Cryptography

Nate Annau

Table of Contents

B OO ' 1o Yo 10Tt 3« R 2
1.1, Cryptographiic SYSTEINISottt ettt ettt ettt ettt 2
1.2, One Time Padttt et et e e e e 5
1.3. Computational Intractability 10

P Y= L6 (0210 U (0 40 10 U=T3 15
2.1. Pseudorandom GENETAtOrSouui ittt et et et e e e e e e e e e e e e e e 15
2.2. 0One Way FUNCHIONSttt ettt ettt e e e e e e e e e e e e e e e e et e e e et e e e e 17
2.3. Pseudorandom FUNCHIONSt e ettt e e e e e e e e e e e e 20

3. Hash FUnCUIOMS ..ottt ttte ettt tte ettt e ae e eneaeaeaneuesnsnenesesnsnsaesnsesaesesnsnsassesesnssesesnsncsesasnns 24
K20 DR ' U oY L0 Ued 5 (o) o APPSR 24
3.2. Random Oracle Model oo ittt et e e e)
0 T B o) G S, T 25 013 0] ' 26

PAGE 1 oF 28

1. Introduction

Lecture 1 Jan 6

1.1. Cryptographic Systems

A cryptographic system is a structure or scheme consisting of a set of algorithms that converts plaintext to

ciphertext to encode or decode messages securely.

When constructing a cryptographic system we use the following process:
1) Problem

2) Definition

3) Construction

4) Proof

|\ J

Suppose we have a message M written in plaintext, i.e., understandable language. If we encrypt the message, we
rewrite it in such a way that the data can be recovered (called decrypting), but it is difficult to know how to do this
without knowing some secret. The encrypted message is called ciphertext.

How do we ensure that an eavesdropper Eve can’t intercept the message when Alice sends it to Bob? One way is to
generate a secret key which Alice and Bob share, which Alice uses to encrypt the plaintext and Bob uses to decrypt

the ciphertext.

One might argue that we could just keep an encryption algorithm secret rather than using secret keys. However, this
is dangerous if an eavesdropper discovers the scheme. In general, Kerckhoff’s Principle states that an ideal
cryptographic system should be secure even if attackers know the algorithm, which necessarily involves some kind of

secret key.

Lecture 2 Jan 8

PAGE 2 oF 28

INTRODUCTION CRYPTOGRAPHIC SYSTEMS — 1.1

An encryption scheme is a cryptographic system with the following three algorithms:

1) Key Generation
» takes an input A (in unary)
. generates a key k € {0, 1}*
2) Encryption
« input: (k, m) where m is the message
« output: ciphertext ¢
3) Decryption
« input: (k,c)

» output: m
\. J

A probabilistic algorithm is an algorithm using some amount of randomness. We can write it A(z;) where z is
the input, 7 is some randomness, and A is the algorithm.

A deterministic algorithm is a probabilistic algorithms that involves no randomness. Notice that deterministic
algorithms are a proper subset of probabilistic algorithms.

Note that we can say without loss of generality that the three main algorithms of an encryption scheme are
probabilistic.

~
|\

We desire that our algorithm has these two properties:

1) Correctness, meaning m = m’
2) Security, meaning given ct and not k, we cannot recover m.

An algorithm A runs in polynomial time if 3C' € N such that Vz,

RUNTIME(A(z))
|=|©

Call the function RUNTIME(A(z)) by f(|z]).
N J

An algorithm A runs in polylog time if it runs in some polynomial in log A time.

PAGE 3 oF 28

INTRODUCTION CRYPTOGRAPHIC SYSTEMS — 1.1

1) Notice that |k| = [log, A]
2) We want our algorithms to be efficient, which here just means they run in polynomial time.

3) We want our algorithms to be secure against an arbitrarily computationally capable Eve, at least to a realistic
degree.

4) We need a better metric for security, since if Eve can recover part of the message the encryption should not be
defined as secure. We might instead say that Eve should not be able to recover any information in m, but she still
might be able to figure out that the message belongs to some subset of possible plaintext messages, which isn’t
great either. This leads to a new definition for security.

Whatever an eavesdropper Eve learns from the ciphertext, she could have generated the same information herself. In

particular, if Eve tries to create a probability distribution of possible plaintext given the ciphertext, she must generate
the same distribution as a third party with no knowledge of the ciphertext.

Let m be a single letter in the English alphabet. Let the secret key k € {1,2,...,26}.

« To encrypt m, shift the letter k places to the right. Call the resulting letter m’'.
+ To decrypt m’, shift the letter k places to the left.

We can visualize this as turning a wheel. More generally, if m is the nth letter in the English alphabet, then the
encrypted letter is m + k£ mod 26.

If there are many letters, we can apply the substitution for every letter in m. We ignore whitespace and are
capitalization invariant.

Notice this cipher can be easily bruteforced.

Enc(2,c) = Enc(k,c) = e and Enc(z,¢) = b.

Similar to the Caesar cipher, except instead of a single key we have a longer key. The k-th element of the key shifts
the i-th element of the message.

This is insecure because we can perform a frequency analysis attack. Noting that the English language has commonly
occurring patterns, we can start cracking specific words.

