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1. Preliminaries

1.1. Relations

1.1.1. Definition: Relation

A relation on aset Aisasubset R C A X A.a ~b <= (a,b) € R. We say that R is
+ reflexive if a ~ aVa € A

» symmetricifa ~ b <= b~ aVa,be A

« transitiveifa ~bAb~c = a ~ cVa,b,c€ A

1.1.2. Definition: Equivalence Relation

An equivalence relation is a relation which is reflexive, symmetric, and transitive.

1.1.3. Definition: Equivalence Class

Let R be an equivalence relation on A. The equivalence class of a € Aistheset {x € A | x ~ a} = [a|z = @. Any

¢ € [a] g is a representative of [a] .

The set A/R = {[a]p | a € A} is called a quotient set. This is the set of equivalence classes (as defined by the
equivalence relation R) on the set A.

Reference
|\ J

1.1.4. Exercise

A =R2\{(0,0)}. Define a relation ~ on A by (z,y) ~ (2, w) <= I\ € R such that (z,y) = A\(z,w). (R* =
R\ {0}).

Is this an equivalence relation? What are the equivalence classes and the quotient set?

Solution

Check properties:

« reflexive: (z,y) = 1(z,y)V(z,y) € A)

« symmetric: ¥ (z,y), (2,w) € A, suppose (z,y) = A(z,w) for some X € R?, so (z,w) = A7 (z,y) with A € R”

« transitive: V(z,y), (z,w), (s,t) € A, if (z,y) = A\ (z,w) and (2, w) = Ay (s,t) for some \;, A, € R”, then (z,y) =
A A (8, 8) with A\, € R?

Thus this is an equivalence relation on A.

Given some (z,y) € A, [(z,y)] = {(s,t) € A | (s,t) = A(z,y) for some A € R”} (which is the line through (z, y)
and (0,0)). Then the quotient set is the set of lines through (0, 0) in R? (this is the same as the projective real line
P'(R)).

~
.
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PRELIMINARIES ReELATIONS — 1.1

1.1.5. Definition: Partition

A partition of a set A is a collection {A; | i € I'} of nonempty subsets of A such that

1.1.6. Definition: Relation on Partition

Let P = {4, | i € I} be a partition of A. The relation defined by P on A, denoted Rp, is definedby a ~ b <= Ji € I
such that a,b € A,.

1.1.7. Theorem

Let A be a set.

1. If R is an equivalence relation on A, then P = A/R is a partition of A and Rp = R.
2. If P is a partition of A, then Rp is an equivalence relation and A/Rp = P.

Proof:

1. Leta € A with R an equivalence relation. Recall P = A/R = {[a] | a € A} by definition, and since a € [a]g, we
must have U, 4 [a] = A. Further, since each equivalence class at least contains a, it is nonempty. Now suppose by
contradiction x € [a, [b], two distinct equivalence classes. Then 2 Ra and xRb, so by transitivity and symmetry,
aRb, a contradiction. Thus, P is a partition.

Noticea ~ bin Rp if 3i € I such that a,b € A, =[a]p ={b€ A|a~b} < a~bin R. Thus Rp = R.

2. Let P be a partition of A.
« reflexivity: let a € A and note 3¢ € I such that a € A; € Psoa ~a
+ symmetry: suppose a ~ b for some a,b € A. Thus 3i € I such that a,b € A, € P. But then b ~ a because sets
aren’t ordered
+ transitivity: suppose a ~ band b ~ c for a,b,c € A. Thus exists ¢, € I such thata,b € A; and b,c € A;. Thus
b€ A; N A;, but this is only possible if ¢ = j since otherwise it would be empty. Thus a,c € 4; and a ~ c.

Nowlet S € A/Rp = {[a]RP | a € A}. Equivalently, S = {b € A | a ~ b} for some a € A under Rp. Note
equivalence relations form partitions and vice versa, and in fact S = {a | a € A; C A} € P. This satisfies both
directions.

L
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PRELIMINARIES ReELATIONS — 1.1

1.2. Properties of Integers

1.2.1. Definition: Divides

Let a,b € Z. We say that a divides b, written a | b, if 3¢ € Z such that b = ac.

Properties

« VYa € Z,a | a (reflexive)

« Ya,b€Z,ifa|bandb | athen |a| = |b| (symmetric)

« Ya,b,c € Z,ifa | bandb | c, then a | c (transitive)

« Vd,a,b,m,n € Zifd | aand d | b, then d | ma + nb (linearity)

Transitivity proof: a | b = 3n € Z such that an = band b | ¢ = Im € Z such that bm = c. Then a(nm) = ¢ =

a | c. Notice logically thismeansa t c = atbVb}c
. J

1.2.2. Definition: GCD and LCM

Leta,b € Z.
1. 3!d € Z such that

«d|aandd | b,
« VeeZife|aande|b, thene|d

d is called the greatest common divisor (gcd) of a and b, denoted d = ged(a, b) = (a, b). Note we define
ged(0,0) = 0.

2. 3'm € Z, such that

« a|mandb|m,
« Vn€Zifa|mandb |n,thenm | n.

m is the least common multiple (Icm) of @ and b, i.e. m = lem(a, b).

1.2.3. Theorem: Division Algorithm

ILeta,beZwithb#O.ThenEI!q,rEZsuchthataqu+rand0§r< |b]

1.2.4. Theorem: Euclidean Algorithm

Leta,b € Zwithb > 0.Set r_; = a and 7y, = b. Apply division algorithm repeatedly: r_;, = ¢;ry +r; with 0 <

ry <719 Thenry = qyry + 75,0 <7y <7 and eventuallyr,, _, =gq,r,  +7,andr, ; +q, 7, + 0. Note this
eventually becomes zero because the sequence r,, is strictly decreasing. The theorem tells us that 7, = gcd(a, b).
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PRELIMINARIES PROPERTIES OF INTEGERS — 1.2

1.2.5. Exercise

I a = 3132 and b = 936. Find GCD.

Solution

. 3132 =3-936 + 324
. 936 = 2324 + 288
. 324 =1-288+ 36

. 288=8-36+0

Ergo ged(a, b) = 36.

L S I R

We can also work backwards:

36 =324 —1-288
=324—1-(936—2-324)
=3-324—1-936
=3-(3132—3-936) —1-936
=3-3132—10-936

and we were able to give the GCD in terms of a linear combination of our numbers.

1.2.6. Theorem: Bezout’s Identity

Let a,b € Z. Then 3m,n € Z such that (a,b) = ma + nb.

Remark: If a # 0 or b # 0, ged(a, b) is the smallest positive integer of the form sa + tb with s, t € Z.

1.2.7. Definition: Prime Number

An integer p € Z., is prime if its only positive divisors are 1 and p. An integer is composite if it is not prime.

So Vn € Z* \ {1,p}, we have n } p.

1.2.8. Lemma: Euclid’s Lemma

I Let p be prime and let a,b € Z.If p | ab, thenp | aorp | b.

Proof: If p } a, then (a, p) = 1. This is because given d € Z* such that d | a and d | p, by primality eitherd =1 <1 |
d or d = p, but the latter is impossible since d divides a but not p.

By Bezout, 3m, n € Z such that am + np = 1. Then mab + nbp = b, and since p | ab we have p | b, but this is a
contradiction.

O
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PRELIMINARIES PROPERTIES OF INTEGERS — 1.2

1.2.9. Proposition

I Let a, b, c € Z. Assume (a, c) = 1 (they are relatively prime) and ¢ | ab, then ¢ | b.

Proof: Closely related to the previous result. By Bezout, 3n, m € Z such that ma + nc = 1. Then mab + ncb = b,
and since ¢ | ab we have ¢ | b.

[

1.2.10. Theorem: Fundamental Theorem of Arithmetic

Every integer greater than 1 can be written as the product of prime numbers and the factorization is unique up to
the order of the factors.

Corollary: a = py'py? -+ pr, b = pflp§2 e pfr where py, p,, ..., p, are distinct primes and
Qy, 0,y 0y Br, By, oy By € Zisg. Then (a,b) = p’flm{al’ﬂl} e p‘fin{"‘r’ﬁr} and lem(a, b) = prlnax{al’ﬁl} e
p’Irna'X{ar7ﬂr}.

. J

1.3. Modular Arithmetic

1.3.1. Definition: Modulo

Let a,b € Z with n € Z, fixed. We say that a is congruent to b modulo n, ie. a = b(modn) ifn | b — a.

1.3.2. Proposition

I Congruence modulo n is an equivalence relation.

1.3.3. Definition: Residue Class

The equivalence class of a € Z for this relation is called the congruence / residue class of a mod n.

We can also write @ = amodn = {a + kn : k € Z}

1.3.4. Proposition

There are exactly n different residue classes modulo n: 0, 1, ...n — 1 (can be proved using division algorithm). The
quotient set is denoted by Z/nZ = {6, 1,..,n— 1}.
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PRELIMINARIES MODULAR ARITHMETIC — 1.3

1.3.5. Proposition

1.3.6. Definition: Group of Units

The group of units of Z/nZ, denoted by (Z/nZ)*, is the subset of Z/nZ consisting of the residue classes which are
invertible for the multiplication operation, i.e.

(Z/nzZ)* = {a € Z/nZ | 3c € Z/nZ such that @-¢ = 1}.

1.3.7. Proposition

I (Z/nZ)* ={aeZ/nZ| (a,n) =1}.

Proof: (C) Let@ € (Z/nZ)*. Then 3¢ € Z/nZ such that @ - ¢ = 1. Therefore ac = 1 + nk for some k € Z, which we
can rewrite as ac + n(—k) = 1. Therefore by the remark on Bezout’s Identity, we have (a,n) = 1.

(D) Let @ € Z/nZ and suppose (a,n) = 1. By Bezout’s Identity, 3z, y € Z such that ax + ny = 1. Thusaz = 1 —
ny =1 (modn), soa-Z = 1 and therefore a € (Z/nZ)*.

L

1.3.8. Example

1.4. Problems

1.4.1. Exercise

(Dummit and Foote, 0.2.4) Let a, b, N be fixed integers with a and b nonzero and let d = (a, b). Suppose (z, y,) is
a particular solution to ax + by = N, ie., azy + by, = N. Prove that, for any integer ¢, the pair of integers

b a
T=%o+ ot Y=y~ 5t

is also a solution to azx + by = N. Also try to prove that all solutions to ax + by = N are of the form above.

Solution
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PRELIMINARIES PROBLEMS — 1.4

1.4.2. Exercise

I (Dummit and Foote, 0.3.11) Let @, b € Z/nZ. Prove that if @, b € (Z/nZ)*, then@- b € (Z/nZ)*.

Solution

|\ J
1.4.3. Exercise

(Dummit and Foote, 0.3.15) For each of the following pairs of integers a and n, show that a is relatively prime to n

and determine the multiplicative inverse of @ in Z/nZ.

Solution

Page 8 of 77



2. Groups

2.1. Groups

2.1.1. Definition: Binary Operation

A binary operation % on a set S is a function x : S X S — S.For a,b € S, we will write a x b for x (a,b).
A binary operation x on a set S is associative if, for all a,b,c € S,

ax(bxc)=(axb)xc.
A binary operation x on a set S is commutative if, Va,b € S,

axb=>bxa.
|\ J

2.1.2. Example

1. + (usual addition) is an associative and commutative binary operation on Z and other sets
2. X (usual multiplication) is an associative and commutative binary operation for these sets as well
3. The function

*: L Xl —1L
(m,n) = m? + n?

is a commutative binary operation on Z, but not associative.

2.1.3. Definition: Identity

Let % be a binary operation on a set S. An identity is an element e € S such that

exa=aand axe=aVa € S.

2.1.4. Proposition

I Let * be a binary operation on a set S. Then S has at most one identity.

Proof: Suppose that e, e’ € S are both identities. Then, since e is an identity, we have e x ¢’ = ¢’ but also, since €’ is
an identity, we have e x ¢’ = e. Therefore e = ¢’.

[
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GRrRouUPS Groups — 2.1

2.1.5. Definition: Invertible

Let x be an associative binary operation on a set S and suppose there is an identity e. We say that an element of a €
S is invertible if 3b € S such that

axb=cand bxa=c¢

and in this case, we say that b is an inverse of a.

. J
2.1.6. Proposition

Let x be an associative binary operation on a set S and suppose that there is an identity e. If a € S is invertible,

then a has a unique inverse.

Proof: Suppose that b, ¢ € S are inverses of a € S. Then
b=bxe=bx(axc)=(bxa)xc=exc=c.

We denote inverses by a*.

O

|\ J

2.1.7. Definition: Group

A group is an ordered pair (G, ), where G is a set and « is a binary operation on G satisfying

1. the operation is associative
2. G has an identity
3. every element a € G is invertible

(fourth one that G is closed under * is implicit)
. J

2.1.8. Definition: Abelian Group

A group is abelian if x is commutative.

2.1.9. Definition: Group Order

The order of a group (G, x) is the cardinality |G| of the set G. If the order is finite, then (G, %) is a finite group.

2.1.10. Definition: General and Special Linear Groups

The general linear group over a field F of degree n, denoted by GL,, (F), is the set of n x n invertible matrices
together with the operation matrix multiplication. Le., we have

GL, (F) = {A € M,(F) : det A # 0}

The special linear group over a field F' of degree n, denoted by SL,, (F'), is the subgroup of GL,, (F') of matrices
with determinant 1.
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GRrRouUPS Groups — 2.1

2.1.11. Example

1. (Z,+) is an abelian group.
2. (sz +) is not a group since there are no inverses.
3. (Z, x) is not a group since there are no inverses.

2.1.12. Definition: Direct Product of Groups

If (G, %) and (H, ¢) are groups, then we can form a new group called their direct product, denoted by

GxH={(g,h): g€ G,he€ H}
and whose binary operation is defined componentwise:

(91,P1)(92, ha) = (91 * g2, hq © hy).

