 = 𝑆, 𝑦 = 𝜀 (empty string)
2 for 𝑖 = 1 to 𝑚:
3 (𝑥1 ⋅ ⋅ ⋅ 𝑥𝑛𝑥𝑛+1) ← 𝐺one(𝑆𝑖−1)
4 y = CONCATENATE(𝑦, 𝑥𝑛+1)
5 𝑆𝑖 = 𝑥1 ⋅ ⋅ ⋅ 𝑥𝑛
6 OUTPUT 𝑦

Page 16 of 28

Pseudorandomness Pseudorandom Generators — 2.1

2.1.6. Proposition

The previous construction is secure.

Proof: Assume by contraposition that 𝐺poly is not secure. Consider the following hybrids:

ℋ1 = {𝑦 ← 𝐺poly(𝑠) : 𝑠 ←
$

{0, 1}𝑛}

ℋ2 = {𝑦 ← 𝐺(1)
poly(𝑠) : 𝑠 ←

$
{0, 1}𝑛}

⋮

ℋ𝑚+1 = {𝑢 ←
$

{0, 1}𝑚}

Then ∃𝑖 ∈ {1, …, 𝑚} such that ℋ𝑖 ≉
𝑐

ℋ𝑖+1. Thus there exists a distinguisher 𝐷 for these two.

Reduction(𝑧):

1 𝑠𝑖 = 𝑧
2 𝑦 ←

$
{0, 1}𝑖

3 for 𝑗 = 𝑖 + 1 to 𝑚:
4 (𝑥1 ⋅ ⋅ ⋅ 𝑥𝑛𝑥𝑛+1) ← 𝐺one(𝑆𝑖−1)
5 y = CONCATENATE(𝑦, 𝑥𝑛+1)
6 𝑆𝑖 = 𝑥1 ⋅ ⋅ ⋅ 𝑥𝑛
7 OUTPUT 𝐷(𝑦)

Then Pr[REDUCTION outputs 1 | 𝑧 = 𝐺one(𝑠)] = Pr[𝐷 outputs 1 | 𝑦 ← ℋ𝑖], showing that 𝐺one is not secure.

⬜

2.2. One Way Functions

2.2.1. Definition: One Way Function

𝑓 : {0, 1}𝑛 → {0, 1}𝑚 is called one way if
1) 𝑓 is computable in deterministic polynomial time
2) ∀ PPT 𝒜, Pr[𝑥′ ← 𝒜(1𝑛, 𝑓(𝑥)) such that 𝑓(𝑥′) = 𝑓(𝑥); 𝑥 ←

$
{0, 1}𝑛)] ≤ 𝜈(𝑛).

I.e., given a function image, the probability that an optimal adversary guesses a preimage right is negligible.

The existence of such a function would prove P ≠ NP.

Page 17 of 28

Pseudorandomness One Way Functions — 2.2

2.2.2. Example: Functions that aren’t One Way

1) 𝑓(𝑥) = 𝑥1 ⊕ 𝑥2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑥𝑛 (note 𝑚 = 1).
2) 𝑓(𝑥) = ∑

𝑛

𝑖=1
𝑥𝑖2𝑥𝑖 (binary representation of 𝑥)

3) 𝑓(𝑥) = ∑
𝑛

𝑖=1
2𝑥𝑖

Lecture 9 Feb 10

2.2.3. Example: Finding Prime Factors

Consider a number 𝑁 = 𝑝𝑞 where 𝑝, 𝑞 are primes. We want a deterministic algorithm that takes 𝑁 and returns 𝑝 and
𝑞. Assuming we can check divisibility in an 𝑂(1) step, the naive running time is then 𝑂(𝑁) (or 𝑂(

√
𝑁) with a

simple optimization). But this is in terms of the size of the input, not the length of the input 𝜆 ∼ log 𝑁 . Thus this
algorithm has an exponential running time.

2.2.4. Definition: One Way Permutation (OWP)

𝑓 is a One Way Permutation if
• 𝑓 is one-way
• 𝑓 is a permutation (nonidentity bijection)

2.2.5. Definition: Predicate

A predicate of 𝑥 is a function 𝑃 : 𝑆 → {0, 1} for some set 𝑥 ∈ 𝑆.

2.2.6. Example: Predicate

We could have 𝑃 : ℤ → {0, 1} be defined by “is a multiple of 7”.