Suppose we have key (3, 20)

« Shift T by 3 places — W
« Shift h by 20 places — b

PAGE 4 oF 28

INTRODUCTION CRYPTOGRAPHIC SYSTEMS — 1.1

Lecture 3 Jan 13

Suppose RUNTIME(A(A)) > A. Thus if we write A as a bit string, we have RUNTIME(A())) = f(logy(A)) which

implies f(logy(A)) > A. But this implies that f cannot be a polynomial, since in that case f would be polylogarithmic
and always dominated by .

1.2. One Time Pad

The Exclusive Or, or XOR, is a binary operation with the following truth table:

In1|In2| Out

= = E=N =)

0
1
0
1

(<3 I N e

We use the notation z @ y to denote the exclusive or, with z,y € {0,1}.

Note if z = {0,1}" and y = {0,1}" then we definez ® y = (1 D Yy, ..., T, D Y,,)-
_ J

$
Fix a and pick b uniformly at random. (Notationally, we can write b < {0, 1}).

We want to find a @ b. Note that
Prla®b=0]=Prja®b=0|b=0]-Pr[b=0]+Prladb=1|b=1] -Prjb=1]

1
= 5(Prla = 0]+ Prfa = 1])

Vs
\

$
* KeyGen(1™) outputs k < {0,1}".
« Enc(k, m) takes as input k, m € {0,1}" and outputs ¢ = k ® m.
+ Dec(k, c) outputs m =k @ c

PAGE 5 oF 28

INTRODUCTION ONE TiME PADp — 1.2

1.2.4. Proposition

I In the One Time Pad, for all k,m € {0, 1}" it holds that Dec(k, Enc(k, m)) = m

Proof: Note that
Dec(k, Enc(k,m)) = Dec(k, k & m)
=k® (kdm)
=(k®k)®em
=0"dm

=m.

Let us informally analyze security from Eve’s view.

From the viewpoint of Eve, the following happens
+ Alice has an n bit message m
+ Alice samples some key k uniformly at random from the space of n bit strings and then outputs c = k @ m

Pr |k [c=k&®010

1/8 | 000 | 010

1/8 | 001 | 011

1/8 | 010 | 000

1/8 |1 011 | 001

1/8 | 100 | 110

1/8 | 101 | 111

1/8 | 110 | 100

1/8 | 111 | 101
Note that Eve cannot deduce anything since the probabilities are all equal. In particular, Vs € {0,1}3, the
probability that the ciphertext is s is 1/8.

\ J

For all m, the ciphertext is uniformly distributed. But Eve herself can sample from this distribution without knowing
the message, which is intuitively what it means for the scheme to be secure.

PAGE 6 OF 28

INTRODUCTION ONE TiME PADp — 1.2

An encryption scheme satisfies correctness if for all possible keys k and for all possible messages m, the following
holds:

Pr[Dec(k, Enc(k,m)) = m] = 1.

We use probability because Enc is allowed to be a randomized algorithm.
. _J

Ideal properties for security:
« The secret key should be kept hidden from Eve

« The key is only used to encrypt plaintext
« The ciphertext cannot be decrypted without the key

Note: this is only one definition, there are others to follow.

We say that an encryption algorithm is is one time uniform ciphertext secure if Vm € M chosen by Eve, the
ciphertext is uniformly distributed (over the ciphertext space €), i.e., the following distributions are identical:
1) D, = %c := Enc(k,m); k < KeyGen(1*)}

$

2) ﬂ2 = C(—C’}

(Note an insecure scheme is one where these distributions are not the same.)

Is the following securg?
* KeyGen(17") := k < {0,1}"
« Enc(k,m):=c=kAm

-
\

It is not because for m = 0™, notice

so the distributions are not equal.

Vs
\

PAGE 7 oF 28

INTRODUCTION ONE TiME PADp — 1.2

Consider the following interactions between Eve and a challenger:

Eve sends the challenger a message m and Eve sends back c. The goal of the challenger is to prevent Eve from
learning anything. The goal of Eve is to know the two distributions.
1) The challenger has a bit ¢ := Enc(k,m) and k =$KeyGen(1")

2) The challenger sends a bit selected at random ¢ + €
. J

An encryption scheme is secure if for any chosen m by Eve, the above two scenarios seem identical to Eve.

-

Lecture 4 Jan 15

l One Time Pad encryption scheme satisfies uniform ciphertext security.

Proof: Given a fixed plaintext m and a fixed ciphertext ¢, we calculate the probability that c is the encryption of m:
1
Pr[c = Enc(k,m)| =Prlc=m @ k] =Prlk=m &] = T

Note that the probability here is over the random choice of k& € {0,1}".

Vs
\

PAGE 8 oF 28

INTRODUCTION ONE TiME PADp — 1.2

Suppose our scheme is like this:

$ $
KeyGen(1™) : ky < {0,1}", ky < {0,1}™ and output (k;, k5)
EnC((kl, k2),m) . Cl == kl @ m, 02 = k2 @ Cl and Output C2
Dec((ky,ks),¢) : ¢4 = ko ® ¢, = k; & ¢; and output m.