2.1.13. Proposition

Let (G, x) be a group. Let e be the identity element. Then

L (a!) ' =aVae @

2. Va,be G, ifaxb=eorbxa=e, thenb=a""!

3. (axb)t=b"lxaVa,be G

4. Yay,a,, ...,a, € G, the value of a; x ay x - - - x a,, is independent of how the expression is bracketed

Proof:

1

1. By definition, a x a=! = e and a~! x a = e. But this also shows that a is the inverse of a1, i.e., that a = (a_l)fl.

2. Suppose that a x b = e (the case b x a = e is similar).

Then
axb=e=>a'x(axb)=alxe= (a'xa)xb=a'l=exb=a'l=>b=a!
3. By (b), it suffices to show that
(axb)* (b1xa™t) =e.
To show this, observe that
(axb)* (b xa)=ax(bx(btxat))=ax((bxb)xat)=ax(exal)=axa!l=e.

4. Can be shown by induction on n — see DF section 1.1 prop 1.
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GROUPS GRroups — 2.1

2.1.14. Proposition

Let G be a group. Let e be the identity element. Let a, b, ¢ € G. We have
1. faxb=axc,thenb=c
2. fbxa=cx*a,thenb=c

Proof:
1. Left multiplying by a~! on both sides we get

1 1

alx(axb)=alx(axc)= (atxa)xb=(al*xa)xc=exb=exc=>b=c.

2. Similar with a right multiplication.

L

|\ J

2.1.15. Remark

We will use multiplicative notation for groups:

a-a---a ifn>0

T Gmes
a” =<1 ifn=0
al-al...alifn<0

n times

Notice then a™a™ = a™*™, but a™b™ # (ab)™ in the general case.

For an abelian group, we may also use additive notation, i.e.

a+ - +a ifn>0
na=<1 ifn=0
(—a) +(—a)+ - +(—a) ifn <0
—n times
|\ J

2.1.16. Definition: Element order

Let G be a group and let a € G. The order of a is the smallest positive integer n such that a™ = 1, if such an integer
exists; otherwise, the order of a is defined to be infinity. We denote the order of a by |a| or ord(a).

2.1.17. Example

1. An element of a group has order 1 iff it’s the identity
2. In the additive group Z, every element has infinite order

3. In the group GL,(Q), the matrix (5 g) has infinite order, and (? _01) has order 4.

4. A matrix A € GL,,(C) has finite order iff A is diagonalizable and all its eigenvalues are roots of unity

Page 12 of 77



GRrRouUPS Groups — 2.1

2.2. Dihedral Groups

2.2.1. Definition: Dihedral Group

Let n > 3 be an integer. The dihedral group D,,, is the set of isometries of the plane R? that take the regular n-gon
centered at (0,0) and with a vertex at (1,0) to itself. (Equivalently, it is the set of rigid motions in R3 taking this n-
gon to itself). The binary operation on this group is composition.) Other books may denote this D,,.

It consists of
+ (counterclockwise) rotation through an angle 27k/n for k =0,1,...,n — 1
« reflection wrt the line passing through (0, 0) of slope tan(wk/n) for k =0,1,...,n —1

Let 7 denote the rotation by 27/n and let s denote the reflection wrt the z-axis. Then
« r¥ is the rotation by 27k /n

« r¥s is the reflection wrt the line passing through (0, 0) of slope tan(rk/n)

Therefore D,,, = {1,r, ..., r" s, rs, ..., 7’"‘13}. Writing the isometries above in terms of their matrices, we have

. ((—) —sm%); o ((—) sin(%))

" Sin(T) COS(%) sin(%’“) —cos(%

Since every element of D,,, can be expressed in terms of r and s and their inverses, we say that r and s generate or
are generators of the group D,,,. The elements r and s satisfy the relations

m=1,s2=1sr=r"ls

These relations suffice to show that any product involving the elements r and s and their inverses is equal to one of
the products 1,7,...,7" ! s, rs, ...,r"1s. These generators, together with the relations 7 = 1,52 = 1, sr = s

form a presentation of D,,, and we indicate this by writing

D,, = (r,s:r" =1,82=1,sr = rls).
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GRrRouUPS DiHEDRAL GROUPS — 2.2

2.3. Symmetric Groups

2.3.1. Definition: Permutation

Let €2 be a set and let S, = Perm(Q2) denote the set of all permutations of €. A permutation of ) is a bijective
function o : €2 — €. Since bijective functions are closed under composition, if o, 7 € S, then o7 =0 o7 € S,
Composition is a binary operation on Sg,.

Notice (Sq, ©) is a group:

1. Composition is associative

2. idg € S, is an identity

3. Every o € S, is invertible because o is bijective and so 0! € S,

We call (S, o) the symmetric group on Q. If Q = {1,2,...,n} then S, = S,,, the symmetric group of degree n. We
remark that |.S,,| = n! (there are n permutations of a set of n elements).

2.3.2. Definition: k-cycle

A permutation o € S,, is a k-cycle if 3 distinct a4, a,, ..., a;, € {1,2,...,n} such that
* o(ay) = ag,...,0(ay_y) = ay,0(a;) = a, and
« o(i) =ivi € {1,2,..,n} \ {ay,a,,...,a,}

1. 0 € Sy defined by

1—=5,2—~1,3—3,4—4,5+ 2

has a 3-cycle, 0 = (1 5 2)
2. 0 € S, defined by

1—3,2—»4,3—~ 1,412

has cycles (1 3), (2 4) and can be written as the product (1 3)(2 4)

2.3.4. Definition: Disjoint cycle

Two cycles (a; ay --- ag)and (b by --- b)) are disjoint if a; # b,V j.
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GROUPS SYMMETRIC GROUPS — 2.3

2.3.5. Proposition

1. Any k-cycle has order k
2. I (ay, ay, - - -, a3,) is a k-cycle in S, , then (ayay - - a) " = (azay_; -~ a;)
3. If (ayay - - - a;) and (b b, - - - b;) are disjoint then they commute

Proof:
1. We can show that Vn € N and j € Z/kZ, we have

U"(%‘) = Qjtn(modk):

This is done via induction, since trivially a(aj el k)) = @i n41(modk)- 1hen note this implies o® =Id and Vj <
k, o # 1d.
2. Leto = (ajay -+ a;) and 7 = (agay_ -+ - a;). We want to show
To=1=1d.
Then for 1 < j < k,
» 0(ay) = g1, (10)(a5) = 7(a5.1) = a5
* o(ag) = ay, (10)(ag) = 7(ay) = a
Forje {1,2,..,n}\ {ay,a,,...,a;}
» 0(j) =34, (10)(§) = 7(4) =
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GRoOUPS SYMMETRIC GROUPS — 2.3

2.3.6. Theorem: Cycle Decomposition

Every o € S,, can be written as a product of disjoint cycles. We call this factorization the cycle decomposition of
v. It is unique up to the order of the cycles.

To find this factorization:

1. To start a new cycle, pick the smallest element of {1, 2, ..., n} which has not yet appeared in a previous cycle —
call it a.

2. Read off o(a) from the given description fo o — call it b. If b = a, close the cycle with a right parenthesis; this
completes a cycle - return to step 1. If b # a, write b next to a in this cycle. Repeat this step iteratively with

o(b).

Proof: The algorithm above gives a constructive proof of existence of cycle decompositions. To prove uniqueness, we
need to show that if

U:alaQ"'ap:IB:lBQ”.ﬁq

are two cycle decompositions of a permutation o € §S,,, with no 1-cycles, then p = ¢, and up to rearranging the
cycles, a; = 3, fori = 1,2, ..., p. We proceed by induction on m = max{p, ¢}.

For m = 0 the result is trivial. Suppose the result holds for m =t — 1 for ¢t > 1. Suppose
o=aay oy, =P1By 0 By

are two cycle decompositions of a permutation o € S,,, with no 1-cycles and with max{p, ¢} = t. Without loss of
generality assume p =¢ > 1. Let ; = (a; ay --- a;). Without loss of generality, suppose that a, appears in 3;, and

Therefore k = fand a; = B;.Let o’ = a;lo = Bilosoo’ =ay - a, = By - -+ B, Iterate this process and we get
the desired result.

[
\ J
() 1 2 3 4 5 6 7 8
o) 4|7 2]|8]|5]|6]3]|1
Notice the cycles are 0 = (1 4 8)(2 7 3)(5)(6).
\ J
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2.3.8. Example

We compute products by reading the permutations right to left. Le. (1 2)(1 3) = (1 3 2). (1 is mapped to 3 and 3 is
mapped to itself, then 3 is mapped to 1 and 1 is mapped to 2, then 2 is mapped to itself and 2 is mapped to 1).

c=(146)23)57)
T=(1357)(246)
70 =(163425)

o l=641)32)(75)=(164)(23)(57)

Note that S,, is non abelian for n > 3, since (1 2) o (1 3) # (1 3) o (1 2). Note also that since disjoint cycles permute

numbers in disjoint sets, it follows that disjoint cycles commute.
. J

2.3.9. Definition: Transpositions

2-cycles are also called transpositions.

2.3.10. Proposition

I Every o € S,, can be written as a product of transpositions.

Proof: Since every o € S,, is a product of cycles, it suffices to prove the proposition for cycles. Observe (a; - - a;) =
(a,a5)(agas) -+ (ag_jay), so this is true.

[

2.3.11. Definition: Inversion

A pair of integers (7, j) with 1 < ¢ < j < n is said to be an inversion for o € S,, if 0(i) > o(j). We say o is even
(resp. odd) if it has an even (resp. odd) number of inversions.

2.3.12. Definition: Permutation Sign

The sign of a permutation o € S,, with N (o) inversions is

— (_1\N@) _ JT1 if o is even
elo) = (=) {—1 if o is odd

Notice we can write this as
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2.3.13. Example

1. 1 € §,, is even (zero inversions)
2. (1432) €S,
+ 0(l)=4>0(2) =1=(1,2) is an inversion
+ 0(l)=4>0(3) =2=(1,3) is an inversion
« Also (1,4) is but the rest (2, 3), (2,4), (3,4) are not

Therefore the number of inversions for o is N(c) = 3 and e(0) = (—1)N(®) = —1.
. J
2.3.14. Lemma
For every p € S,, and for every transposition 7 € S, e(p7) = —&(p), i.e., these permutations have opposite
parity.

Proof: Let p € S,,. Let (i¢j) € S,, with ¢ < j. Thenfora € {1,2,...,n},

p(a) if a #i,j
pr(a) = q p(j) ifa=i
p(i) if a = j

Therefore, for any pair of integers (z,y) with 1 <z < y < n and {z,y} N {i,j} = 0:

(z,y) is an inversion for p7 <= (z,y) is an inversion for p.

« Forz € {1,2,...,n}\ {i, 5}
lLz<i<y
» (r,1) is an inversion for p7 <= (z, j) is an inversion for p
» (z,7) is an inversion for p7 <= (z, ©) is an inversion for p
2.1<z <]
» (i, ) is an inversion for p7 <= (z, j) is not an inversion for p
» (x,7) is an inversion for p7 <= (i, x) is not an inversion for p
3.i<ji<x
» (i,x) is an inversion for p7 <= (j, x) is an inversion for p
» (4, ) is an inversion for p7 <= (i, x) is an inversion for p
4. (i,7) is an inversion for p7 <= (i, j) is not an inversion for p

Thus the number of inversions for p7 # the number of inversions for p (mod 2).

-
g
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2.3.15. Proposition

A permutation o € S,, is even (resp. odd) iff it can be written as a product of an even (resp. odd) number of
transpositions.

Proof: Let 0 € S,,. We know o can be written as a product of transpositions, say ¢ = 7,7, - - - 75 S0 we just need to
show £(c) = (—1)*. We can do this from the lemma + induction.

[

2.3.16. Proposition

Suppose o, 7 € S,,. Then
« g(or) =€e(o)e(r)
(o) = £(o)

Proof: Suppose 0 = 7,7, -+ v and 2 = ¥]75 - - - 7 where the «/’s are transpositions.

2.3.17. Definition: Alternating Group of Degree n

The group consisting of the set of all even permutations in S,, under composition. We denote it by A4,,.

2.3.18. Definition: Klein 4-group

The Klein 4-group, denoted by V, is the group presentation V, = (a,b : a> = b? = (ab)? = e). Le,, the group is an
abelian group with 4 elements where every element is a self inverse. We can think of it as the permutation group

vV ={0,(12)(34),(13)(24),(14)23)}.

2.4. Problems

2.4.1. Exercise

(Dummit and Foote, 1.1.35) If z is an element of finite order n in a group G, use the Division Algorithm to show
that any integral power of z equals one of the elements of the set {1, z, 22, ..., "1 }.

Solution
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2.4.2. Exercise

(Dummit and Foote, 1.2.4) If n = 2k is even and n > 4, show that z = r* is an element of order 2 which commutes
with all elements of D,,,. Show also that z is the only non-identity element of D,,, which commutes with all
elements of D,,,.

Solution

Vs
.

2.4.3. Exercise

I Prove that, foralln > 2, |4,,| = n!/2.

Solution

Vs
.

2.4.4. Exercise

(Dummit and Foote, 1.3.16) Prove that the number of k-cycles in S,, is given by

nn—1)(n—-2)---(n—k+1)
. :

Solution

Vs
.
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3. Subgroups

3.1. Subgroups

3.1.1. Definition: Subgroup

A subset H of a group G is a subgroup if it satisfies:
1. Closure: If a and b are in H, then ab € H

2. Identity:1 € H

3. Inverses:Ifa € H,thena™! € H

We write H < G to indicate that H is a subgroup of G.

. J
3.1.2. Example

1. If G is a group, then {1} and G are both subgroups of G. The former is the trivial subgroup and a subgroup H <
G is called proper if H #+ G

The subgroup relation is transitive

A, <SS,

The set {1, (1 2)} is a subgroup of Sy

Let F' be a field. The special linear group of degree n over F, defined as

SL, (F) = {A € GL, (F) : det(A) = 1},

gnops 8

is a subgroup of GL,, (F').

|\ J
3.1.3. Definition: Centralizer

Let A be a subset of a group G. The centralizer of A in G, defined by

Co(A)={g€G:gag! =aVa e A}

is a subgroup of G.