2.2.7. Definition: Hard-core Predicate

A hard-core predicate of a function 𝑓 is a predicate of 𝑥 (an input to 𝑓) which can be easily computed given the
preimage 𝑥 but is difficult to compute given the image 𝑓(𝑥).

This is formalized for an ensemble of predicates ℎ𝑟 as follows:
• ℋ = {ℎ𝑟}𝑟∈{0,1}𝑛 with respect to 𝑓 : {0, 1}𝑛 → {0, 1}𝑛

• ℎ𝑟 : {0, 1}𝑛 → {0, 1} is a deterministic poly time algorithm
• ∀ PPT 𝒜, Pr[ℎ𝑟(𝑥) ← 𝒜(𝑟, 𝑓(𝑥)); 𝑟 ←

$
{0, 1}𝑛, 𝑥 ←

$
{0, 1}𝑛] ≤ 1

2 + 𝜈(𝑛)

A typical example is a hashing function.

Page 18 of 28

Pseudorandomness One Way Functions — 2.2

2.2.8. Theorem: Goldreich-Levin Theorem

If 𝑓 is a one way function, then hard-core predicates exist.

Proof: Sketch: define ℎ𝑟(𝑥) by the boolean inner product

⟨𝑟, 𝑥⟩ = 𝑟1 ∧ 𝑥1 ⊕ 𝑟2 ∧ 𝑥2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ∧ 𝑥𝑛 = ∑
𝑖

𝑟𝑖𝑥𝑖.

Note we can think of (∧, ⊕) as (⋅, +) over mod 2.

By contradiction, assume an adversary can break the hard-core predicate property. I.e., ∃ PPT 𝒜 such that when 𝒜
is given 𝑟 and 𝑓(𝑥), it can find a 𝑢 such that Pr[𝑢 = ⟨𝑟, 𝑥⟩] > 1

2 + 𝜈(𝑛). Then we can show
∃ PPT ℬ such that ℬ(𝑓(𝑥)) → 𝑥′ such that Pr[𝑓(𝑥′) = 𝑓(𝑥)] ≥ 1

poly , contradicting that 𝑓 is one way.

To do this, first consider an easier case where Pr[𝑢 = ⟨𝑟, 𝑥⟩] = 1. Then consider 𝑟 = 10 ⋅ ⋅ ⋅ 0 so that ⟨𝑟, 𝑥⟩ is the first
bit of 𝑥. By choosing 𝑟’s like this we can fully reconstruct 𝑥, which is a trivial preimage. The idea of the proof is to
iteratively relax this assumption and use a similar technique.

⬜

2.2.9. Remark

Notice that hard-core predicates may not exist if 𝑓 is not one way. For example, take the identity function 𝑓(𝑥) = 𝑥.
Then we don’t lose any information, so trivially a hard-core predicate cannot exist.

2.2.10. Lemma: Next-Bit Unpredictability Lemma

Suppose 𝒟 is efficiently sampleable. Then 𝒟 is pseudorandom if and only if the probability of predicting the 𝑖th
bit given the first 𝑖 − 1 bits is at most a negligible improvement over random.

I.e., we have that 𝑥 ← 𝒟 ⟹ Pr[𝑥𝑖 = 𝒜(𝑥1, …, 𝑥𝑖−1)] ≤ 1
2 + 𝜈(𝑛) is an equivalent definition to the

computational indistinguishability definition of pseudorandomness.

Page 19 of 28

Pseudorandomness One Way Functions — 2.2

2.2.11. Proposition

Let 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 be a one way permutation. Given a PRG 𝐺 : {0, 1}2𝑛 → {0, 1}2𝑛+1, we have that
𝐺(𝑠‖𝑟) = (𝑓(𝑠)‖𝑟‖ℎ𝑟(𝑠)) is secure.

Proof: Proceed by the Hybrid Technique.