We need to show that for each m, the distributions are identical:
1) {cy = ky ® cy;k < KeyGen(1"), ky « KeyGen(1™),c; = k; @ m}
2) 3¢, « {0, 1}"}

Proof: We consider the following set of distributions called hybrids:
Hy o {eqg = ky B cq; ki — KeyGen(1™), ky < KeyGen(1™),¢; = k; @ m}

$
Hy {02 +— {0,1}";k; < KeyGen(1™),¢c; =k, @m}

H, - {02 & {o,1}n}

Note 7, and #, are the same because one time pad satisfies uniform encryption security and #, and J{; are the
same trivially.

L

| J

We say that an encryption scheme is one time perfectly secure if Vm, m; € M chosen by Eve, the following
distributions are identical:

D, := {c := Enc(k, my); k < KeyGen(1™)}
ﬂ2 = {C = Enc(k, ml); k <+ KeyGen(]‘n)}

Thus the ciphertext carries no information from Eve’s viewpoint.
& J

PAGE 9 oF 28

INTRODUCTION ONE TiME PADp — 1.2

l One time uniform ciphertext security = one time perfect security

Proof: Consider the following distributions:
H, : {c:=Enc(k,my); k < KeyGen(1™)}
T {c (i C’}
Hs : {c = Enc(k,my); k < KeyGen(1™)}

where J(; = H, and H, = F{; both follow from one time uniform ciphertext security.

Thus the one time pad satisfies one time perfect security.

|\ J

The converse is false. Counterexample:

$
* KeyGen(1") : k « {0,1}"
+ Enc(k,m) : Compute ¢’ = k & m and output ¢ = ¢'||00
+ Dec(k, c) : Compute ¢’ = ¢[0 : n] and output m =k & ¢’

Note the distribution is not uniform but it is one time perfectly secure.
. J

There are some serious issues with one time pad:

« Key must be as long as the plaintext
+ A key cannot be used to encrypt more than one plaintext

1.3. Computational Intractability

A brute force attack for an n bit key should take O(2") time.

An attack should be made computationally infeasible for an algorithm to be secure, not necessarily impossible.

PAGE 10 oF 28

INTRODUCTION COMPUTATIONAL INTRACTABILITY — 1.3

Efficient algorithms (polynomial time):
1) GCD

2) Arithmetic mod V

3) Inverses mod N

4) Exonentials mod N

Ineffcient algorithms:
1) Factoring integers
2) Discrete logarithm
3) Square roots mod composite N

4) Solving “noisy” linear equations

If people can guess a key, it’s bad even if there’s a low probability. Thus we want a new definition of security to

follow these two factors:
- Attacks that are expensive as a brute force attack
« Attacks whose success probability is as low as a blind guess attack

Lecture 5 Jan 22

If an adversary’s probility f breaking one time perfect security is %, then if they receive n? ciphertexts, that should be
1,2

able to break n messages on average. This is because the expectation is ;- - n* = n.

A function v(+) is negligible if for every polynomial p(-), we have
lim p(n)y(n) = 0.

Alternatively, v(n) is negligible if Vc3n, such that Vn > ng,v(n) < .

ne

PAGE 11 oF 28

INTRODUCTION COMPUTATIONAL INTRACTABILITY — 1.3

1.3.6. Proposition

I Let f and g be negligible. Show that f + g is negligible.

Proof: We need to show that Vc3n, such that Vn > ng, f(n) + g(n) < .

Fix ¢ € N. Since f and g are negligible we know In;, n, such that Vn > ng, f(n) < —1+ and Vn > ng,g(n) <
1

v
Then if n > max{nf, Mg 2} we have

fn) +g(n) < ncl"'l + ncl+1 B (%) (%) = %

1.3.7. Proposition

I Let v be a negligible function and p be a polynomial such that p(n) > 0¥n > 0. Show that v(n) - p(n) is
negligible.

Proof: Since p is a polynomial, we know 3n,,, ¢, such that Vn > n,, p(n) < n. Since v is negligible, we know that
In,, corresponding to ¢ + ¢, such that Vn >n,,v(n) < n°+cp For a given ¢, let ny = max{n,,, np}. Then Vn > n,

we have

A sequence {X, } _is called an ensemble if for each n € N, X, is a probability distribution over {0, 1}".

Suppose Adversary A tries to guess whether a sample was drawn from two distributions X and Y. If X is the
uniform distribution on {0, 1}™ and Y is a fixed point distribution, then if the adversarial guesses a string of all zeros,

it can tell them apart almost all of the time.

Lecture 6 Jan 27

Decision problems solvable by a probabilistic Turing machine in polynomial time.

PAGE 12 oF 28

INTRODUCTION COMPUTATIONAL INTRACTABILITY — 1.3

Let X = {X,} _andY ={Y } _ beprobability ensembles.

Then X and Y are computationally indistinguishability if V PPT A, Jv(-) such that
Pr[z « X,; A(1", z) = 1] = Prly « Y; A1",y) = 1]| < v(n).

where the adversary A is trying to guess the distribution given the n in the ensemble.