Proof: Let g, h € Cz(A), so gag~' = a and hah™ = aVa € A. Then gh = (aga™!)(aha™!) = agha™! =
(gh)agh™ = a so gh € H. Thus C(A) is closed. Notice eae™ = aVa € A, so e € Cy(A). Suppose g € C(A), so
gag ! =aVa € A. Thena =g lagVa € A,so g ! € Cy(A).

3.1.4. Definition: Center

The center of a group G, defined as
Z(G)={9€G:gx==zgVx € G}

is a subgroup of G. Actually, since Z(G) = C(G), this is just a special case of the centralizer.
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3.1.5. Definition: Normalizer

Let A be a subset of a group G. For g € G, define g4g~ = {gag™" : a € A}. The normalizer of A in G, defined as
Ng(A)={g9€G:gAg™" = A},

is a subgroup of G.

3.1.6. Proposition

I Let A be a subset of a group G. Then Z(G) < Cn(A) < Ns(A) < G.

Proof: Notice since A C G, Z(G) C C(A). Also Nz (A) C G, so the only nontrivial inequality is the middle one.
Let g € Cz(A) so that gag~! = aVa € A. Then gAg~' = {gag ' :a € A} = Aso g € Ns(A).

O]

|\ J

3.1.7. Proposition

A subset H of a group G is a subgroup if and only if
1. H+0
2. Ve,y€ Hyay ' € H

Proof: (=) Suppose that H is a subgroup. Then 1 € H, so H # (). Also, if z,y € H,theny ™! € H andzy! € H.

(<=) Suppose a and b hold for H C G. Since H is nonempty, let c € H. By condition 2, cc ™! =1 € H.Leta € H
and notice 1 - a~! € H so H is closed under inverses. Let a,b € H and notice b* € H by the previous statement, so
a(bil)_1 = ab € H so H is closed under the operation.

[
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3.2. Cyclic Groups and Subgroups

3.2.1. Proposition

Let G be a group and let a € G be an element of finite order n. Then
1. Vm € Z, we have that a™ =1 <= n | m

2. Vm,m’ € Z, we have that ™ = @ <= m = m’ (mod n)

3. Vm € Z, we have that ord(a™) = 2~

(n,m)*

Proof:

1. If n | m, then m = ngq for some q € Z and a™ = a™? = (a™)? = 19 = 1. Conversely, suppose a™ = 1. By the
division algorithm, m = ng+r,¢,7 € Zand 0 <7 < n.Thena” = a™ " = ama ™ =a™(a") 1=1-1"7=1.
Since n = ord(a) and 0 < r < n, this implies 7 = 0.

(a)

2.4m=a™ s ama ™ =1 a™ " =1en|m—m' < m=m' (modn).

3. Let k = ord(a™). We have that

n _mn_ m m (a’) n
M\ nm) — gnm = (g?)mm = [m) = k| ——
(&™) = T = () e
and
” & (a) n m n
a™ = (am)"=1=n|mk= | k= | k.
(n,m) " (n,m) (n,m)
Thus k£ = o)
U]
|\ J

3.2.2. Definition: Cyclic Subgroup

Let G be a group. The cyclic subgroup of G generated by an element a € G, denoted (a), is the subgroup consisting
of all powers of a, i.e.,

(a) = {a*: k € Z}.

The cyclic subgroup generated by a is the smallest subgroup of G containing a: any subgroup of G containing a will

have (a) as a subgroup.

. J
3.2.3. Example

1. The cyclic subgroup generated by (1 2 3) € Sy is

((123)={1,(123),(132)}
2. The cyclic subgroup generated by 7 in the additive group (R, +) is the set of all integer multiples of , i.e.,

(m) ={km: k € Z}.
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3.2.4. Definition: Cyclic Group and Group Generator

A group G is cyclic if it can be generated by a single element, i.e., 3a € G such that G = (a). In this case, we say
that a is a generator of G.

3.2.5. Example

1. For n € Z, the additive group Z/nZ is a cyclic group of order n: Z/nZ = (1).
2. The additive group Z is a cyclic group of infinite order: Z = (1).

3.2.6. Proposition

Let G = (a) be a cyclic group.

1. Iford(a) = n, then 1,a,...,a are the distinct elements of G (which therefore has order n).
2. If ord(a) = oo, then the elements a* with k € Z are all distinct (and therefore G has infinite order.)

n—1

Proof:

1. Suppose ord(z) = n. By contradiction, suppose that that % = z° for some a,b € {0, 1, ...,n — 1} with a # b.
Without loss of generality, suppose a < b. Then 7 %z% = 1 = 7 %z% = 272 But sinceb —a < (n — 1) — 0 < n,
we must have that = cannot be order n, a contradiction. Therefore 1, z, ..., 2™~ ! are all distinct. Since G is a cyclic
group, these are the only elements of G, son = |z| = |G|.

2. Apply the previous result in the limit as n — oo.
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3.2.7. Proposition

Let G = (a) be a cyclic group of finite order n.
1. For all b € G, we have ord(d) | n.
2. For every positive divisor d of n, we have n, := [{b € G : ord(b) = d}| = ¢(d).

Proof:
1. Let b € G. Then b = a™ for some m € Z. By 3.2.1, ord(b) = ) | n.

n

2. By the previous proposition, 1, a, ...,a™ ! are the distinct elements of G. By Prop 3.2.1, ord(a™) = o) Thus n,

is the number of integers m with 0 < m < n such that 0 “— = d. We will prove that

n,m)

meZ:0<m<n——=dl={™ kezo<k<d(kd =1}
(n,m) d

Note the cardinality of the right hand side is precisely ¢(d), so this will conclude the proof of the proposition.

To establish the above equality of sets, let first m € Z with 0 < m < n and (n—’;n) = d. Then (n,m) = %,s0 3k €
Z such that m = %"’. Notice

O§m<n:0§%k<%d:0§k<d.

Since (n,m) = 2, we have 2 = (2 1) — 2(k d), so (k,d) = 1.
In the other direction, let m = "Tk with k € Zand 0 < k < d with (k,d) = 1. Then 0 < m < %1 = n. Also
(n,m) = (2,28) = Z(d, k) = 2,50 ~2= = d.

(n,m) —

L

|\ J

3.2.8. Corollary

For every n € N,

Z o(d) = n.

1<d|n

Proof: Let G = (a) be a cyclic group of order n, (e.g., Z/nZ). Then

n=|G|= Z Ng = Z o(d).

1<d|n 1<d|n

Example: 10 = ¢(1) + ¢(2) + ¢(5) + ¢(10) =14+ 1+ 4+ 4.
2

Y

Alternate proof: consider rational numbers % ., . Obtain a new list by reducing each number to lowest terms, so

that the denominators in the new list are exactly divisors of n. If d | n, exactly ¢(d) of the numbers will have d as

their denominator, so there are Y ¢(d) elements in the new list, but since the lists have the same number of terms,
1<d|n
we’re done.

L
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4. Homomorphisms

4.1. Group Homomorphisms

4.1.1. Definition: Group Homomorphism

Let (G, ) and (G5, ¢) be groups. A homomorphism from (G4, x) to (G,,¢), is a function ¢ : G; — G, such that

p(zy) = p(z)p(y)Vz,y € Gy.

4.1.2. Proposition

Let ¢ : G; — G4 be a group homomorphism.

1. If 2, ,, ..., x}, are elements of Gy, then p(z1z4 -+ - x) = p(z1)p(x5) - - @(z}).

2. SD(]_Gl) = 1G2'
3. Vz € Gy, p(a™?t) = p(z) L.

Proof:

|\ J

4.1.3. Proposition

Let ¢ : G; — G4 be a group homomorphism.
1. If H; < Gy, then p(H;) < G,
2. If H, < G,, then o~} (H,) < G,

Recall o(H,) = {¢(z) : # € H,;} and o1 (H,) = {z € G : p(z) € H,}.

Proof:
1. Let H; < G,. Since H, is a subgroup, 1 € H;. Therefore 15 = go(lgl) € p(H;).Leta,b € ¢(H;). Thena =
¢(z) and b = ¢(y) for some z,y € H;. Then ab™! = ¢(z)p(y )_ p@)p(y™t) = (,0( ~1). Since H, isa
subgroup, zy~ ! € H,. Then ab™! € p(H,).
]
|\ J
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4.1.4. Definition: Image and Kernel

Let ¢ : G; — G, be a group homomorphism.
+ The image of ¢ is

imy = p(Gy) ={p(z) : z € G;}
» The kernel of ¢ is

kerp = 1({1}) = {z € G, : G(z) =1}

By the previous proposition, ker ¢ < G and im ¢ < G,.
.

\

4.1.5. Proposition

I Let ¢ : G; — G, be a group homomorphism. Then ¢ is injective <= ker ¢ = {101 }

Proof: (=) Suppose ¢ is injective. Let z € ker ¢. Then p(z) = 15 = <p<1G1). By injectivity, z = 15 .
(«<=) Suppose ker p = {1G1 } Let z,y € G;. Then
p(z) = p(y) = o(@)(ey) " =1
= plzyt) =1

Sy l=1
==y

Vs
\

4.1.6. Example

1. Recall the determinant det : GL,,(Q) — Q. Then ker(det) = SL,,(Q) and im(det) = Q*.
2. Fore: S,, — {41} we have
ker(e) = A,

. {1}ifn=1
mnE) = {{j:l} if n>2

3. Note |-| : C®* — R® has ker(|-|) = {z € C: |2| = 1} = S! and im(]-]) = R,
4. exp : (R, 4) — R? has kernel ker(exp) = {0} and im(exp) = R,

5. expe : (C,+) — C® has ker(expg) = 27iZ and im(expc) = C®. Then expg'(S?) = iR and expe(a + bi) =
e*(cosb +isinb).

6. ¢ : Dy, — S, isthe map o, (i) = j <= x takes vertex i to vertex = j. Then ker ¢ = {1} because an isometry
of R? fixing 3 non collinear points is the identity. For n = 3,
|D2n| < |Sn| =nl.

Dg| = |S5| = 6, so ¢ is surjective. For n > 3, 2n =

Vs
(N
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4.1.7. Proposition

I Let o : G; = G4 and ¢ : Gy — G5 be group homomorphisms. Then ) o ¢ is a group homomorphism.

Proof: Let z,y € G;. Then
(P o p)(zy) = P(e(zy)) = P(e(@)p(Y)) = Y(e(@))Y(p(y) = (¥ o p)(2))((¥ ° ) (y))

4.1.8. Definition: Isomorphism

An isomorphism from a group G, to a group G, is a bijective homomorphism from G, to G,.

4.1.9. Example

1. If G is a group then id; : G — G is an isomorphism.
2. exp : (R, +) = R, is an isomorphism.
3. log : R,y — (R, +) is an isomorphism.

We remark log o exp = idy and exp o log = idg .
. J

4.1.10. Proposition

I Let ¢ : G; — G4 be an isomorphism. Then ¢! : G, — G is also an isomorphism.

Proof: We know ¢! is bijective since ¢ is bijective, so we need to check that ¢! is a homomorphism. Since ¢ is
injective, for a,b € G5 we have

@ (ab) = o~ (a)p T (b) <= (¢ (ab)) = w(p (a)p (b))

= p(p ' (ad)) = (¢ (a)) - p(¥~ (b))
< ab = ab.

4.1.11. Definition: Isomorphic Groups

The groups G; and G4 are isomorphic if 3 an isomorphism ¢ : G; = G5. Notation: G; = G, or G; ~ G,.

4.1.12. Definition: Isomorphism Class

The isomorphism class of a group G is the class of all groups isomorphic to G.
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4.1.13. Definition: Automorphism

An automorphism of a group G is an isomorphism from G to G. If G is a group, then Aut(G) denotes the set of all
automorphisms of G.

Notice Aut(G) is a group under composition:
« p, ) € Aut(G) = Yo p € Aut(Q)

+ idg € Aut(G) is an identity

« o € Aut(G) = ¢! € Aut(G)

|\ J

4.1.14. Definition: Inner Automorphism

An inner automorphism of a group G is an automorphism of the form ¢/ for some g € G, where ¢, : G — G is
defined by ¢, () = gzg'. Le,, it is the image of the map G — Aut(G) defined by g = ¢,. We denote the group of
inner automorphisms of G by Inn(G).

4.1.15. Proposition

Letg € G.
1. Conjugation by g is the map

G=G
wg'ml—)gmg_l

is an automorphism.
2. The map

G — Aut(G)
g @,

is a homomorphism.

Proof:

1. We show it’s homomorphic: ¢ (zy) = gryg ! = grg lgyg ! = ©4(®)p,(y). We show it’s bijective: ¢,-1 is an
inverse of p,.

2. Let g,h € G. Then

@gn(z) = ghz(gh)™" = g(hah™')g™!

Notice the kernel of the map is Z(G) since ¢, = idg if and only if z = gzg~'Va € G. The image is Inn(G). Since
this is the image of a group homomorphism, we know by Proposition 4.1.3 that

Inn(G) < Aut(G).
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4.1.16. Proposition

Let G = (a) be a cyclic group.
1. If G has finite order n, then G = Z/nZ.
2. If G has infinite order, then G =2 Z.

Proof:
1. Let G = (a) with ord(a) = n. Define
p:Z/nZ — G
k+— a*.
We will show that ¢ is an isomorphism.

We first need to check that ¢ is well-defined, i.e., we need to check that, if k_l = k_2 then a*1 = a*2. Indeed, we
have

_ Prop 3.2.1(ii)
kl = k'z <~ kl = k2 (mOd n) <~ akl = akz.

Note that this also shows that ¢ is injective. It is also surjective, since any element z € G is of the form x =
a* for some k € Z, and therefore z = a* = go(E). Thus ¢ is bijective.