ℋ1 = {𝐺(𝑠‖𝑟) = 𝑦1𝑦2 ⋅ ⋅ ⋅ 𝑦2𝑛+1; 𝑠 ←
$

{0, 1}𝑛, 𝑟 ←
$

{0, 1}𝑛}

ℋ2 = {𝐺(𝑠‖𝑟) = 𝑦1𝑦2 ⋅ ⋅ ⋅ 𝑦2𝑛𝑢2𝑛+1; 𝑠 ←
$

{0, 1}𝑛, 𝑟 ←
$

{0, 1}𝑛, 𝑢2𝑛+1 ←
$

{0, 1}},

ℋ3 = {𝐺(𝑠‖𝑟) = 𝑦1𝑦2 ⋅ ⋅ ⋅ 𝑦2𝑛−1𝑢2𝑛𝑢2𝑛+1; 𝑠 ←
$

{0, 1}𝑛, 𝑟 ←
$

{0, 1}𝑛, 𝑢2𝑛 ←
$

{0, 1}, 𝑢2𝑛+1 ←
$

{0, 1}}

⋮

ℋ2𝑛+1 = {𝑢1 ⋅ ⋅ ⋅ 𝑢2𝑛+1; 𝑢𝑖 ←
$

{0, 1}}

Notice that ℋ1 = ℋ2 by the Next-Bit Unpredictability Lemma (since the condition is given by the hard-core
predicate). Then ℋ3 =⋅ ⋅ ⋅= ℋ2𝑛+1 clearly, also following the lemma.

⬜

2.3. Pseudorandom Functions

Lecture 10 (Jesse transcribed) Feb 12

Page 20 of 28

Pseudorandomness Pseudorandom Functions — 2.3

2.3.1. Definition: Pseudorandom Function (PRF)

A function

𝐹 : {0, 1}𝜆 × {0, 1}𝑛 ⟶ {0, 1}𝑚

(𝑘, 𝑥) ⟼ 𝑦

where 𝑘 is the key and 𝑥 is the input. 𝐹 should be computable in deterministic polynomial time.

2.3.2. Definition: Random Function

We have

𝐺𝑛,𝑚 = {𝑔 : {0, 1}𝑛 → {0, 1}𝑚}

where 𝑔 ←
$

𝐺𝑛,𝑚.

2.3.3. Notation

𝒜𝑓 means 𝒜 has oracle access to 𝑓 . This means that given an input 𝑥𝑖, 𝒜 knows what 𝑓(𝑥𝑖) is by queries
{𝑥1, …, 𝑥𝑡}. Note that querying a function is a polynomial time algorithm.

𝐹 is a secure PRF if

|Pr[1 ← 𝒜𝐹(𝑘,⋅) : 𝑘 ←
$

{0, 1}𝜆] − Pr[1 ←
$

𝒜𝑔 : 𝑔 ←
$

𝐺𝑛,𝑚]| ≤ 𝜈(𝜆).

Since querying a function is polynomial time, we can only query a function polynomial many times since 𝒜 is a PPT.

Lecture 11 Feb 19

2.3.4. Example: PRF Encryption Scheme

Let 𝐹 : {0, 1}𝜆 × {0, 1}𝑛 → {0, 1}𝑚 be a PRF.

• Define Gen(1𝜆) sampling 𝑘 ←
$

{0, 1}𝜆 and then outputting 𝑘.
• Define Enc(𝑘, 𝑥) by sampling 𝑟 ←

$
{0, 1}𝑛 and then outputting (𝑟, 𝐹 (𝑘, 𝑟) ⊕ 𝑥).

• Define Dec(𝑘, 𝑐) by decomposing 𝑐 = (𝑟, 𝜃) and outputting 𝜃 ⊕ 𝐹(𝑘, 𝑟).

Page 21 of 28

Pseudorandomness Pseudorandom Functions — 2.3

2.3.5. Proposition

The previous encryption scheme is correct and satisfies multi-message security.

Proof: We begin by showing correctness. Observe

Dec(𝑘, Enc(𝑘, 𝑥)) = Dec(𝑘, (𝑟, 𝐹 (𝑘, 𝑟) ⊕ 𝑥))
= (𝐹(𝑘, 𝑟) ⊕ 𝑥) ⊕ 𝐹(𝑘, 𝑟)
= 𝑥.

Now to show multi-message security, we proceed by the Hybrid Technique.