This quantity is called the advantage or bias of A.
\ J

Let X; be a uniform distribution on {0, 1}£ and Y; be a fixed point distribution, so that Jy* € {0, 1} so Pr[y* +
=1

Define A (1", y) so that if it receives y* it outputs 1, otherwise it outputs 0. Therefore Pr[l +— A(1",y) : y + Y;] =1
but Pr[l « A(1",z) : © + X;] = 5. Now let v(n) be a negligible function. Observe lim,,_, |1 — 57| = 1 but
lim,,_,, v(n) = 0, implying 3N such that Vn > N, |1 — 5| > v(n), showing that X; and Y] are computationally
indistinguishable.

Vs
\

{X,,} ~ {Y, } means computational indistinguishability.

1.3.14. Proposition

If we apply an efficient operation on X and Y, they remain computationally indistinguishable. In other words,
V nonuniform PPT M,

(X}~ (%} = (M(X,)} ~ (M(Y,)}

Proof: Suppose by contradiction that {M(X,,)} and {M(Y,,)} were computationally distinguishable. Then if A is the
distinguisher, notice A (M (X)) allows us to distinguish X,, and Y, , a contradiction.

L

Let X1, ..., X™ be distribution ensembles for m = poly(n). If for every i € {1,...,m — 1}, X* and X**! are
computationally indistinguishable, then X! and X™ are computationally indistinguishable.

Proof: Transitivity via triangle inequality + apply repeatedly.

PAGE 13 oF 28

INTRODUCTION

COMPUTATIONAL INTRACTABILITY — 1.3

For all messages {(m, m})}
distributions are identical:
Enc(s,m}), ..., Enc(s,m

Enc(s,m}),...,Enc(s,m

mg(n)

i€g(n)]’

Note this implies that the encryption algorithm must be probabilistic, because the simple attack of letting my =- - -

where ¢ has a polynomial runtime and n is a security parameter, the following
q(n)

0

q(n)

1

would break it otherwise.

PAGE 14 oF 28

2. Pseudorandommness

2.1. Pseudorandom Generators

Suppose you have n uniformly random bits: z = z,||- - -||z,,. We want to find a deterministic polynomial time
algorithm G such that

« G(x)outputsn + 1bitsy =y, |- - - |yp 41

+ y looks “as good as” a truly random string r = r;

That is, the following are computationally indistinguishable:

{G’(x) 1T i {0, 1}"}; {7« o i {0, 1}n+1}

~
|\

A deterministic algorithm G is called a pseudorandom generator (PRG) if
+ G can be computed in polynomial time

- |G(2)| > |2

. {G(w) :x {0, 1}"} ~ {Uym) } where £(n) = |G(0")|

The stretch of G is defined to be |G(z)| — |z|

~
|\

We use a PRG with the ideas of one time pad for the following:
« Gen(1™):
> s+ {0,1}"
» outputs k = s
« Enc(k,z € {0,1}"):
» outputc = G(s) ® x
+ Dec(k,c):
» outputm = G(s) ¢

Correctness is clear.

~
|\

PAGE 15 oF 28

PSEUDORANDOMNESS PSEUDORANDOM GENERATORS — 2.1

2.1.4. Proposition

I Pseudo One Time Pad is Secure

Proof: We proceed using the Hybrid Argument. Let z € {0, 1}"™. Then
$
7, = {G(S) eX:5 <o, 1}n}
$
H, = {zEBX:z(—{O,l}"}
}[3 = U{O,l}”

Note H; ~ H, by Proposition 1.3.14. Then #, ~ J{; since one time pad satisfies one time uniform ciphertext
(& C
security.

O

Lecture 8 Feb 5

We can convert a PRG with a 1 bit stretch G, to a PRG with an m bit stretch G, by iteratively passing the initial
PRG:

—_

Sy = S,y = € (empty string)

[\]

fori =1 tom:
(xl o J"nxn-i-l) — Gone(Si—l)

4 |y = CONCATENATE(y, x,, 1)

518, =21z

OUTPUT y

w

n

(=)}

PAGE 16 oF 28

PSEUDORANDOMNESS PSEUDORANDOM GENERATORS — 2.1

2.1.6. Proposition

I The previous construction is secure.

Proof: Assume by contraposition that G, is not secure. Consider the following hybrids:

oly

7, = {y G () 5 & {0, 1}n}

$
H, = {y —GY (5):5 & {0, 1}n}

Ko _ {u o, 1}m}

Then 3 € {1,...,m} such that J¢; #& J; ;. Thus there exists a distinguisher D for these two.
c

REDUCTION(2):

1s, =2

Y i {0, 1}i

3 forj=141tom:

(T TpTng1) < Gone(Siz1)
5 | y=CONCATENATE(y, z, 1)
6 1S,=x,--2,

OUTPUT D(y)

Do

'S

|

Then Pr[REDUCTION outputs 1 | z = G,.(s)] = Pr[D outputs 1 | y <], showing that G_, is not secure.

[

2.2. One Way Functions

f:{0,1}"™ — {0,1}™ is called one way if
1) f is computable in deterministic polynomial time)
2) Y PPT A, Pr [m' +— A(1™, f(x)) such that f(z’) = f(x);z « {0, 1}")] < v(n).

Le., given a function image, the probability that an optimal adversary guesses a preimage right is negligible.