Finally, we show that ¢ is a homomorphism. Let &, k, € Z/nZ. Then
o(ky +F;) = ok + ky) = aFitkz = akrab2 = (k) o(ky).
2. Let G = (a), with ord(a) = oc. Define
p:Z—G
k+— a®.
We will show that ¢ is an isomorphism. To show it’s a homomorphism, let £, k5 € Z and note
(k1 + kp) = aF1%2 = aM1a*2 = (k) p(k,).
By Proposition 3.2.6(ii), the elements a* with k € Z are all distinct. Thus, for any j € Z,
e(l=1=d"=1=j=0.

Therefore, ¢ is injective. It is also surjective since any element = € G is of the form z = a* for some k € Z and
therefore x = a* = (k).

[
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4.2. Cosets

4.2.1. Definition: Coset

Let H < G. A left (resp. right) coset of H in G is a subset of GG of the form
aH ={ah:he€ H} Ha ={ha:he H}

for some a € G. Notationally we write G/H = set of all left cosets of H in G and H\G for the converse. We
remark H =1- H = H - 1 so H is both a left and right coset.

\

(N

4.2.2. Example

1. Consider the dihedral groups D, . Notice the left cosets are r* H = (rk, r*s) = r*sH for 0 < k < n and the right
cosets are Hr* = (r*, sr%) = (r*,77%s) for 0 < k < n. Thus G/H # H \ G.

2. Consider S,, withn > 2.Ifo € S,, is even, then cA,, = A, = A, 0. For n odd, we have 0 A,, = A, 0 is the set of
all odd permutations in S,,. Then S,,/A,, = (4,,,(1 2)A,) = (4,,,A4,(1 2)) = A,\S

n:

|\

\

4.2.3. Lemma

|

I Let H < G. The relation ~ on G defined by a ~ b <= a~'b € H for a,b € G is an equivalence relation.

Proof:

+ Reflexive:For all a € G, ala=1€ H,soa~a.

« Symmetric: Let a,b € G and suppose a ~ b. Then a~'b € H. Then (a_lb)_l € Hbutthusbla € Hsob~ a.

« Transitive: Let a,bc € G. Suppose a ~ band b ~ c. Then a™'b,b~'c € H. Then (a™'b)(b"'c) = a~'c € H. Thus
a~ c.

[l

-
g
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4.2.4. Proposition

Let H < G.
1. Leta,b € G. Then

a b€ H<>becaH < aH = bH.
2. The left cosets of H in G form a partition of G.

Proof: Let a,b € G. Then

a'be H<«< a'b=h for some h e H
<= b = ah for some h € H
< beaH

It follows that

aH={z€G:a'ze H}

i.e., aH is the equivalence class of a for the equivalence relation defined in the previous lemma. Since left cosets are
the equivalence class for ~, they form a partition of G and b € aH <= aH = bH.

0

|\ J

4.2.5. Proposition

I Let H < G. Then all the left cosets of H in G have the same cardinality.

Proof: Let a € G. We have a map

H— aH
h +— ah.

It is bijective (with inverse x — a~1z) so |aH| = |H|.

4.2.6. Definition: Index

Let H < G. The index of H in G is the number of left cosets of H in G. (This is the same as the number of right
cosets). Notation: [G : H|.
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4.2.7. Proposition

Let K < H < G. Then

[G:K]|=[|G:H]| [H:K]

Proof: Let {a; : i € I} be a complete set of representatives for the left cosets of H in G-

G=UaiH.

el

Let {bj 1jed } be a complete set of representatives for the left cosets of K in H:

H=|]JbK.

jeJ

For any ¢ € I, left multiplication by a; is injective. Then

aH=|]ab,K
jeJ
Then
G= U a; H
el
=JUabK
el geJ

Thus {aibj vel,je J} is a complete set of representatives for the left cosets of K in G. So [G : K] = |I x J| =
|[I|-|J| =[G : H|[H : K].

L

|\ J

4.2.8. Corollary: Counting Formula

ILetHSG.Then|G|=[G:H]-|H|.

Proof: Take K = {1} in the previous proposition.

4.2.9. Corollary: Lagrange’s Theorem

I Let G be a finite group. Let H < G. Then |H| divides |G|.

Proof: Follows immediately from the counting formula.
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4.2.10. Corollary

I Let G be a finite group and let a € G. Then ord(a) divides |G]|.

Proof: Notice ord(a) = |(a)| | |G| by Lagrange’s Theorem.

|\ J

4.2.11. Proposition

ILetheagroupwithHSG.ThengHzH(:)gGH.

Proof: (=) First suppose gH = H.Then 3h € H such that gh € H. Then 3h’ € H such that gh = h',s0o g =
h’h~!, meaning g € H.

(<) Suppose g € H.
. Let h € H, so that gh € H clearly, meaning gH C H.
) g y g9
) Let h € H, and define b’ = hg~!, and note h’ € H since g € H. Then h = gh’, so h € gH, meaning H C gH.

L

(€
(2

4.3. Normal Subgroups

4.3.1. Remark

If S and T are subsets of a group G, we use the notation ST to refer to the set
ST ={st:se€S,teT}.
Note that, with this notation, if S, T, and U are subsets of G, then (ST)U = S(T'U). If a set consists of a single

element a, we may write a instead of {a}. Thus, for example, we will usually write a7 instead of {a}T, with exactly
the same meaning.

4.3.2. Definition: Normal Subgroup

Vs
\

Let G be a group. A subgroup H of G is a normal subgroup if gHg~! = HYg € G. We write H < G to indicate
this.

We remark that a subgroup H of a group G is normal iff N (H) = G. We always have H < N (H) because if we let
g € Ng(H), then gHg~! = H by definition. This also means that N (H) is the largest subgroup of G satisfying this

property.
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4.3.3. Remark

Intuition behind normal subgroups on stack exchange

The reason why this seemingly arbitrary definition is so key is that it’s the condition that allows taking the quotient
of two groups to be a group. Suppose H < G and suppose we use the Equivalence relation defined in Lemma 4.2.3 to
create a set of cosets

G/H ={[g] =gH : g€ G}

The problem is that this is not a group in the general case. The natural way to induce a group structure is to make the
map G — G/H a homomorphism, meaning that

[91 * 2] = [91] *new [92]-

But this means

(9192)H = [g1 * 9o] = [91] *pew [92] = (91 H) (92 H) = g,(Hg,)H.

We notice that if Hg, = g, H, then right hand side would become g, g, HH = g, g, H as desired, so this would

become a well-defined operation. But this is exactly the condition for a normal subgroup.
. J

4.3.4. Proposition

Let H < G. The following are equivalent:
1. HA G

gHg ' C HYg e G

gH = HgVg € G

gH C HgVg € G

Every left coset is a right coset

G/H = H\G.

SN OORDD

Proof: (i) < (iii): H QG < gHg ! = HVg € G < gH = HgVg € G.
(ii) <= (iv): gHg ! C HVg € G <= gH C HgVg € G.
(i) = (ii): H< G = gHg ' = HVg e G = gHg ' C H.

(i) = (i): Suppose gHg~! C HVg € G. Replacing g by g~* we get that g ' Hg C HYg € G. Thus H C
gHg Vg € G via left and right multiplying, so H = gHg Vg € G.

Thus the first 4 are equivalent. Now,
(741) = (vi) is clear.
(vi) = (v) is clear.

(v) = (it3): Suppose every left coset is a right coset. Let g € G, then gH = Ha for some a € G. Since g € gH = Ha,
then Ha = Hg,so gH = Hg.

O

Vs
\
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4.3.5. Example

1. If G is a group, {1} < G and G < G. Note the first is because g{1}g~! = {1} is clear. Then if h € G, then for z =
ghg~! we have h = g 'xg,s0 h € gGg~!, and thus G < G via (ii) in the previous proposition.

2. (r) 9 D,,,. An arbitrary g € D,,, can be written s°77. Then if 2 € s'rI(r)r7s~%, so x = s'rFs™" = r7F € (7), so
this is true by (ii) again. o

3. A, 98, To see this, let 0 € S,, and suppose 7 € 04,0, 507 =0 [1(a; aj)a_l. But if o is length k, then we
can decompose it into k transpositions, and o~ ! is another k transpositions, so 7 has 2n + 2k = 2(n + k)
transpositions overall, meaning 7 € A, and 4, I §,,.

4. If H is a subgroup of index 2 of a group G, then H < G. This is because G/H = {H,G\H} = H\G.

5.V, ={1,(12)(34),(13)(24),(14)(23)} <S,.Forallo € S,, we have o - 16~ € V,. Any product of two
disjoint transpositions will remain a product of two disjoint transpositions. Thus o (1 2)(3 4)0~! =

(0(1) 9(2))(0(3) (4)).

4.3.6. Proposition

I If G is an abelian group, every subgroup is normal.

Proof: Suppose G is an abelian group and let H < G. Let g € G and let ghg~! € gHg !. Then since G is abelian,
ghg ' =99 'h=he H sogHg ! C H,so H<G.

[

4.3.7. Proposition

IIngHgGandKﬁG,thenKﬂH.

Proof: Let h € H. Since Then hKh' = K since H< G = h € G, and since K < H, we have K < H.

[

4.3.8. Remark

V, < A, but {1, (1 2)(3 4)} £ A,.

K < H < G does not imply K < G. For example, {1,(1 2)(3 4)} <
To see this, note (1 3)((1 2)(34))(13) =(14)(23) ¢ {1,(12)(34)}
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4.3.9. Proposition

Let ¢ : G; — G4 be a group homomorphism.
1. If Hy < G, then ¢~ 1(H,) < G;.
2. If H < G4, then p(H;) <im .

Proof:
1. Let Hy < G, It suffices to show that g™ (Hy)g™! C o' (H,)Vg € G;.

Leta € Gy, h € p ' (H,). We want to show aha™! € ¢ !(H,). We have p(aha™) = p(a)p(h)p(at). Since h €
¢ (H,), p(h) € H,. Since H < Gy, p(a)p(h)p(a)~ € H, Then p(aha™) € Hy, = aha™ € ¢! (H,).

2. Let H, < G;. It suffices to show gp(H;)g~! C p(H,)Vg € im ¢.

Letb € im ¢, k € p(H,).T Then b = (a) for some a € G, and k = (h) for some h € H,. Then bkb~! =
p(a)p(h)p(a)™ = p(aha™). Since H; < Gy,aha™ € H,. Then bkb™! = p(aha™?) € p(H,).

O

4.3.10. Remark

In general, H; < G, # ¢(H;) < G,. For example, let H be a subgroup of a group G which is not normal. If the
inclusionmap i : H — G,then H < Hbuti(H) = H 4 G.

4.3.11. Proposition

I Let ¢ : G; — G, be a group homomorphism. Then ker ¢ < G;.

Proof: ker ¢ = ¢~ 1({1}) so this is a special case of previous prop.
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4.3.12. Proposition

Let G be a group and H be a subgroup of G.
1. The operation on G/H defined by

aH -bH = abH

is well-defined if and only if H is a normal subgroup of G.
2. If the operation in (i) is well-defined, then it makes G/H into a group.

Proof:

1. Suppose that the operation is well-defined. Therefore, for all a,a’,b,b” € G, if aH = a’H and bH = b’ H, then
abH = a'b’ H. We will show that gHg~* C H forallg € G.Let g € G and let h € H. Taking a = 1,a’ = h, and
b=1b" = g ! above, we deduce that g~ H = hg~' H. By Proposition 4.2.4, this implies ghg~! € H. This shows
that gHg~! C HVYg € G and therefore, by Proposition 4.3.3, H < G.

Conversely, suppose H is a normal subgroup of G and let a,a’,b,b” € G. Suppose aH = a’H and bH = b’ H. We
want to show that abH = a’b’H. Since aH = a’H and bH = b'H, 3h,, h, € H such that o’ = ah; and b’" =
bh,. Thus

a’b’ = ah,bhy = ab(b~*h b)h,
and therefore
(ab)1a’b’ = (b~ hyb)hs.
Since H is a normal subgroup, we have that b'h;b € H. Then (ab)~'a’b’ € H and therefore abH = a’b’ H by
Proposition 4.2.4.

2. Suppose that the operation in (i) is well-defined. We will check that G/H is a group under this operation.
« Associativity: Let a, b, ¢ € G. Then:
aH - (bH -cH) =aH - bcH = a(bc)H = (ab)cH = abH - cH = (aH - bH) - cH.
« Identity: The coset H = 1H is an identity.
« Inverses: For all g € G, the coset gH has inverse g ' H.

L]

|\ J

4.3.13. Remark

Let H < G. We could have defined

aH -bH = aHbH
={st:s€aH,t € bH}

This is always well defined. If H < G, then aHbH = abH.

| J
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4.3.14. Proposition

I Let G be a group. Let H and K be subgroups of G. Then HK is a subgroup of G if and only if HK = KH.

Proof: Suppose that H K is a subgroup. First we show that KH C HK. Note that H < K and K < HK.Leta €
K H. Write a = kh. Write a = kh, with k € K and h € H. Since k, h € HK and HK is a subgroup, it follows that
a = kh € HK.Now we show that HK C KH.Leta € HK. Since HK is a subgroup, we have that a! e HK.
Therefore a=* = hk for some h € H and k € K. Thusa = (hk) ™' =k 'h 1. Since h™! € Hand k! € K, it
follows thata = k~'h~! € KH.

Conversely, suppose HK = KH.Clearly,1=1-1€ HK.Now leta,b € HK.Thena = h;k; and b =

hyk, for some hy, h, € H and ky, k, € K. Therefore we have that ab~! = h k;ky'hy'. Let ky = k k3! € K and let
hy = hy' € H. Then k3h; € KH. Since HK = K H, we can write kshy = h,k, for some h, € H and k, € K.
Therefore ab~! = hyk3hy = hyh,k,. Since hyh, € H and k, € K, we have ab™! € HK.

[

|\ J

4.3.15. Proposition

If H and K are finite subgroups of a group then

[H| |K]
|[HNK|

|HK| =

Proof: Notice that H K is a union of left cosets of K, namely,

Since each coset of K has | K| elements it suffices to find the number of distinct left cosets of the form hK, h € H. But
hiK = hyK for hy, hy € H if and only if h;'h; € K. Thus

h K =hyK < hy'hy e HNK < hy(HNK) = hy(H N K).