ℋ1 = {(Enc(𝑘, 𝑚1
0), …, Enc(𝑘, 𝑚𝑡

0)}

ℋ2 = {(𝑟1, 𝐹 (𝑘, 𝑟1) ⊕ 𝑚1
0), …, (𝑟𝑡, 𝐹 (𝑘, 𝑟𝑡) ⊕ 𝑚𝑡

0) : 𝑟1, …, 𝑟𝑡 ←
$

{0, 1}𝑛}

ℋ3 = {⟂ if ∃𝑖, 𝑗 such that 𝑟𝑖 = 𝑟𝑗 ∧ 𝑖 ≠ 𝑗 else ((𝑟1, 𝐹 (𝑘, 𝑟1) ⊕ 𝑚1
0), …, (𝑟𝑡, 𝐹 (𝑘, 𝑟𝑡) ⊕ 𝑚𝑡

0)) : 𝑟1, …, 𝑟𝑡 ←
$

{0, 1}𝑛}

ℋ4 = {⟂ if ∃𝑖, 𝑗 such that 𝑟𝑖 = 𝑟𝑗 ∧ 𝑖 ≠ 𝑗 else ((𝑟1, 𝒰1 ⊕ 𝑚1
0), …, (𝑟𝑡, 𝒰𝑡 ⊕ 𝑚𝑡

0)) : 𝒰1, …𝒰𝑡 ←
$

{0, 1}𝑚}

ℋ5 =

Define Hybrid 3 by sampling 𝑟1, …, 𝑟𝑡 ←
$

{0, 1}𝑛, and then if ∃𝑖, 𝑗 such that 𝑟𝑖 = 𝑟𝑗 ∧ 𝑖 ≠ 𝑗 then output “JUNK”;
otherwise, output ((𝑟1, 𝐹 (𝑘, 𝑟1) ⊕ 𝑚′

0), …, (𝑟𝑡, 𝐹 (𝑘, 𝑟𝑡) ⊕ 𝑚𝑡
0)).

Define Hybrid 4 to be the same as Hybrid 3 except 𝒰1, …𝒰𝑡 ←
$

{0, 1}𝑚 and output ((𝑟1, 𝒰1 ⊕ 𝑚′
0), …, (𝑟𝑡, 𝒰𝑡 ⊕ 𝑚𝑡

0)).
Define Hybrid 5 to be the same as Hybrid 4 except we output ((𝑟1, 𝒰1 ⊕ 𝑚′

1), …, (𝑟𝑡, 𝒰𝑡 ⊕ 𝑚𝑡
1)). Define Hybrid 6 to

be ((𝑟1, 𝐹 (𝑘, 𝑟1) ⊕ 𝑚′
1), …, (𝑟𝑡, 𝐹 (𝑘, 𝑟𝑡) ⊕ 𝑚𝑡

1)). Define Hybrid 7 to not check if 𝑟𝑖’s are distinct. Define Hybrid 8 to
be {Enc(𝑘, 𝑚1

1), …, Enc(𝑘, 𝑚𝑡
1))}.

Now Hybrid 1 ≈
𝑐

 Hybrid 2 by construction, and Hybrid 2 ≈
𝑐

 Hybrid 3 (prob of bad event is negligible).

Note that Pr[∃𝑖, 𝑗 such that 𝑖 ≠ 𝑗 ∧ 𝑟𝑖 = 𝑟𝑗] ≤ ∑
𝑖≠𝑗

Pr[𝑟𝑖 = 𝑟𝑗] = (𝑡
2) ⋅ 1

2𝑛 ≤ 𝑡2

2𝑛 (we invoked the union bound).

Now Hybrid 4 ≈
𝑐

 Hybrid 5 follows from Perfect Security of OTP and Hyrbrid Argument. Hybrid 6 ≈
𝑐

 Hybrid 7 follows
from the same reason as 2 = 3.

Also 7 = 8 follows by construction.

To show 3 = 4, suppose by contradiction there exists a distinguisher 𝒟 such that 𝒟 distinguishes 3 and 4 with 1
poly

advantage. We proceed with a reduction 𝑅𝒪. 𝐷 → ((𝑚1
0, 𝑚1

1), …, (𝑚𝑡
0, 𝑚𝑡

1)) and query 𝒪 on (𝑟1, …, 𝑟𝑡), giving us
(𝑦1, …, 𝑦𝑡). Then 𝒟((𝑟1, 𝑦1 ⊕ 𝑚1

0), …, (𝑟𝑡, 𝑦𝑡 ⊕ 𝑚𝑡
0)) = 𝑏. In case 1, 𝜃 = 𝐹(𝑘, ⋅) and the input to 𝒟 is Hybrid 3, and

in case 2 𝜃 = 𝑔(⋅), adnd the input to 𝒟 is hybrid 4.