The existence of such a function would prove P # NP.

PAGE 17 oF 28

PSEUDORANDOMNESS ONE WAY FUNCTIONS — 2.2

1) f(x) =z, 01, - @z, (notem = 1).
2) f(z) =Y x;2% (binary representation of x)

iml

3 fla) = 32

Lecture 9 Feb 10

Consider a number N = pq where p, q are primes. We want a deterministic algorithm that takes /V and returns p and
g. Assuming we can check divisibility in an O(1) step, the naive running time is then O(N) (or O(\/N) with a
simple optimization). But this is in terms of the size of the input, not the length of the input A ~ log N. Thus this
algorithm has an exponential running time.

is a One Way Permutation if
y
+ fis one-way
+ fis a permutation (nonidentity bijection)

A predicate of z is a function P : S — {0, 1} for some set z € S.

We could have P : Z — {0, 1} be defined by “is a multiple of 7”.

A hard-core predicate of a function f is a predicate of z (an input to f) which can be easily computed given the
preimage z but is difficult to compute given the image f(x).

This is formalized for an ensemble of predicates h,. as follows:

« H = {hr}TE{O,l}" with respect to f: {0,1}" — {0,1}"

« h,:{0,1}"™ — {0, 1} is a deterministic gooly time alggrithm

* V PPT A,Pr [h,,(m) — A(r, f(z));r + {0,1}", 2 « {0, 1}n] <i+vy(n)

A typical example is a hashing function.

PAGE 18 oF 28

PSEUDORANDOMNESS ONE WAY FUNCTIONS — 2.2

I If f is a one way function, then hard-core predicates exist.

Proof: Sketch: define h,.(x) by the boolean inner product

(r,x)=1"1/\ar;leBr2/\:cQEB---EBrn/\:L'nzz:rixi.
i

Note we can think of (A, ®) as (-, +) over mod 2.

By contradiction, assume an adversary can break the hard-core predicate property. Le., 3 PPT A such that when A
is given r and f(z), it can find a u such that Prfu = (r,z)] > 1 + v(n). Then we can show
3 PPT B such that B(f(x)) — 2’ such that Pr[f(z’) = f(x)] > —-, contradicting that f is one way.

= pOly’
To do this, first consider an easier case where Prju = (r, z)] = 1. Then consider r = 10 - - - 0 so that (r, z) is the first
bit of z. By choosing 7’s like this we can fully reconstruct z, which is a trivial preimage. The idea of the proof is to
iteratively relax this assumption and use a similar technique.

[

Notice that hard-core predicates may not exist if f is not one way. For example, take the identity function f(x) = .
Then we don’t lose any information, so trivially a hard-core predicate cannot exist.

Suppose D is efficiently sampleable. Then 2 is pseudorandom if and only if the probability of predicting the ith
bit given the first ¢ — 1 bits is at most a negligible improvement over random.

Le., we have that z < D => Pr[z; = A(2y,...,z;_;)] < 3 + v(n) is an equivalent definition to the
computational indistinguishability definition of pseudorandomness.

PAGE 19 oF 28

PSEUDORANDOMNESS ONE WAY FuncTIONS — 2.2

2.2.11. Proposition

Let f: {0,1}" — {0,1}" be a one way permutation. Given a PRG G : {0,1}?" — {0, 1}?"*!, we have that
G(s|r) = (f(s)|r|h,(s)) is secure.

Proof: Proceed by the Hybrid Technique.
$ $
ﬂl - {G(SHT) =Y1Y2 Yopg1s S {Oa 1}n77, — {Oa 1}n}
$ " $ " $
Hy = {G(5"7’) = 1Yz YanUons1 S < {0,117, 7 = {0,1}", ugp, 4 < {0, 1}}7

$ $ $ $
‘7{3 = {G(S"T) =Y1Y2 " Yon—1UgpU2n415 S {07 1}n77‘ A {O’ 1}nau2n = {07 1}7u2n+1 — {Oa 1}}
$
FHont1 = {Ul e Ugn g U < {0, 1}}

Notice that 7(; = 7, by the Next-Bit Unpredictability Lemma (since the condition is given by the hard-core
predicate). Then H3 =- - -= H,, , clearly, also following the lemma.

0

2.3. Pseudorandom Functions

Lecture 10 (Jesse transcribed) Feb 12

PAGE 20 oF 28

PSEUDORANDOMNESS PseubporaNDOM FuNcTIONS — 2.3

A function

F:{0,1}* x {0,1} — {0,1}™
(k,z) —y

where k is the key and « is the input. F’ should be computable in deterministic polynomial time.

We have
G, m=1{9:{0,1}" = {0,1}™}

$
where g < G, .

Af means A has oracle access to f. This means that given an input x;, A knows what f(z;) is by queries
{z,,...,z,}. Note that querying a function is a polynomial time algorithm.

F'is a secure PRF if

$ $ $
Pr[l — AF®) | 0, 1}A] — Pr[l — A9 g Gn,m] ’ <v(N).

Since querying a function is polynomial time, we can only query a function polynomial many times since .4 is a PPT.
J

Lecture 11 Feb 19

Let F: {0,1}* x {0,1}™ — {0,1}™ be a PRF.