Thus the number of distinct cosets of the form hK, for h € H, is the number of distinct cosets h(H N K), for h € H.

The latter number, by Lagrange’s Theorem, equals % Thus H K consists of % distinct cosets of K (each of

which has K elements) which gives the formula above.

L
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4.3.16. Corollary

Let G be a group. Let H and K be subgroups of G.If H < N(K), then HK is a subgroup of G.
In particular, if K < G then HK < G forany H < G.

Proof: We prove that K H = H K. First we show that HK C KH.Let a € HK. Then a = hk for some h €
H and k € K. We can write a = (hkh™!)h. Since H < N (K), it follows that hkh ™! € K and therefore a € K H.

Now we show that K H C HK.Leta € KH. Then a = kh for some k € K and h € H. We can write ¢ =
h(h_lkh). Since H < N (K), it follows that A~ *kh € K and therefore a € HK.

L

4.4. Quotient Groups

4.4.1. Definition: Quotient Group

Let H < G. The quotient group G modulo H is the set G/H under the operation defined by aH - bH = abH.
Notation: We may write @ instead of aH.

4.4.2. Definition: Canonical Projection

Let H < G. The canonical projection of G onto G/ H is the homomorphism 7 : G — G/H defined by 7(a) = aH
foralla € G.

We remark that ker # = H. This is because

Prop 4.2.11
gekernen(g)=1-HegH=H << ge€H.

4.4.3. Proposition

I Let H < G. Then H < G if and only if H is the kernel of some group homomorphism ¢ : G — K.

Proof: (<) We proved that the kernel of a group homomorphism is a normal subgroup of the domain in Proposition
4.3.10.

(=) If H < G, then H = ker 7 by the argument in the definition above.
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1. Letn € Z*. Then nZ is a normal subgroup of Z. This is because for m € Z, m + nZ + (—m) = nZ (easily follows

from Z being abelian - this is Proposition 4.3.5).

The quotient group Z/nZ is the set of integers modulo n. To see this is consistent with the definition, notice if
a,b € Z/nZ then our left cosets are a + nZ and b + nZ, and our group operation is a + b + nZ.

The canonical projection is the map Z — Z/nZ defined by a — @ = a + nZ.

2. Consider the dihedral group D,,, with its usual presentation and let H = (r). Then H < D,,, (proved in Example
43.4)and G/H = {H,sH} = {1,5}, which is isomorphic to Z/2Z. The canonical projection D,,, — D,,, /H is
defined by 77 = ri = 1,795 5 ris = 5.

4.4.5. Remark

Notice f(f~*(A)) C A. To show this, let z € f(f~(A)) so Jy € f~1(A) such that f(y) = z.But f(y) € A,soz €
A.

Also, f71(f(A)) D A.Leta € A. Then f(a) € f(A)and a € f~1(f(a)) C f~L(f(4)).
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4.4.6. Theorem: Correspondence Theorem

Let H < G.Let m : G — G/ H be the canonical projection. Then the map

f : {subgroups of G containing H} — {subgroups of G/H}
K s n(K) = K/H.

is well-defined and bijective. The inverse is given by M — 7~ 1(M).

Also:
1. If K is a subgroup of G containing H, then K < G if and only if 7(K)
2. If K, K, are subgroups of G containing H, then K; < K, <= n(K;)

<G/H
< (K.

).

Proof: To check f is well-defined, we just need to check that if K is a subgroup of G containing H, then 7(K) is a
subgroup of G/H. But 7 is a homomorphism, so this follows from Prop 4.1.3(i).

By Prop 4.1.3(ii), if X is a subgroup of G/H, then 7 (X') is a subgroup of G, so we have that H = 7! ({1}) C
7 1(X) since {1} < M. This shows that the function
{subgroups of G/H} — {subgroups of G containing H }
X 1K)
We want to show that f and g are inverses of each other:

1. f K <Gand H < K, then 77} (n(K)) = K.
2. f M < G/H thenn(r*(M)) = M.

We show these as follows:
1. Let K < G such that H < K. We want to show 7! (7(K)) = K.So K C 71 (7(K)). Now we need to show

71 (n(K)) C K.Letz € 7! (n(K)). Then 7(z) € n(K). Thus n(z) = n(a) for some a € K. Then 7(a~'z) = 1.
2. Notice this holds because 7 is surjective.

Now we show the remaining parts:
1. f K < G such that H < K, then K <G <= 7(K) < G/H.

(=) IfK <G, then(K) <im7 = G/H. (<=)If 7(K) < G/H, then K = 71 (n(K)) < G.
2. If K, K, are subgroups of G containing H, then K; < K, <= 7(K;) < 7(K,).

(=) is clear

(=) m(K;) < m(K,), then K; = 7' (n(K;)) < 7 (7m(K,)) = K.
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4.5. Isomorphism Theorems

4.5.1. Theorem

Let ¢ : G; — G, be a group homomorphism. Let H < G;. Let 7 : G; — G, /H denote the canonical projection.
Suppose that H < ker ¢. Then, 3 a unique homomorphism @ : G;/H — G, such that ¢ = @ o m. The

homomorphism @ is defined by aH — ¢(a).

GIL)G2

Proof: We first check that the map
?:G/H— G,
aH +— ¢(a)
is a well-defined homomorphism.
To prove this map is well-defined, observe that, for all a,b € G,

(Prop 4.2.4)
aH=bH = a'beH=a'lbekerp=p(a'd)=1

= p(a) " p(b) =1 = p(a) = ¢(b)
To prove that © is a homomorphism, observe that, for all a,b € G,
B(aH - bH) = B(abH) = p(ab) = ¢(a)p(b) = B(aH)P(bH).
To check that ¢ = p o 7, observe that, for all a € G,
(P om)(a) =p(r(a)) = P(aH) = p(a).

For the uniqueness claim, note that, if ¢’ : G;/H — G is a homomorphism such that ¢ = ¢ o 7, then for all aH €
G./H,

P(aH) = ¢’(n(a)) = (¢’ o 7)(a) = ¢(a),

so?z@.
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4.5.2. Theorem: First Isomorphism Theorem

Let ¢ : G; — G, be a group homomorphism and let K = ker ¢. Then
L K4@G

2.imp< H

3. The map

p:G /K —imop
aK +— ¢(a)

is a well-defined isomorphism.

Proof: The fact that K < G, follows from Proposition 4.3.10.
The fact that im ¢ < H follows from a note in Definition 4.1.4.

The map @ is a well-defined homomorphism by the previous theorem (and the fact that it takes values in im ¢).
Surjectivity is immediate. We finally prove injectivity. Let a K € G, /K. Then via Proposition 4.1.5,

paK)=1=¢p(a)=1=a€ K =aK =K.

0

| J

4.5.3. Remark

The idea of the First Isomorphism Theorem is to “quotient out” some elements in the group in order to make the

homomorphism injective. Obviously, any homomorphism ¢ with range im ¢ is surjective, so if we can only make the
homomorphism injective, it becomes a bijection and we get an isomorphism. To do this, we group up elements of G
according to whether they’re in ker ¢ or not-i.e., we create a coset of all elements in ker ¢ and other, mutually
exclusive cosets. This means there will be only one element in the kernel of the new homomorphism @ :

G,/ ker ¢ — im ¢, so we have an isomorphism between them.
. J

4.5.4. Corollary

1. If p : G; — G, is a surjective group homomorphism, then G, / ker ¢ = G,.

2. If ¢ : G; — G, is an injective group homomorphism, then G; = ¢(G,).

Proof:

1. Suppose that ¢ : G; — G4 were a surjective group homomorphism. Thus G5 = im ¢, so by the previous
proposition, G/ ker ¢ = G,,.

2. Suppose that ¢ : G; — G, were an injective group homomorphism. Thus ker ¢ = {1}, so G,/ ker ¢ = G;. Then
by the previous theorem, G; = im ¢.

L

Vs
\
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4.5.5. Example

1. The map det : GL,,(Q) — Q* is a surjective homomorphism with kernel SL,, (Q). We deduce from the First
Isomorphism Theorem that GL,,(Q)/SL,,(Q) = Q*.

2. Consider the group S,, which we defined as the set of permutations of {1, 2, 3,4}. Consider the following three
partitions of the set:

II, = {{1a2}7 {374}}
Iy, = {{la?’}’ {274}}
s = {{174}’ {2’3}}'

An element o € S, permutes the four indices 1, 2, 3, 4 and thus it also permutes the three partitions II,, II,, II.
We denote by o(II,) the partition obtained by applying o to all the indices in the partition II,. For example

o(Il) = {{o(1),0(2)},{o(3), 0(4)}}.

We define a map ¢ : S, — S5 by defining (o) to be the permutation in S5 such that o(II;) = II
1,2, 3. One easily checks that this map is a homomorphism with kernel

Vi=A{1,(12)(34),(13)(24),(14)(23)}.

plo)i) for & =

By the First Isomorphism Theorem, we deduce that S, /V, = im . Moreover, since |S,/V,| = 6 = |S;|, the
homomorphism ¢ is surjective, so S, /V, = S;.
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4.5.6. Theorem: Second Isomorphism Theorem

Let G be a group. Let H < G and let K < G (more generally, this applies when H < N (K)). Then
1. HK LG

2. K<HK

3. HNK Q9 H

4. HK/K ~2~H/HNK.

HK

e
~

A

H

NnK

Proof: The fact that H K is a subgroup of G follows from Corollary 4.3.16. Since H < N(K) by assumption and
K < Ng(K) trivially, it follows that HK < Ng(K). Therefore K < HK. Thus the quotient group is well-defined.

Consider the map
¢:H— HK/K
ar— aK.
Foralla,b € H,
p(ab) = abK = aK - bK = p(a)p(b),
0 @ is a homomorphism. Note that, for h € H,

hekerp<= ¢ph)=K<hK=K<<heK<<hecHNK.

Thus ker ¢ = H N K. Since every element in H K /K is of the form hK for some h € H, the map ¢ is surjective. By
the First Isomorphism Theorem, H N K < H and the map

:H/HNK — HK/K
a(HNK) +— aK

yields an isomorphism between H/H N K and HK /K.
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4.5.7. Theorem: Third Isomorphism Theorem

Let G be a group. Let H and K be normal subgroups of G and suppose that H < K. Then K/H < G/H and
(G/H)/(K/H) 2~ G/K.

Proof: The kernel of the canonical projection 7 : G — G/ K is precisely K. Since H < G and H < K, it follows from
Theorem 4.5.1 that the map

¢:G/H— G/K
aH +— aK
is a well-defined homomorphism. It is clearly surjective. Also note that

kerp={gH € G/H : gK = K} "22* (yH e G/H : g€ K} = K/H.

Therefore, by the First Isomorphism Theorem, it follows that K /H < G/H and
(G/H)/(K/H) = G/K.

4.6. Simple Groups

4.6.1. Definition: Simple Group

A group G is simple if |G| > 1 and the only normal subgroups of G are {1} and G.

Non-examples

1. {1} < (r) < D,,,, so D,,, is not simple.
2. Forn>3,{1} <A, <S,,so0S, is not simple.

3. {1} <V, < A, so A, is not simple.
|\ J
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4.6.3. Theorem

I Let G be an abelian group. Then G is simple if and only if G is cyclic of finite prime order.

Proof: (<=) Suppose G = (a) is cyclic of prime order p. G has only two subgroups: {1}, G. So G is simple.
(=) Suppose G is simple. Then G # {1}, so Ja € G with a # 1. Then
{1} #(a) 2G

(since G is abelian, every subgroup of G is normal). Then G = (a). If ord(a) = oo, then {1} # (a%) ¢ (a), so G
would not be simple (d > 2). Then ord(a) = n for some n € Z. ;. Recall (normal) subgroups of (a) are in bijection

with the positive divisors of n. Since G is simple, n must be prime.

L
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4.6.4. Lemma: 1

I Forn > 3, A,, is generated by the 3-cyclesin S,,.

Proof: Note: this proof is currently incorrect because it does not include all cases in the second part.

Recall that the alternating group A,, is the set of all even permutations of \S,, under composition. Then recall that
permutations of S,, are even if and only if they can be written as a product of an even number of transpositions.

We begin by showing a permutation that is the product of 3-cycles is a member of A,,. Let o € S, be given by
o =[](a a; a)
=1

for some number m € N of (i, j, k) triplets where no two of 4, j, k are equal. Notice since n > 3, we must have m >
1. Then observe (a; a; a;,) = (a; a;,)(a; a;). Thus

2m

o= H(ai ak)(ai aj)7

t=1
i.e., we can write o as a product of 2m transpositions, so o € A4,,.

In the other direction, let o € A4,,, so that

where m € N and i # j for each (i, j) pair. Consider two consecutive terms, (a; a;) and (a;, a;). Notice
(a; a;)(ay, a;) = (a; a; a)(ay a; a;). Thus
m
o =[](a: a; a)(a a a;)
=1
soany o € A, can be written as a product of 3-cycles.

Thus, we have shown that the alternating group A,, is generated by the set of all 3-cyclesin S,,.
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4.6.5. Lemma: 2

For n > 5, every two 3-cycles in A,, are conjugate. Le., if 7;,7, € A,, are 3-cycles, 3o € A,, such that oyo~ ! =
Va2-

Proof: Let (aq as ag),(by,by,b3) € A,,. Choose o € S, such that o(a;) = by,0(ay) = by and o(as) = bs. Then
o(ay ay az)ot = (0(ay) o(ay) o(az)) = (by by bs).

If o € A,,, we are done. Thus suppose o ¢ A, . Choose two different numbers a4, a5 € {1,2,...,n} \ {a;,a,,a3}
(which is possible because n > 5).

Let 7 = o(ay as). ThenT € A, and

T(ay ay a3)7 ' = o(ay as)(a; ay az)(ay ag)o™?
o(a; ag az)o!
by by b3).
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4.6.6. Lemma: 3

I For n > 5, if H is a non-trivial normal subgroup of A, , then H contains a 3-cycle.