⬜

Lecture 12 Feb 24

Page 22 of 28

Pseudorandomness Pseudorandom Functions — 2.3

2.3.6. Proposition

Given a pseudorandom generator 𝐺 : {0, 1}𝜆 ⟶ {0, 1}2𝜆, we can always create a pseudorandom function 𝐹 :
{0, 1}𝜆 × {0, 1}𝑛 ⟶ {0, 1}𝜆.

Proof: We begin with the 𝑛 = 1 case. Our input is (𝑘, 𝑥) where 𝑘 ∈ {0, 1}𝜆 and 𝑥 ∈ {0, 1}. Take 𝐺(𝑘) = (𝑦0, 𝑦1),
where 𝑦0 is the first 𝜆 bits and 𝑦1 is the last 𝜆 characters. Then if 𝑥 = 0, we output 𝑦0 and if 𝑥 = 1, we output 𝑦1.

In the 𝑛 = 2 case, given 𝑦0 and 𝑦1, we invoke the PRG on both of them. I.e., 𝐺(𝑦0) = (𝑦00, 𝑦01) and 𝐺(𝑦1) = (𝑦10, 𝑦11)
and then choose the subscript corresponding to 𝑥 ∈ {0, 1}2. In general, running 𝐺 on every output of the previous
iteration works. To avoid exponential runtime, just choose the path given by 𝑥.

In general, 𝐹(𝑘, 𝑥) is defined as follows:

1 𝑦𝜀 = 𝑘
2 for 𝑖 = 1 to 𝑛:
3 𝐺(𝑦𝑥(𝑖−1)) = (𝑦𝑥(𝑖−1)‖0, 𝑦𝑥(𝑖−1)‖1)
4 Output 𝑦𝑥

⬜

2.3.7. Proposition

The previous construction is secure.

Proof: First consider the case where 𝑥 = 0 ⋅ ⋅ ⋅ 0. Notice that since 𝐺 is secure and we have closure by Proposition
1.3.14,

ℋ1 = {𝐹(𝑘, 0 ⋅ ⋅ ⋅ 0) : 𝑘 ←
$

{0, 1}𝜆}

ℋ2 = {𝑦0 : 𝑦0 ←
$

{0, 1}𝜆}

⋮

ℋ𝑛 = {𝑦 ←
$

{0, 1}𝜆}

The general case follows a similar idea.

⬜

Page 23 of 28

3. Hash Functions

3.1. Introduction

Lecture 13 Feb 26

3.1.1. Definition: Collision Resistance

Given an adversary 𝒜 that wants to find 𝑥, 𝑦 ∈ {0, 1}𝑛 such that ℎ(𝑥) = ℎ(𝑦) with 𝑥 ≠ 𝑦, a hash function has
collision resistance if 𝑃 [ADVERSARY WINS] = negl(𝑚).

3.1.2. Definition: Hash Function

A hash function is a function ℎ𝑘 in the family ℋ = {ℎ𝑘 : {0, 1}𝑛 ⟶ {0, 1}𝑚, 𝑘 ∈ {0, 1}𝜆} where 𝑛 ≫ 𝑚 and ℎ𝑘
is a deterministic poly time algorithm. A hash function is called secure if it has collision resistance.

3.1.3. Definition: Domain Extension

Given ℋ = {ℎ𝑘 : {0, 1}2𝜆 ⟶ {0, 1}𝜆}, we can find a family 𝐺poly = {𝑔𝑘 : {0, 1}𝑛 ⟶ {0, 1}𝜆 for 𝑛 = poly(𝜆). This
is called a domain extension. A naive implementation would be to hash the first 𝜆 bits and the second 𝜆 bits, then
hash the result of that with the third 𝜆 bits, and iteratively do this until we get down to 𝜆 bits.

Formally, 𝑔𝑘(𝑥1, …, 𝑥𝑁) is defined by

1 𝑦 = 𝑥1
2 for 𝑖 = 1 to 𝑁 − 1:
3 𝑦 = ℎ(𝑦, 𝑥𝑖+1)

3.1.4. Proposition

Given that ℋ is collision resistant, the above construction 𝐺 is collision resistant.