$
* Define Gen(1*) sampling k < {0, 1}* and then outputting k.
* Define Enc(k,) by sampling r < {0,1}" and then outputting (r, F'(k,r) &).
« Define Dec(k, ¢) by decomposing ¢ = (r, 0) and outputting 6 & F(k,r).

|\ J

PAGE 21 oF 28

PSEUDORANDOMNESS PseuporRaANDOM FuNcTIONS — 2.3

2.3.5. Proposition

The previous encryption scheme is correct and satisfies multi-message security.

Proof: We begin by showing correctness. Observe
Dec(k,Enc(k, z)) = Dec(k, (r, F(k,r) ® x))
= (F(k,r) @) ® F(k,r)

= @B
Now to show multi-message security, we proceed by the Hybrid Technique.

H, = {(Enc(k,m}), ..., Enc(k,m}) }

$
Gy = {(rl,F(k,) ®@m}), ..., (ry, F(k,m,) @mf) : 7y, ...ymy + {0, 1}"}
$
Hy = {J_ if 3i,j such that 7, = r; Ai # j else ((ry, F(k,r) @ mg), ..., (ry, F(k,7,) @ mf)) : rq, ...,y < {0, 1}”}

$
Hy = {J_ if 3i,j such that r; = r; Ai # j else ((r,Uy @ mg), ..., (ry, Uy ® mf)) : Uy, ..U, + {0, l}m}
}[5 =
$
Define Hybrid 3 by sampling 7, ..., 7, < {0, 1}", and then if 3i, j such that r; = r; A i 5 j then output “JUNK”;
otherwise, output ((ry, F(k,r;) & m(), ..., (v, F(k,7,) & m})).

Define Hybrid 4 to be the same as Hybrid 3 except U, ..U, bl {0,1}™ and output ((ry, U; & my), ..., (4, Uy & mf)).
Define Hybrid 5 to be the same as Hybrid 4 except we output ((ry,U; & m}), ..., (r,, U, & m})). Define Hybrid 6 to
be ((ry, F(k,ry) & m}), ..., (ry, F(k,r,) &m})). Define Hybrid 7 to not check if 7;’s are distinct. Define Hybrid 8 to
be {Enc(k, m}), ..., Enc(k,mt))}.

Now Hybrid 1 ~ Hybrid 2 by construction, and Hybrid 2 ~ Hybrid 3 (prob of bad event is negligible).

Note that Pr[EIi,j such that i £ jAr;, = 'rj] <> Pr [7'2- = 'rj] = (;) . 2% < é—i (we invoked the union bound).
i)

Now Hybrid 4 ~ Hybrid 5 follows from Perfect Security of OTP and Hyrbrid Argument. Hybrid 6 ~ Hybrid 7 follows
c (6]

from the same reason as 2 = 3.

Also 7 = 8 follows by construction.

To show 3 = 4, suppose by contradiction there exists a distinguisher 2D such that 2 distinguishes 3 and 4 with ﬁ
1 ¢

advantage. We proceed with a reduction R®. D — ((mg, m}), ..., (m§, m%)) and query @ on (ry, ...,,), giving us
(Y15 -, Y4)- Then D((ry, 4, ® M), vy (r4, ¥, ®mb)) = b. In case 1, § = F(k,) and the input to 2 is Hybrid 3, and
in case 2 @ = g(+), adnd the input to 2 is hybrid 4.

O

Lecture 12 Feb 24

PAGE 22 oF 28

PSEUDORANDOMNESS PseuporRaANDOM FuNcTIONS — 2.3

2.3.6. Proposition

Given a pseudorandom generator G : {0,1}* — {0, 1}?*, we can always create a pseudorandom function F :
{0,1}* x {0,1}* — {0, 1}*.

Proof: We begin with the n = 1 case. Our input is (k, z) where k € {0,1}* and = € {0, 1}. Take G(k) = (yo,y;).
where y, is the first A bits and y; is the last A characters. Then if z = 0, we output y, and if z = 1, we output y;.

In the n = 2 case, given y, and y,, we invoke the PRG on both of them. Le., G(yy) = (Y0, Yo1) and G(y1) = (Y19, ¥11)
and then choose the subscript corresponding to x € {0, 1}2. In general, running G on every output of the previous
iteration works. To avoid exponential runtime, just choose the path given by «.

In general, F'(k, z) is defined as follows:
ly. =k

2 fori =1 ton:

3 1 G(ypan) = (yx<ifl)|\o,yx(i—1>||1)
4 Output y,,

2.3.7. Proposition

The previous construction is secure.

Proof: First consider the case where z = 0 - - - 0. Notice that since G is secure and we have closure by Proposition
1.3.14,

I, :{F(k,o---()):ki{o,l}*}

$
Hy = {yo Yo + 10, 1}/\}

H, : {y bl {0, 1}A}

The general case follows a similar idea.

PAGE 23 oF 28

3. Hash Functions

3.1. Introduction

Lecture 13 Feb 26

Given an adversary 4 that wants to find z,y € {0,1}" such that h(z) = h(y) with « # y, a hash function has
collision resistance if PPJADVERSARY WINS] = negl(m).