Proof: Let {1} + H < A,,. Notice thatifc € H,7 € A,,soTo7 o' € H.Let1 # o € H. Let
O="% """ 7r
be the cycle decomposition of o.

Case 1: Suppose at least one of the v;’s has length > 4. Without loss of generality, say 7; has length > 4. Write v; =
(aq ag ... ay).Let T = (ay ay ag). Then

ToT ol = T Ty Ty )T
=710yt
= (ay a3 ag)(ay ay -+ ay)(ag ay a;)(ay -+ ay ay)
ay ay ag ay ay -+ ag)(a, -0 ay az ag ay)

=

= (a; ay ay) € H.
Case 2: Suppose there are at least two 3-cycles, among vy, - - -, 7,.. Without loss of generality 7, 7, are 3-cycles. Write
71 = (aq ay ag) and 7y, = (a4 ag ag). Let 7 = (ay ay a4) € A,,. Then

—i = -1 S
(O OB T ) o () o (0 SRl

= (ay a4 a3)(a1 as ae)(% as ‘14)(‘13 as ay)

= (ay ay a5 a3 a4) € H.
Then we are in case 1.

Case 3: Suppose one of the ;s is a 3-cycle and all the others are transpositions. Without loss of generality v, is the 3-
cycle. Then

of =g ="
isa 3-cycle in H.
Case 4: Suppose o is the product of two disjoint transpositions. Write o = (a; a,)(as a,). Choose a5 € {1,2,...,n} \

{a;,a5,a5,a,} (possible because n > 5). Let 7 = (a; ay ay). Then

Tor ol = 1(a; ay)7 (a; ay)
= (ay as)(a; ay)

= (al (15 a2) S H
Case 5: Suppose there are at least two transpositions among the ~;’s. Without loss of generality v, , v, are
transpositions. Write 7, = (a; ay),7v, = (a3 a,). Then 7 = (a; a4 a3) € A,,. Then

1 1 1 1

TOT ~0 ~ =TY{T 7027_17517f
= (ay ag)(a; ay)(az ay)(a; ay)

= (ay a3)(ay ay) € H.

So we are in case 4.
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4.6.7. Theorem

I Forn > 5, A,, is simple.

Proof: Let {1} +# H < A,,. We want to show H = A,,. By Lemma 3, H contains a 3-cycle. By Lemma 2, since H <
A,, and H contains a 3-cycle, H contains all the 3-cycles. By Lemma 1, this implies H = A,,.

[

4.7. Normal Towers

4.7.1. Definition: Normal Tower and Factor Group

Let G be a group. A normal tower of G is a sequence

The quotients H;/H,_; are called the factor groups of this normal tower.

4.7.2. Definition: Composition Series

Let G be a group. A composition series of G is a normal tower of G in which all the factor groups are simple. In this
case, the factor groups are called the composition factors of G.

4.7.3. Remark

Let G be a group and let H be a normal subgroup of G. Then H is a maximal proper subgroup of G if and only if
G/H is a simple group.

Therefore, a composition series of G is a normal tower in which each subgroups is a maximal proper normal

subgroup of the next one.
| J

4.7.4. Example

For example,

{1} <2((12)(34))9V, 94,485,
This is a composition series of S,. Another example of a composition series is
{1} 2 (r°)) 2 (r) S Dy,.
Also for n > 5, we have

{124,425,

Vs
\
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4.7.5. Theorem

I Every finite group G has a composition series.

Proof: We proceed by strong induction on |G|. If |G| = 1, then |G = {1} and {1} is a composition series of length
zero. Let n > 2 and suppose that every group of order < n has a composition series.

Let G be a group with |G| = n. Let H < G be a maximal proper normal subgroup of G. Then G/H is simple and
|H| < n. By the induction hypothesis H has a composition series:

{1}=N,<N, <---<N,=H
Then
{1} =Ny N, <IN, AN, =G

is a composition series of G.

| J

4.7.6. Theorem: Jordan-Holder Theorem

Let G be a finite group with |G| > 1. If

{3=MyaM; 2 <M, =G
are composition series of G, then r = s and 3o € S,. such that

M,/ Myzy—1 = N;/N;_y for 1 <i <.

Proof: We proceed by strong induction on |G|. If |G| = 2, then G is simple, so G has a unique composition series:
{1} 2G.
Then we are done.

Let n > 3. Suppose the statement is true for all groups G with 1 < |G| < n. Let G be a group with |G| = n. If G is
simple, {1} < G is the unique composition series and we are done, so suppose that G is not simple.

Let
be composition series of G.
Case 1: Suppose M, _; = N,_;. Then
{1} =M, aM, <9 M, ,
{1} =NgdN, Q- AN, , =M, ,

Vs
\
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are composition series of M,._;. Also 1 < |M,_,| < |G| = n, where the first inequality follows from G not being
simple.

By the inductive hypothesis, r —1 = s — 1 and 37 € S,_; such that
M./ M1 = N;/N;_; for 1 <i<r—1.
Then r = s and defining o € S, by

L fr@)if1<i<r—1
U(Z>_{rifi:r

$0 M)/ Myiy—1 = N;/N;_;.

Case 2: Suppose M,_; #+ N,_;.Then M,_; 4 M,_; N, _; < G (the latter relation is an exercise). Since M, _; is a
maximal proper normal subgroup of G, M, _; N, ; = G.

Let K = M,_; N N,_;. By the Second Isomorphism Theorem, K < M, ;, K < N, _; and
MT—I/K = Mr—le—l/Ns—l = G/Ns—l and NS—l/K = G/Mr—l'

In particular, M,_, /K and N,_, /K are simple. Let {1} = H, < N; <---< H, = K be a composition series for K.
Then

{1} = Ho g Hl - Ht g Mr—l
{1} =M, <M, - 9M, ,

are composition series of M,_; and
{1}=Hy<H, <-<H, AN, ,
{1} =Ny gN, < 9N,

are composition series of N,_;.Since 1 < |[M,_;| <nand1 < |N,_;| < n, we can apply the induction hypothesis.
Thenr =1=t+1=s—1and 37,7 € S;; such that

M, /M. -1 = H/(H;_) for 1 <i<t

)
M., (t11)/ My (1111 = M, /K
and
NTQ(i)/NTQ(i)fl = Hi/Hifl fOI' 1 S i St
N @+1)/Nryer1)-1 = Ny /K.
Thus

M. i/ M -1 = Np, i)/ N, i)—1
M. 1)/ M p31y-1 = M, /K = N /(N,_,)

T

Mr/Mrfl = stl/K = NTg(tJrl)/NTz(H’l)*l

Then r = s and defining 7 € S, by
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775 (3) if i € {r (1), ..., 7y (t)}
o(i)=qnt+1)ifi=r
rifi=mr(t+1)

50 Ma(i)/Mo—(i)_l ~ N,/N;, ;for1<i<r.

4.7.7. Definition: Abelian Tower

A normal tower of a group G is called an abelian tower if all the factor groups are abelian.

4.7.8. Definition: Solvable Group

A group G is solvable if it has an abelian tower. This is equivalent to all the composition factors of G being cyclic of
prime order (exercise).

4.7.9. Example

1. {1} < (r) < D,,, is an abelian tower, so D,,, is solvable.

2. S5 = Dy is solvable.

3. {1} <V, 9 A, < 8, is an abelian tower, so S, is solvable.

4. Forn > 5, S,, is not solvable. Because A,, is a composition factor of S,, and A,, is a non-abelian simple group.

(Note: this is the fundamental reason why we can’t deterministically find roots of 5th degree and higher

polynomials, but the reason will be further expanded on in Galois theory).

|\ J
4.7.10. Theorem

Let H < G.

1. If G is solvable, then H is solvable.

2. If H < G and G is solvable, then G/ H is solvable.

3. If H < G and H is solvable, and G/ H is solvable, then G is solvable.

Proof:
1. Assume G is solvable. Let

be an abelian tower of G. Let K; = N; N H fori =0,1,...t. Let ¢, : K, = N, N N,/(N;_;). Then ker , =
K,NN, ,=HNN,NN,_; =HNN,_; = K, ;. By the First Isomorphism Theorem, K, ; < K, and
K,/(K,;,_;) = imp; < N;/N,_;. Therefore K,;/K,_; is abelian. Then

is an abelian tower of H.
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2. Suppose H < G and G is solvable. Let {1} = N, < N; <---< N, = G be an abelian tower of G. Let 7 : G —
G/ H be the canonical projection. Let M; = 7 (N;) fori = 0, 1, ..., t. Notice since N;_; < N,, we have M, ; =
T (Ni_1) Smg(N;) = M;. Let

(3

Ty | Ny ™

;N — — M;/M,

By definition of M;, we have 7 (IN;) = M, and m, is surjective. Thus ¢, is a surjective homomorphism. Notice
kerp, = {a € N, : mg(a) € M;_;} O N,_;. Then p, induces a homomorphism

@i i Ni/Niy — M /M, ,
alN;_; — ¢;(a)
Since N,/N,_, is abelian, M, /M, _; = ¢;(N;/N,_,) is also abelian. Thus
{1} =M,<M, <--<M,=G/H.
3. Suppose that H < G, G/ H is solvable, and H is solvable. Let w5 : G — G /H denote the canonical projection. Let
{i}=My<M, < <M, =G/H
be an abelian tower of G/H and let
be an abelian tower of H.
For eachi € {0,1,...,7},let Q; = n5 (M,). Let w, : M; — M,/ M, , denote the canonical projection. Let ¢, =
T °TH | Q;
Ty T
Qi1 Qy — My — M /M, ;.

Since 7 is surjective, 75 (Q;) = 7y (75 (M;)) = M,. Combining this observation with the fact that 7, is also
surjective, we deduce that ¢, is a surjective homomorphism. Note that

kerp, ={a € Q; :mg(a) € M, 1} =Q, ;.

Therefore, by the First Isomorphism Theorem, we know that @, ; < Q, and Q,/Q,_; = M;/M,_ ;. In particular,
Q,/Q,_; is abelian. Therefore,

{1}:KOS]KS:H:Q0§]Q1S‘"'S‘QT:G

is an abelian tower of G.

4.7.11. Theorem: Feit-Thompson Theorem

I Every finite group of odd order is solvable.

Proof:
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4.8. Problems

4.8.1. Exercise

I Suppose we have a group G with H < Gand N < G.Prove NN H < H.

Solution

Let g € h(N N H)h™! for some h € H. Then g = hah™! for some a € N N H.Sincea € H, g € H. Since N < G,
Nzl = NVz € G.Sincea € N andh € G,wehave g € zNz ! = N,sog€ N.Thush(NNH)h-1 C Nn
H—=— NNHJH.

|\ J
4.8.2. Exercise

Let G be a group and let N be a finite subgroup of G. Let g € G. Then show g normalizes N if and only if
gNg' CN.

Is this true if NV is not finite?

Solution
(=) clear since by definition gNg— = N.
(<=) Notice [gNg~'| = | N| since the map
N — gNg!
n s gng
is a bijection.

A counterexample to show that it is not true if NV is infinite is

{35+

where N < GL,(Q). Take g = ((2) (1)) Then gNg~! = {(é 21a) ta € Z} ¢ N.

|\ J

4.8.3. Exercise

Let G be a group. Prove that Inn(G) < Aut(G), where the set of inner automorphisms Inn(G) = {¢p, : g € G}
where ¢, : G — G is defined by z - grg .

Solution

Let g € G and let o € Aut(G). For ¢ € Inn(G), we want to show that cpo~! € Inn(G). Let x € G and note

(0p,07) (@) = 0(py(071(2))) = a(go(2)g7") = o(g)za(9) " = ¢y € Inn(G).
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4.8.4. Exercise

I Prove that Dy, % S,.

Solution
(Could check elements of order 12 - D has them but not .S,).

Check elements of order 2 - there aer 12 reflections and 7% so there are 13 such elements in D,,. In S, there are

2
https://math.stackexchange.com/questions/311680/finding-the-number-of-elements-of-order-two-in-the-symmetric-
group-s-4

(4) = 6 transpositions with the others staying in place, and there are an additional 3 given by products of two cycles:

Vs
.

4.8.5. Exercise

| Prove that for n > 3, the homomorphism S,, — Aut(S,,) defined by g = ¢, (where ¢, is conjugation by g) is
injective.

Solution

Notice that it is sufficient to prove ker = {1}. Take o € S,,, so that its image is the automorphism ¢, (g) = ogo .
This must be the identity automorphism, so cgo~! = g = 0g = go, so g € Z(S,,). The only element that commutes
with all others in the symmetric group for n > 3 is e, so we must have ker = {1} as desired.

Vs
.

4.8.6. Exercise

Suppose that H and K are subgroup of finite index in the (possibly infinite) group G with [G : H] = m and [G :
K] = n. Prove that lem(m,n) < [G : H N K] < mn. Deduce that if m and n are relatively prime then [G : H N
K|=[G:H] - |G:K].

Solution

We need to show [H : HN K] < [G : K] = n. We want to find an injective function H/H N K — G/K and aH N
K — aK. First we show it’s well defined: for a,b € H
cHNK =bHNK < a'be HNK
<= albeK
< aK = bK.

This also shows it’s injective.

Then |[H/HN K| < |G/K|.Since [G: HNK]=m[H : HN K],wehave m | [G: HN K]. Since [G: HN K] =
[G:K]|[K:HNK].Thenn | [G: HNK].

Vs
.
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4.8.7. Exercise

I Prove that if G is a group of prime order p, then G is cyclic.

Solution

By the above corollary, for some a € G, we must have that ord(a) | p. But then ord(a) = 1 or ord(a) = p since p is
prime. If the order of the element is 1, we have the identity, and we can just pick another element since |G| = p > 1.
Thus we can always pick an element with order p. Then note G at least contains the cyclic group (a), but this has

ord(a) = p elements, so G also cannot contain anything else. Therefore we must have (a) = G.
|\ J

4.8.8. Exercise

I Find all the normal subgroups of S,, for n > 5.