Proof: By contradiction, suppose 𝐺 is not collision resistant. In other words, Pr[𝒜(𝑔𝑘) →
𝑥1, 𝑥2 such that 𝑥1 ≠ 𝑥2 ∧ 𝑔𝑘(𝑥1) = 𝑔𝑘(𝑥2)] ≥ poly(𝜆). If we run 𝑔𝑘 on both 𝑥1 and 𝑥2, we get the same
thing. Now consider the 𝑁 − 1 step in 𝑔𝑘: if the inputs are different, we immediately contradict that ℋ is
collision resistant. Thus we can assume they are the same, but now we work backwards to the 𝑁 − 2 step. We
can do this inductively so that we eventually get that 𝑥1 ≠ 𝑥2, also a contradiction.

We could have also thought about this proof as a reduction, where we find an adversary that can always come
up with inputs 𝑎 ≠ 𝑏 such that ℎ𝑘(𝑎) = ℎ𝑘(𝑏)

⬜

Page 24 of 28

Hash Functions Introduction — 3.1

3.1.5. Definition: Merkle-Damgard Transform

A better way to approach the previous problem is to combine in groups of two: always take adjacent inputs and put
them through ℎ𝑘. The collision resistance proof is similar to the previous proposition.

3.2. Random Oracle Model

Lecture 14 Mar 3

3.2.1. Definition: Random Oracle Model (ROM)

In the Random Oracle Model (ROM), the adversary uses a hash function as a black box, where the hash function
behaves like a random function.

3.2.2. Concept: Collision Resistance in ROM

If ℎ : {0, 1}𝑛 → {0, 1}𝑚 with 𝑛 > 𝑚 is a hash function (modeled as a random function), then the adversary succeeds
if 𝒜ℎ ⟶ (𝑥, 𝑦) such that ℎ(𝑥) = ℎ(𝑦) ∧ 𝑥 ≠ 𝑦.

For an upper bound:
• If 𝒜 makes 𝑜(

√
2𝑚) queries, then 𝑃 [𝒜 wins] = 𝜈(𝑚).

For a lower bound:
• If 𝒜 makes 𝑂(

√
2𝑚) queries, then 𝑃 [𝒜 wins] ≥ 1

4

3.2.3. Concept: Lazy Sampling Technique

In the beginning we have a table of all values in {0, 1}𝑛, where every one is not known. Now 𝒜 makes a query
for some 𝑞1 ∈ {0, 1}𝑛. Sample 𝑦 ←

$
{0, 1}𝑚 and return 𝑦 to 𝒜. Then 𝒜 submits 𝑞2 ∈ {0, 1}𝑛. If 𝑞2 = 𝑞1, return

ℎ(𝑞1); otherwise, sample 𝑦′ ←
$

{0, 1}𝑛, update the table, and return 𝑦′.

Input Assigned Output
0...00 X
0...00 X
⋮ ⋮
𝑞1 𝑦
⋮ ⋮

This shows that we sample only queries made by the adversary; other queries will not be assigned. This is a
convenient model for a hash function.

Page 25 of 28

Hash Functions Random Oracle Model — 3.2

3.2.4. Proposition

The upper bound on the adversary’s success in finding a hash collision is correct. I.e., if 𝒜 makes a series of 𝑡
queries {𝑞1, …, 𝑞𝑡} using lazy sampling, if 𝑡 = 𝑜(

√
2𝑚), we have 𝑃 [𝒜 wins] = 𝜈(𝑚).

Proof: 𝒜 makes a series of 𝑡 queries {𝑞1, …, 𝑞𝑡} using lazy sampling.

Case 1:
• For 𝒜’s output (𝑥, 𝑦), 𝑥 ∉ {𝑞1, …, 𝑞𝑡} or 𝑦 ∉ {𝑞1, …, 𝑞𝑡}. Then 𝑃 [𝒜 succeeds] = 1

2𝑚 since
without loss of generality we can consider 𝑥 as fixed in {𝑞𝑡, …, 𝑞𝑡} and 𝑦 as an unassigned string, and then 𝑦 is
assigned randomly.

Case 2:
• For 𝒜’s output (𝑥, 𝑦), 𝑥 ∈ {𝑞1, …, 𝑞𝑡} ∧ 𝑦 ∈ {𝑞1, …, 𝑞𝑡} Now

𝑃 [𝒜 succeeds] = Pr[∃𝑖, 𝑗 : ℎ(𝑞𝑖) = ℎ(𝑞𝑗)] ≤
(𝑡

2)

2𝑚 ≤ 𝑡2

2𝑚 = 𝑜(2𝑚)
2𝑚 = 𝜈(𝑚).