A hash function is a function hy, in the family & = {h,, : {0,1}" — {0,1}™,k € {0,1}*} where n >> m and h,,
is a deterministic poly time algorithm. A hash function is called secure if it has collision resistance.

Given H = {hy, : {0,1}** — {0,1}*}, we can find a family G, = {g, : {0,1}" — {0,1}* for n = poly(X). This
is called a domain extension. A naive implementation would be to hash the first A bits and the second A bits, then
hash the result of that with the third X bits, and iteratively do this until we get down to A bits.

Formally, g, (x4, ...,z) is defined by

1y:.’1}1
2 fori=1to N — 1:

3 ly=h(y, 1)

3.1.4. Proposition

I Given that J(is collision resistant, the above construction G is collision resistant.

Proof: By contradiction, suppose G is not collision resistant. In other words, Pr[A(g;) —

z!, 2% such that z' # 22 A g, (z') = g, (2?)] > poly(A). If we run g, on both z! and 22, we get the same
thing. Now consider the N — 1 step in g, if the inputs are different, we immediately contradict that ¢ is
collision resistant. Thus we can assume they are the same, but now we work backwards to the N — 2 step. We
can do this inductively so that we eventually get that ' # 2, also a contradiction.

We could have also thought about this proof as a reduction, where we find an adversary that can always come
up with inputs a # b such that h;(a) = h(b)

L

PAGE 24 oF 28

HAasH FUNCTIONS INTRODUCTION — 3.1

A better way to approach the previous problem is to combine in groups of two: always take adjacent inputs and put

them through h;. The collision resistance proof is similar to the previous proposition.

3.2. Random Oracle Model

Lecture 14 Mar 3

In the Random Oracle Model (ROM), the adversary uses a hash function as a black box, where the hash function
behaves like a random function.

Ifh:{0,1}"™ — {0,1}™ with n > m is a hash function (modeled as a random function), then the adversary succeeds
if A" — (x,7) such that h(z) = h(y) Az # y.

For an upper bound:
« If A makes o(\/ 2m) queries, then P[A wins| = v(m).

For a lower bound:

o If A makes O(\/ 27”) queries, then P[A wins| > %
N\ J

In the beginning we have a table of all values in {0, 1}", where every one is not known. Now .4 makes a query
for some ¢; € {0,1}"™. Sample y < {0, 1}™ and return y to A. Then A submits ¢, € {0,1}".If ¢, = q;, return
h(q,); otherwise, sample 3" < {0, 1}", update the table, and return y’.

Input | Assigned Output

0..00 | X
0..00 | X

q; Y

This shows that we sample only queries made by the adversary; other queries will not be assigned. This is a
convenient model for a hash function.

.

|

PAGE 25 oF 28

HAasH FUNCTIONS RaNDOM ORACLE MODEL — 3.2

3.2.4. Proposition

The upper bound on the adversary’s success in finding a hash collision is correct. Le., if A makes a series of ¢
queries {qy, ..., ¢, } using lazy sampling, if ¢t = o(\/ 2"‘), we have P[A wins] = v(m).

Proof: A makes a series of t queries {¢y, ..., ¢; } using lazy sampling.

Case 1:
« For A’s output (z,y), = ¢ {qy,....,q;} oty ¢ {qy, ..., ¢, }. Then P[A succeeds] = 5% since
without loss of generality we can consider z as fixed in {q,, ..., ¢, } and y as an unassigned string, and then y is

assigned randomly.

Case 2:
« For A’s output (z,y), x € {qy,-,¢:} Ny € {qq, ---, ¢; } Now

P[A succeeds] = Pr[3, j : h(g;) = h(g;)] <

3.2.5. Proposition

The lower bound is correct. That is, if we can make ¢ = O(\/ 2m) queries (This is the birthday attack.)

$
Proof: Given A", we query {qy, ..., ¢, } distinct where q; + {0, 1}".If h(q;) = h(qj) then output (qi, qj); otherwise,
fail.

We claim P[A wins] < 1. Observe

Pr[2 collision| = Pr[h(q,) ¢ {h(q;),...,h(q,_1)} : D collision in {q;,...,q,_1}] - P[? collision in {q;,...,q;_1}]

{5
0
3.3. Public Key Encryption
Lecture 15 Mar 5

PAGE 26 oF 28

HAasH FUNCTIONS PuBLic KEY ENCRYPTION — 3.3

Suppose Alice and Bob have public keys pk, o and pkpgp respectively. They also each have a secret key sk y1cp
and SkBOB'

To send messages to Bob, Alice uses Bob’s private key via Enc(pkgop, m); Bob uses Alice’s public key via
Enc(pkarice, m).

In public key encryption, anyone can encrypt messages (unlike private key encryption).
& J

Consider a PPT adversary A that has knowledge of the public key. Suppose Alice and Bob want to send a bit b €
{0, 1}, and the adversary guesses the bit is " based on Enc(pk, m).

Our public key encryption algorithm has chosen plaintext security if

P’ =1 | b=0] — Pt =1 b=1]| < v(n).

-
\

Suppose the challenger gives the adversary the public key, the adversary queries with multiple messages
(mg,mi), ..., (md, m?), and the adversary receives the encrypted messages. If the adversary is unable to guess the
original message, it has multi-message CPA Security.