Solution

Notice {1}, A,,, S,, are all normal subgroups of S,,. To show that these are the only normal subgroups, let H < S,,.
Then notice H N A,, < A,,so HN A, = {1} or A, by Theorem 4.6.7.

+ Case I: First suppose HN A, = A,,. Then A, < H < S, . Then |4,,| | |H| | |S,| =2 |A,|. Thus |H| = |4,,| =
H=A,or |H =|S,|=H=S,.

« Case 2: Suppose H N A,, = {1}. Thus any non-identity element in H is odd. Suppose H # {1}. Then 3z € H,x #+
1. Then z is odd. If y is any other non-identity element in H, then y is odd and 2y is even so 2y = 1. In particular,
z? = 1 and any other nonidentity element y € H satisfies y = 27 = z. Then H = {1, z}. Since H < S,,, for all
o€S,,wehave cHo ' = H,so oxzo ' = zVo € S,. Then z € Z(S,,) = {1}, a contradiction.
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5.1. Group Actions

5.1.1. Remark

Let X be an arbitrary set. Let & be the collection of functions that map X to itself. Notice that G C &, the bijections,
form a group under composition.

We want to relate a given group G to G to better understand the structure of G. Particularly, is there a
homomorphism ¢ : G — G? We want ¢ to have the property that the image of the identity is the trivial bijection, i.e.,
o(e)(z) = zVx € X. Since we want ¢ to be a homomorphism, we also define

©(9192) (%) = p(g1) © p(g2)(T).

This gives rise to the idea of a group action, which we define below.

Vs
\

5.1.2. Definition: Group Action

Let G be a group and let X be a set. A (left) group action of G on X isamap p : G x X — X such that
1. p(gh,z) = p(g, p(h,z)) for all g, h € G and for all x € X
2. p(lyz) =xforallz € X

Alternately, a more intuitive definition is:

Let G be a group and let X be a set. Let Sy be the group of all permutations of X, i.e., the symmetric group on X. An

action of G on X is a homomorphism G — S(X).

| (
\

5.1.3. Remark

From now on, given a group action y : G X X — X, we will usually write g - z (or simply gx) instead of (g, ).
With this notation, conditions (i) and (ii) can be written

1. (gh) -z =g(h-z)forall g,h € G and for all z € X

2.1-z=czforallz € X

Because of condition (i), if g, h € G and = € X, we can write ghx without any risk of ambiguity.

5.1.4. Remark

|
) L

We can also define a right group action of a group G onaset X asamap p: X x G — X such that
1. p(z,gh) = p(p(z,g),h) forallg,h € G and forall z € X
2. p(z, 1) =xforallz € X

We focus on left actions, but all results have analogous results for right actions.
| J
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5.1.5. Remark

We want to show the equivalence of the two definitions given above.

Suppose that we are given a group action p1 : G X X — X. For each g € G, we can defineamap o, : X — X by
0,(z) = g - x. Then we claim that o, € S for all g € G and that the map

QO:G_>SX
g|—>0'g

is a group homomorphism.
Let us first show that o, € S for all g € G. To show that o, is injective, note that for all z,y € X,
o () =0,(y) =g-z=g-y=g "' (g-2)=9" (9-v)
= (¢g7'9) z=(9g7'9) y=1lz=1-y=z=y.
To show that o, is surjective, note that, given z € X, we have
o (g7 x)=g- (g7 z)=(997") z=1-z=2

Now we show that ¢ is a homomorphism. Let g, h € G. We need to check that Ogp = 0400y For that, note that, for
all z € X,

ogn(@) = (gh) - w =g+ (h-2) = 0,(h- z) = 040 (x)) = (00 03 (2).

Conversely, suppose that we are given a homomorphism ¢ : G — Sx. Then, we can define an action of G on X by

GxX —X
(9,%) — p(g)(z).

To check that this is indeed a group action, note that
1. Forall g,h € G and for all z € X,

(gh) -z = p(gh)(x) = (¢(9) > ¢(h)) () = ¢(9)(p(h)(2)) = g - (h-z);
2. Forallz, € X,
1-z=p)(z) =idx(z) = .
I should check that the map
{actions of G on X} — {homomorphisms ¢ : G — Sx}
and the map

{homomorphisms ¢ : G — Sy} — {actions of G on X}

that we have just constructed are inverses of each other, thus providing a bijection between these two sets.
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5.1.6. Definition: Action Kernel and Faithful Action

1. The kernel of the action is the set of elements of G that act trivially on X:

{geG:g-z=xforall z € X}.
2. The action is said to be faithful if the kernel is the trivial subgroup of G. More intuitively, an action is faithful if

different elements of the group correspond to different transformations.
. J

5.1.7. Proposition

1. The kernel of the action is the kernel of the associated homomorphism ¢ : G — S (and is therefore a normal

subgroup of G).

2. The action is faithful if the associated homomorphism ¢ : G — S is injective.

Proof:
1. Notice that

{9eG:g-z=aVx e X} ={ge€G:p(g)(x) =2Vx € X}

={9€G:p(g) =14 }
= ker ¢.

Thus by Proposition 4.4.3, the kernel of the action is a normal subgroup of G.

2. By the above, if the kernel of the action is just {1}, then ker ¢ = {1} and by Proposition 4.1.5, ¢ is injective.
[

5.1.8. Definition: Trivial Action

Let G be a group and let X be a set. The trivial action of G' on X is the action defined by

g-x =z for all g € G and for all z € X.

The corresponding homomorphism from G to S is the trivial homomorphism g — id y. The kernel of the trivial

action is G. In particular, the trivial action is not faithful unless G = {1}.
|\ J
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5.1.9. Example

1. Let X be a set. Then we can define an action of Sy on X by

o-z =o(x) for all 0 € Sx and for all z € X.

The corresponding homomorphism from Sy to Sy is the identity map. This action is faithful.

2. Let G be a group acting on a set X. Let H < G. The action of G on X induces an action of H on X via restriction
of themap G x X — X toamap H x X — X.Let ¢ : G — Sx be the homomorphism corresponding to the
action of G on X. Then the homomorphism corresponding to the action of H on X is the restriction of ¢ to H.
Note that ker (9|57 ) = ker ¢ N H, so the action of H on X is faithful if and only if H N ker ¢ = {1}.

3. Consider the additive group R. We can define an action of R on C by

a-z=¢€"zfor all & € R and for all z € C.

To show that this is actually an action, note that:
« forall a, 8 € R and for all z € C,

(a+B)-z=¢€l0thz=¢(efz) =a- (B 2)

« forallz € C,wehave 0 -z = 0z = 2.

To find the kernel of this action, we want « - z = 2Vz € C. This is e?®z = 2z so e’® = 1 = ker @ =2nZ.In
particular, this action is not faithful. (What if z = 0?)

4. Let n > 3. The dihedral group D,,, acts naturally on the set of vertices of a regular n-gon. If we label the vertices
of a regular n-gon with the integers 1, 2, ..., n, the corresponding homomorphism ¢ : D,,, — S,, is given by

¢(z)(j) = k <= z sends the vertex j to the vertex k

This homomorphism was discussed in Example 4.1.6, and is injective, so the action is faithful.
5. Let G be a group. We can define an action of G on itself by conjugation:
GxG—G
(9,a) — gag™".

To show that this is indeed an action, note that:
« forall g,h,a € G,

(gh) - @ = (gh)a(gh)™ = g(hah™)g™" = g- (hah™") =g (h-a)
. foralla € G, we have that 1 - ¢ = 1lal™! = a.
The corresponding homomorphism is the map
g ¥y

which has kernel Z(G) (this was shown in Proposition 4.1.15), so the action is faithful iff Z(G) = {1}.
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5.1.10. Definition: Regular Action

Let G be a group. We can define an action of G on itself by

g-a=ga for all g € G and for all a € G,

where on the right hand side ga is the product of g and a using the group operation on G. This action is called the
left regular action of G on itself. It is faithful: if g € G acts trivially on G, then in particular g - 1 = 1 and therefore

g = 1. Further, the stabilizer of any point is the identity subgroup.
. J

5.1.11. Remark

We can generalize regular actions in the following way: let H be any subgroup of G and let A be the set of all left

cosets of H in G. Define an action of G on A by
g-aH = gaH for all g€ G,aH € A

where gaH is the left coset with representative ga. One easily checks that this satisfies the two axioms for a group
action. In the special case when H is the identity subgroup of G, the coset aH is just {a} and if we identify the
element a with the set {a}, this action by left multiplication on left cosets of the identity subgroup is the same as the

action of G on itself by left multiplication.

5.1.12. Theorem: Cayley’s Theorem

Every group is isomorphic to a subgroup of a symmetric group. A group of finite order n is isomorphic to a
subgroup of S,,.

Proof: Let G be a group. As we saw in the previous example, the left regular action of G on itself is faithful.
Therefore, this action provides an injective homomorphism ¢ : G — S. By the First Isomorphism Theorem, it
follows that G = ¢(G), so G is isomorphic to a subgroup of a permutation group. If G is finite of order n, then we
can define an isomorphism between S and S,, by choosing a bijection between G and {1,2,...,n}. Thus G is
isomorphic to a subgroup of S,,.

[

5.2. Orbits and Stabilizers

5.2.1. Definition: Stabilizer

The stabilizer of x is G, = {g € G : g - x = z}. Intuitively, the stabilizer of  is “the set of all elements of G which

don’t move z when they act on x”
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5.2.2. Lemma

Let G act on X. Define a relation ~ on X by

x ~ Yy <> dg € G such that z = gy.

Then ~ is an equivalence relation

Proof: Reflexive: Forallx € X, 1-x = x, so x ~ x. Symmetric: Let x,y € X. Suppose z ~ y. Then x = g - y for some
g€G. Theng 'z =g (g-y)=(g'9) - y=1-y=y. Theny ~ z. Transitive: Let z,y, 2 € X. Suppose T ~ y
andy ~ z. Thenz =g, -yandy = g, - z. Thenz = g, - (95 - 2) = (9195) - 2. Thus z ~ z.

[

5.2.3. Definition: Orbit, Transitive Action

Let G act on X. The orbitof x € X is G- x = {g - x : g € G}, an equivalence class of x for ~. Intuitively, the orbit of
x is “everything that can be reached from z by an action of G

The action is transitive if there is only one orbit, i.e., Vz,y € X,3g € G such that x =g - y.

5.2.4. Example

1. Let G be the circle group G = {z € C : |z| = 1}. This is a group under multiplication, and in the group action

sense, we think of G acting on C by multiplication. Algebraically we multiply by z = €?’, and geometrically we
rotate by some angle 6. If we fix some z € C, the orbit through z is exactly the circle of radius |z| centered at the
origin, unless x = 0.

The stabilizer of z in the case that « # 0 is just the set of points z € C such that z - z = z, implying z = 1, so the
stabilizer is just {1}. If x = 0, then zz = 2Vz € G, so the stabilizer is G.

2. Now consider the dihedral group of order 8, i.e., the symmetries of the square. Here we consider the set X =
{1,2,3,4} of the vertices. What is the orbit of vertex 1? Note that it can be sent to any of the other vertices by a
rotation, so its orbit is X — this applies for all vertices. What are their stabilizers? None of the rotations fix any
vertices, and only two reflections do, so each vertex has a stabilizer with cardinality 2. For example, for vertex 3,

the stabilizer is {e, s} if we consider s to be reflection through the line joining 1 and 3.
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5.2.5. Theorem: Orbit-Stabilizer Theorem

Let G acton X. Let x € X. The map
G/G, — G-z
aG r—a-z

is well-defined and bijective, and therefore |G - z| = [G : G].

Proof: Let a,b € G.

aG, =bG, <= blacqG,

=bla-z=z
<~ a-xz=b-2x.

The map is well-defined by (=) and injective by (<=).

Surjectivity: Let a € G. Then a - x is the image of aG .

| J

5.2.6. Corollary

I Let G act on X. Suppose G is finite. The cardinality of every orbit divides |G/|.

Proof: Let G - x be an orbit. Then |G - z| = [G : G, ], which divides |G| by the Counting Formula.

O

| J

5.2.7. Corollary: Orbits Formula

Let G act on X. Suppose X is finite. Let 2, Zo, ..., z,. be a complete set of representatives for the orbits. Then

XI=36 o) = Y o[6 6]

T
i=1

Proof: The orbits are the equivalence classes for the equivalence relations defined by Lemma 5.2.2. Therefore, they
form a partition of X, giving us hte first equality. The second equality follows from the orbit stabilizer theorem.

O

Page 66 of 77



GROUP ACTIONS ORBITS AND STABILIZERS — 5.2

5.2.8. Example

Consider a Rubik’s cube, where G represents the possible orientations of the cube and X represents the faces, labeled
1-6. If we hold it such that we are facing the yellow side, the stabilizer of the yellow side consists of the four rotations

we can make while keeping the yellow side in front. The other 5 sides are similar. The orbits of every face consist of
every other side, since we can always rotate any face towards us. Then the orbit stabilizer theorem tells us that the
number of equivalence classes created by the stabilizer partition (6 classes consisting of 4 elements each) is the same
as the number of orbits for every element (6 each). We could for example use this to find the total number of
orientations of Rubik’s cube:

Gl =1G: G, |G, = |G 2l |G, =6-4=24

|\ J

5.2.9. Proposition

I Let G act on X. Suppose z and y are elements in the same orbit. Then G, is conjugate to G, in G.

Proof: Since x and y are in the same orbit, g € G such that y = g - «. For all a € G,

aEGy<:>ay=y<:>aga:=gx(:>g_1ag:r=x<:>g_1ager<:>a€ngg_1.

Thus G, = 9G,g7 L.

|\ J

5.2.10. Definition: Fixed Point

Let G act on X. An element z € X is a fixed point if g - * = Vg € G. In other words, G, = G <= G -z = {z}.

5.2.11. Example

1. For n > 3, D,, . Label the vertices of the n-gon by 0,1,...n — 1 € Z/nZ. Then D,,, acts on Z/nZ. It is transitive
because given 4,5 € Z/nZ, 9~ - i = j. The stabilizer of k is 7*{1, s}r—* = {1, rksr=*} = {1,r%*s}.