⬜

3.2.5. Proposition

The lower bound is correct. That is, if we can make 𝑡 = 𝑂(
√

2𝑚) queries (This is the birthday attack.)

Proof: Given 𝒜ℎ, we query {𝑞1, …, 𝑞𝑡} distinct where 𝑞𝑖 ←
$

{0, 1}𝑛. If ℎ(𝑞𝑖) = ℎ(𝑞𝑗) then output (𝑞𝑖, 𝑞𝑗); otherwise,
fail.

We claim 𝑃 [𝒜 wins] ≤ 1
4 . Observe

Pr[∄ collision] = Pr[ℎ(𝑞𝑡) ∉ {ℎ(𝑞1), …, ℎ(𝑞𝑡−1)} : ∄ collision in {𝑞1, …, 𝑞𝑡−1}] ⋅ 𝑃 [∄ collision in {𝑞1, …, 𝑞𝑡−1}]

= ∏
𝑡−1

𝑖=1
(1 − 𝑖

2𝑚) ≤ 3
4
.

⬜

3.3. Public Key Encryption

Lecture 15 Mar 5

Page 26 of 28

Hash Functions Public Key Encryption — 3.3

3.3.1. Concept: Public Key Encryption

Suppose Alice and Bob have public keys pkALICE and pkBOB respectively. They also each have a secret key skALICE
and skBOB.

To send messages to Bob, Alice uses Bob’s private key via Enc(pkBOB, 𝑚); Bob uses Alice’s public key via
Enc(pkALICE, 𝑚).

In public key encryption, anyone can encrypt messages (unlike private key encryption).

3.3.2. Definition: Chosen Plaintext Attack (CPA) Security

Consider a PPT adversary 𝒜 that has knowledge of the public key. Suppose Alice and Bob want to send a bit 𝑏 ∈
{0, 1}, and the adversary guesses the bit is 𝑏′ based on Enc(pk, 𝑚).

Our public key encryption algorithm has chosen plaintext security if

|Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1]| ≤ 𝜈(𝑛).

3.3.3. Definition: Multi-message CPA Security

Suppose the challenger gives the adversary the public key, the adversary queries with multiple messages
(𝑚1

0, 𝑚1
1), …, (𝑚𝑞

0, 𝑚
𝑞
1), and the adversary receives the encrypted messages. If the adversary is unable to guess the

original message, it has multi-message CPA Security.

3.3.4. Proposition

CPA Security ⟹ multi-message CPA Security

Proof: We proceed by the Hybrid Technique:

ℋ1 = {Enc(pk, 𝑚1
0), Enc(pk, 𝑚2

0), …, Enc(pk, 𝑚𝑞
0)}

ℋ2 = {Enc(pk, 𝑚1
1), Enc(pk, 𝑚2

0), …, Enc(pk, 𝑚𝑞
0)}

ℋ3 = {Enc(pk, 𝑚1
1), Enc(pk, 𝑚2

1), …, Enc(pk, 𝑚𝑞
0)}

⋮
ℋ𝑞 = {Enc(pk, 𝑚1

1), Enc(pk, 𝑚2
1), …, Enc(pk, 𝑚𝑞

1)}

To prove these hybrids are computationally indistinguishable, consider Hybrids 1 and 2 and proceed by reduction.
Suppose there exists a distinguisher 𝒟 that can distinguish these two hybrids. Then 𝒟, with access to the public key
pk, sends (𝑚1

0, 𝑚1
1) to the challenger, receiving a ciphertext. But then everything else is the same, so this breaks CPA

security.

⬜

3.3.5. Definition: Factoring Assumption

If a challenger samples 𝑛 bit primes (𝑝𝑞) and sets 𝑁 = 𝑝𝑞, then any PPT adversary can guess 𝑝 or 𝑞 only with
negligible probability.

Page 27 of 28

Hash Functions Public Key Encryption — 3.3

3.3.6. Theorem: (Weak) Prime Number Theorem

For a fixed 𝑛, the number of 𝑛 bit integers that are prime is at least 1
3𝑛 .