3.3.4. Proposition

I CPA Security = multi-message CPA Security

Proof: We proceed by the Hybrid Technique:
H, = {Enc(pk,m}), Enc(pk, m3), ..., Enc(pk, md) }
H, = {Enc(pk, m}), Enc(pk, m2), ..., Enc(pk, m{) }
Hy = {Enc(pk, m}), Enc(pk, m?), ..., Enc(pk, m{) }

H,, = {Enc(pk,m7), Enc(pk,m?), ..., Enc(pk, m{)}

To prove these hybrids are computationally indistinguishable, consider Hybrids 1 and 2 and proceed by reduction.
Suppose there exists a distinguisher 2 that can distinguish these two hybrids. Then 2, with access to the public key
pk, sends (mf, m}) to the challenger, receiving a ciphertext. But then everything else is the same, so this breaks CPA
security.

[

If a challenger samples n bit primes (pq) and sets N = pq, then any PPT adversary can guess p or g only with
negligible probability.

PAGE 27 oF 28

HAasH FUNCTIONS PuBLic KEY ENCRYPTION — 3.3

l For a fixed n, the number of n bit integers that are prime is at least %

1 fori =1 to 3n?

2 | sample p’ i {0,1}!

3 | setp=1|p’

4 | check if p is prime (highly nontrivial)
5 | if so: output p

Now notice
: : e o 1\ 1
Pr[GenPrime(1™) — Fail] = Pr([1 iteration fails])*™ < (1 — o ~—
n en
which is negligible. We noted that (1 — %)x ~ % for large x.
|\ J

1 p < GenPrime(1™)

2 ¢ < GenPrime(1™)

3ifp=gq:
4 | output “FAIL”
5 else

6 | output (p *q,D, q)

Thus we can reformulate the Factoring Assumption as GenModulus(1™) giving (N, p, q).

Define f(z,y) by if z and y Given f(z,y) = pq where (p, q) are primes sampled from x and y respectively, there is

no guarantee

PAGE 28 oF 28

	Introduction
	Cryptographic Systems
	Definition: Cryptographic System
	Definition: Encrypt, Decrypt, Ciphertext, Plaintext
	Definition: Private Key Encryption
	Definition: Kerckhoff's Principle
	Definition: Encryption Scheme
	Definition: Probabilistic and Deterministic Algorithm
	Remark
	Definition: Polynomial Runtime
	Definition: Polylog Runtime
	Remark
	Definition: Secure Encryption Scheme
	Definition: Caesar Cipher
	Example
	Definition: Vigenère Cipher
	Example
	Example: Polynomial Runtime

	One Time Pad
	Definition: Exclusive Or
	Example: Probabilistic XOR
	Definition: One Time Pad (Vernam's Cipher)
	Proposition
	Remark
	Example: Eve's View
	Definition: Correct Encryption Algorithm
	Remark
	Definition: Secure Encryption Algorithm
	Example: Secure Encryption Scheme
	Definition: Alternate Definition for Security
	Example
	Lemma
	Example: Double One Time Pad
	Definition: One Time Perfect Security
	Theorem
	Remark
	Remark

	Computational Intractability
	Remark
	Example: Efficient vs Inefficient Algorithms
	Remark
	Example
	Definition: Negligible Function
	Proposition
	Proposition
	Definition: Ensemble
	Example
	Definition: Probabilistic Polynomial Time (PPT)
	Definition: Computational Indistinguishability
	Example
	Notation
	Proposition
	Lemma: Hybrid Lemma
	Definition: Multi-Message Security

	Pseudorandomness
	Pseudorandom Generators
	Computational Problem
	Definition: Pseudorandom Generator (PRG)
	Definition: Pseudo One Time Pad
	Proposition
	Algorithm
	Proposition

	One Way Functions
	Definition: One Way Function
	Example: Functions that aren't One Way
	Example: Finding Prime Factors
	Definition: One Way Permutation (OWP)
	Definition: Predicate
	Example: Predicate
	Definition: Hard-core Predicate
	Theorem: Goldreich-Levin Theorem
	Remark
	Lemma: Next-Bit Unpredictability Lemma
	Proposition

	Pseudorandom Functions
	Definition: Pseudorandom Function (PRF)
	Definition: Random Function
	Notation
	Example: PRF Encryption Scheme
	Proposition
	Proposition
	Proposition

	Hash Functions
	Introduction
	Definition: Collision Resistance
	Definition: Hash Function
	Definition: Domain Extension
	Proposition
	Definition: Merkle-Damgard Transform

	Random Oracle Model
	Definition: Random Oracle Model (ROM)
	Concept: Collision Resistance in ROM
	Concept: Lazy Sampling Technique
	Proposition
	Proposition

	Public Key Encryption
	Concept: Public Key Encryption
	Definition: Chosen Plaintext Attack (CPA) Security
	Definition: Multi-message CPA Security
	Proposition
	Definition: Factoring Assumption
	Theorem: (Weak) Prime Number Theorem
	Algorithm: GenPrime(1n)
	Algorithm: GenModulus(1n)
	Example