3.3.7. Algorithm: GenPrime(1𝑛)

1 for 𝑖 = 1 to 3𝑛2

2 sample 𝑝′ ←
$

{0, 1}𝑛−1

3 set 𝑝 = 1‖𝑝′

4 check if 𝑝 is prime (highly nontrivial)
5 if so: output 𝑝

Now notice

Pr[GenPrime(1𝑛) → Fail] = Pr([1 iteration fails])3𝑛2 < (1 − 1
3𝑛

)
3𝑛2

≈ 1
𝑒𝑛

which is negligible. We noted that (1 − 1
𝑥)𝑥 ≈ 1

𝑒 for large 𝑥.

3.3.8. Algorithm: GenModulus(1𝑛)

1 𝑝 ← GenPrime(1𝑛)
2 𝑞 ← GenPrime(1𝑛)
3 if 𝑝 = 𝑞:
4 output “FAIL”
5 else
6 output (𝑝 ⋅ 𝑞, 𝑝, 𝑞)

Thus we can reformulate the Factoring Assumption as GenModulus(1𝑛) giving (𝑁, 𝑝, 𝑞).

3.3.9. Example

Define 𝑓(𝑥, 𝑦) by if 𝑥 and 𝑦 Given 𝑓(𝑥, 𝑦) = 𝑝𝑞 where (𝑝, 𝑞) are primes sampled from 𝑥 and 𝑦 respectively, there is
no guarantee

Page 28 of 28

	Introduction
	Cryptographic Systems
	Definition: Cryptographic System
	Definition: Encrypt, Decrypt, Ciphertext, Plaintext
	Definition: Private Key Encryption
	Definition: Kerckhoff's Principle
	Definition: Encryption Scheme
	Definition: Probabilistic and Deterministic Algorithm
	Remark
	Definition: Polynomial Runtime
	Definition: Polylog Runtime
	Remark
	Definition: Secure Encryption Scheme
	Definition: Caesar Cipher
	Example
	Definition: Vigenère Cipher
	Example
	Example: Polynomial Runtime

	One Time Pad
	Definition: Exclusive Or
	Example: Probabilistic XOR
	Definition: One Time Pad (Vernam's Cipher)
	Proposition
	Remark
	Example: Eve's View
	Definition: Correct Encryption Algorithm
	Remark
	Definition: Secure Encryption Algorithm
	Example: Secure Encryption Scheme
	Definition: Alternate Definition for Security
	Example
	Lemma
	Example: Double One Time Pad
	Definition: One Time Perfect Security
	Theorem
	Remark
	Remark

	Computational Intractability
	Remark
	Example: Efficient vs Inefficient Algorithms
	Remark
	Example
	Definition: Negligible Function
	Proposition
	Proposition
	Definition: Ensemble
	Example
	Definition: Probabilistic Polynomial Time (PPT)
	Definition: Computational Indistinguishability
	Example
	Notation
	Proposition
	Lemma: Hybrid Lemma
	Definition: Multi-Message Security

	Pseudorandomness
	Pseudorandom Generators
	Computational Problem
	Definition: Pseudorandom Generator (PRG)
	Definition: Pseudo One Time Pad
	Proposition
	Algorithm
	Proposition

	One Way Functions
	Definition: One Way Function
	Example: Functions that aren't One Way
	Example: Finding Prime Factors
	Definition: One Way Permutation (OWP)
	Definition: Predicate
	Example: Predicate
	Definition: Hard-core Predicate
	Theorem: Goldreich-Levin Theorem
	Remark
	Lemma: Next-Bit Unpredictability Lemma
	Proposition

	Pseudorandom Functions
	Definition: Pseudorandom Function (PRF)
	Definition: Random Function
	Notation
	Example: PRF Encryption Scheme
	Proposition
	Proposition
	Proposition

	Hash Functions
	Introduction
	Definition: Collision Resistance
	Definition: Hash Function
	Definition: Domain Extension
	Proposition
	Definition: Merkle-Damgard Transform

	Random Oracle Model
	Definition: Random Oracle Model (ROM)
	Concept: Collision Resistance in ROM
	Concept: Lazy Sampling Technique
	Proposition
	Proposition

	Public Key Encryption
	Concept: Public Key Encryption
	Definition: Chosen Plaintext Attack (CPA) Security
	Definition: Multi-message CPA Security
	Proposition
	Definition: Factoring Assumption
	Theorem: (Weak) Prime Number Theorem
	Algorithm: GenPrime(1n)
	Algorithm: GenModulus(1n)
	Example