The kernel of the action is thus Mgz, {1,7%s} = {1}, so the action is faithful.
Applying the orbit formula in this case, we get |Z/nZ| = [D,, : (r*s)].
2. Left regular action of G. Le.,
GxG—G
(9,0) = ga

This is transitive since given a,b € G, b = (ba™!)a. There are no fixed points unless G is trivial. The stabilizer of a
is {1}. From the orbit formula we get |G| = [G : {1}] (obvious).

3. Let H < G. Restrict left regular actions of G to H:
HxG—G

(h,a) — ha

The orbit of a is the right coset Ha. This is not transitive unless H = G. The stabilizer of a is {1}. Let z{, ..., z,. be

T
a complete set of representative for the orbits of H in G. By the orbits formula,
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T

Gl=Y [ 1] = Y (1)

i=1

r |H|=[G: H|-|H|

which is the Counting Formula.

4. Let H < G. Define the action of G on G/H by
GxG/H— G/H
(9,aH) — gaH

This is transitive since given aH,bH € G/H, we have ba™! - aH = bH. The stabilizer of H is H, and the
stabilizer of aH is aHa!. The kernel is

Ngeg aHa™

which is the largest normal subgroup of G contained in H. By the orbit formula, |G/H| = [G : aHa™]. To find
the fixed points, note that

aH fixed point <= stabilizer of a = G
< aHa =G« H=0G.
There will be no fixed points unless H = G.
5. G acting on itself by conjugation.
GxG—G
(9,0) g -a=gag™
The orbit of a is G - a = {gag™' : g € G} which is called the conjugacy class of a in G.

Note G - 1 = {1}. The action is not transitive unless G = {1}. The stabilizer of a is C;(a), the centralizer of a.
The kernel is Z(G). The fixed points are the elements of Z(G).

Let 2, ..., 2, be the elements of Z(G). Then {z, }, ..., {2, } are the trivial conjugacy classes (each has only one
element).

Let z,, ..., z, be a complete set of representatives for the nontrivial conjugacy classes. The orbits formula gives

Gl = ZI{Z}I ZIG z; \+ZG Co(z

This is known as the class equation for the group G.
. J

5.2.12. Lemma: Burnside’s Lemma

Let G be a finite group acting on a finite set X. For each g € G, we denote by X9 the set of elements in X that are
fixedby g,ie, X9={z € X :g -z ==z}

Then

[G\X| = ZIX"I

geG
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5.2.13. Theorem

Let G be a group, let H < G and let G act by left multiplication on the set A of left cosets of H in G. Let 75 be
the associated permutation representation afforded by this action. Then

1. G acts transitively on A
2. The stabilizer in G of the point 1H € A is the subgroup H
3. The kernel of the action is N, ; Hz !, and ker 7, is the largest normal subgroup of G contained in H

| J

5.2.14. Theorem: Cauchy’s Theorem

I Let G be a finite group. Let p be a prime dividing |G|. Then G contains an element of order p.

Proof:

We proceed by strong induction on |G|. If |G| = p, any nonidentity element has order p. Let n > p be a multiple of p.
Suppose every finite abelian group G with |G| < n and p | |G| contains an element of order p.

First assume that G is abelian. Let a € G be a nonidentity element. Let kK = ord(a). If p | k, then a® has order p. Now
suppose p t k. We know n = [G : (a)] - k. Thenp | [G : (a)].

Since G is abelian, (a) < G (Prop 4.3.5). Note G/(a) is a group of order divisible by p, and |G| < n because k > 1. By
the induction hypothesis, G/(a) contains an element b of order p.

Now let 7 : G — G/(a) be the canonical projection. 7 is surjective, so 3¢ € G such that 7(c) = b. Let t = ord(c).
Then b* = 7(c)! = 7(ct) = 7(1) = 1, s0 p = ord(b) | t. Thus c» € G and this element has order p.

Note this result can be considered a partial converse to Lagrange’s theorem.

Vs
\

5.2.15. Definition: p-group

Let p be a prime number. A p-group is a finite group of order p* for some integer k > 0. In other words, the order of
every element is a power of p (by Lagrange’s Theorem).

5.2.16. Theorem

I Every nontrivial p-group has a nontrivial center.

Proof: The Class Equation for G reads

T

Gl =12(G)| + ) _[G: Co(a)]

=1

Note that |G| and all the terms [G : Cs(z;)] are divisible by p. It follows that p divides |Z(G)| and therefore Z(G) is
nontrivial.

O
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5.2.17. Corollary

I Every p-group is solvable.

Proof: We proceed by strong induction on |G|. If |G| = 1, then G is trivial and is clearly solvable. Let n > 1 be a
power of p and suppose that every p-group of order smaller than n is solvable. Let G be a group of order n. By the
previous theorem, we know that Z(G) is a nontrivial normal subgroup of G. Therefore, the quotient group G/Z(G)
is a p-group of order smaller than n. By the induction hypothesis, G/Z(G) is solvable. Also Z(G) is abelian and
therefore solvable. Finally, since Z(G) and Z/Z(G) are solvable, it follows by Proposition 4.7.10(iii) that G is
solvable.

O

-
.

5.3. Exercises

5.3.1. Exercise

Let G be a finite group. Let gy, ..., g, be a complete set of representatives of the conjugacy classes in G. Suppose
91, ---» g, commute with each other. Prove that G is abelian.

Solution

S0 91,19, € Clg:) = 7 < 2|Cq(g:)| = |Coni(g;)| < 7. Thenn = |G| = 3, |Conj(g;)] < 2, 3 = n. Thus

4 = i=1
|Conj(g;)| = 2Vi. But we know |Conj(1)| = 1, so % = 1. All conjugacy classes have size 1, so G is abelian.

~
.

5.3.2. Exercise

Let G be a finite group of order n = p¥m, where p is a prime, k > 0 and p } m.

Let P be a subgroup of G with order p* (a p-Sylow subgroup). Let H < N (P) with |H| = p? for some a > 0.
Prove H < P.

Solution

By the Second Isomorphism Theorem,
(HP)/P=H/HNP.

Note |H/HNP| | |H
a power of p.

Also, |[HP| | p*m, so |[HP| | p*. Since P < HP and |P| = p*, |HP| = p* and P = HP. Therefore H < P.

,so |[H/H N P| is a power of p. Thus |HP/P)| is a power of p. Notice |[HP| = |HP/P| - |P| is

~
.
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6.1. Direct Products

6.1.1. Definition: Direct Product

Let G4, ..., G,, be groups. The direct product G; x G, x --- X G,, is the set of n-tuples (g4, ..., g,,) with g; € G, for
alli € {1,2,...,n} and binary operation defined componentwise:

(9152 9p) - (hyy ey b)) = (g1hq, s gl )-

With this operation G; X G, X --- x G,, is a group.

We remark that this group is abelian if and only if each G is abelian.
|\ J

6.1.2. Proposition

Let G4, ...,G,, be groups.Let G = G, x --- X G,,.

1. Foreachi € {1,2,...,n}, the map
LG —G=G x -G xG; xG 1 x--xG,
g, — (1,..,1,9,,1,..,1)
defines an isomorphism between G, and the subgroup
{1} x -+ x {1} x G, x {1} x --- x {1} < G.
Identifying G; with this subgroup, G, < G and
G/G;=2Gy x - xG_y xGiyqy X - xXG,.
2. Foreachi € {1,2,...,n}, the map
m Gy x - x G, — G
(915 9) = 9
is a surjective homomorphism with
kerm, =G, x -+ xG;_; x {1} xG;;; x --- x G,
Gy X -GGy X X G,

(Hence G/(Gy X -+ x G;_y x {1} x G4y X -+ X G,)) = G;.)

Proof:
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6.1.3. Proposition

Let H and K be subgroups of a group G and let f : H x K — G be the multiplication map, defined by f(h, k) =
hk.

1. fisinjective iff H N K = {1}

2. fis a homomorphism iff elements of H commute with elements of K, i.e., hk = kh forallh € H k € K

3. fis anisomorphism iff H N K = {1}, HK = G, and both H and K are normal subgroups of G

Proof:

1. Suppose that H N K # {1}. Then H N K contains a nonidentity element z. Thenz™! € H and f(z™',z) =1 =
f(1,1), which shows that f is not injective.

Now suppose that H N K = {1}. Let (hy, k;), (hy, ky) € H X K and suppose that f(hq, k) = f(hg, ky). Then
hyky = hyk,. Left multiplying both sides by h7! and right multiplying by k5!, we find k; k5 = hy'h,. This
element is in H N K, so k;k;! = 1 = hi'h,, meaning h; = h, and k; = k,. Therefore (hy,k;) = (hy, ks).

f is a homomorphism <= f((hy, ky1)(ho, ks)) = f(hy, k1) f(hy, k3)V (R, ky), (Ryy ky) € H X K
< f(hy, hy, ky, ko) = f(hy, k1) f(hg, ko)Vhy, hy € H by ky € K

3. Suppose that H N K = {1}, HK = G and both H and K are normal subgroups of G. Then f is injective by (i),
and it is surjective since its image is clearly H K. By (ii), in order to conclude that f is an isomorphism, it suffices
to show that hk = kh for all h € H, k € K. Consider the product (hkh_l)k_l = h(kh_lk_l). Since K is normal,
the left side is in K, and since H is normal, the right side is in H. Since H N K = {1}, we deduce that
hkh~'k~! = 1 and therefore hk = kh.

Conversely, suppose f is an isomorphism. Note that H = f(H x {1}) and K = f({1} x K). Since f is an
isomorphism, it suffices to show that

« (Hx{1h)n({1} x K) ={(1,1)}

« (Hx{1}){{1} xK)=H x K

« Hx{l} <HxKand{l} x K<H X K

The first two conditions are clear, whereas the third one follows from Proposition 6.1.2(i).
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6.1.4. Proposition

Let G be a group. Let Hy, ..., H,, be normal subgroups of G’ such that

e HyHy - H, =G,
o foralli € {1,2,...,n},

H,N(H, ---H_,H;,,---H,)={1}.

ThenG=>~H, xH,--- xH

n:

Proof:

6.1.5. Proposition

I Let m,n € Z.,. Then Z/mnZ = Z/mZ x Z/nZ if and only if (m,n) = 1.

Proof: Let [ = lem(m, n). Let ([al,,,, [b],,) € Z/mZ x Z/nZ. Then (using additive notation)
l([a]m, [B],,) = ([la],, [16],,) = ([0],,, [0],,)-

Therefore, the order of every element in Z/mZ x Z/nZ divides l.

Suppose that (m,n) > 1. Since | = mn/(m,n), it follows that [ < mn. Since the element [1],,,,, € Z/mnZ has order
mn, whereas every element in Z/mZ x Z/nZ has order a divisor of I, we deduce that Z/mnZ % Z/mZ x Z/nZ.

Now suppose that (m,n) = 1. In this case, one can show easily (exercise) that the map
Z/mnZ — Z/mZ X Z/nZ

(0] = (la]n, [a])

is a well defined isomorphism.

L

|\ J

6.1.6. Corollary

Letn € Z.,. If n = pi* --- p%, where py, ..., p;, are distinct primes, then

Z/nZ = T/p T x /p®Z x - x Z/p*L.

Proof: The result follows easily from the proposition by induction on k.
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6.2. Fundamental Theorem of Finitely Generated Abelian
Groups

6.2.1. Theorem: Fundamental Theorem of Finitely Generated Abelian Groups

Let G be a finitely generated abelian group.
1. There exist unique integers 7 > 0 and n,, ...,n, > 2, withn,; | n; forall 1 < i < s — 1 such that

G=Z"XZ/nZx ---Z/n,ZL.

The integer r is called the free rank of G, the integers n,, ..., n, are called the invariant factors of GG, and the
isomorphism above is called the invariant factor decomposition of G.
2. With r as in (i), there exist integers ¢y, ..., ¢, which are powers of (not necessarily distinct) primes such that

G2Z"XZ/QHWZ X -+ X L]q,ZL.

The powers of the primes ¢y, ..., g, are unique up to order. They are called the elementary divisors of G and the
isomorphism above is called the elementary divisor decomposition of G.

Proof: A more general version of this theorem is shown in 111B, so we omit the proof here.

O

| J

6.2.2. Remark

Two finitely generated abelian groups are isomorphic if and only if they have the same free rank and the same

invariant factors if and only if they have the same free rank and same elementary divisors. Therefore, the
isomorphism class of a finitely generated abelian group is determined by the free rank and the invariant factors, and
also by the free rank and the elementary divisors.

Note a finitely generated abelian group is finite if and only if its free rank is zero. In this case the order of the group is
equal to the product of its invariant factors, and also to the product of its elementary divisors.

6.2.3. Definition: Torsion Subgroup and Free Abelian Group

Let G be a finitely generated abelian group with invariant factor decomposition
G=Z"XZ/nZ X% - XZ/n/Z.
The subgroup of G corresponding via this isomorphism to
Z|/nZ X - X Z/n,Z

is called the torsion subgroup of G. If the torsion subgroup of G is trivial, we say that G is a free abelian group of

rank 7.
|\ J
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6.2.4. Remark

Let G be a finitely generated abelian group. The torsion subgroup of G is uniquely characterized as

Giors = {z € G : nz = 0 for some n € Z_0}.

tors

1. Let G = Z/9Z and H = Z/3Z x Z/3Z. They are both written in their invariant factor decomposition, which in
this case is also their elementary divisor decomposition. Therefore G % H.

2. Let G = Z/12Z x Z/18Z. Note that Z/12Z = 7. /AZ x Z/3Z and Z/18Z == Z/2Z x Z/9Z. Therefore, the
elementary divisor decomposition of G is given by

G = ZJAZ x 7/2Z x Z./9Z x Z,/3Z.

To obtain the invariant factor decomposition of G, note that
G=(Z/AZ X Z]9Z) x (Z]2Z x Z]3Z) = 7./36Z X Z/6Z.

3. Let G be a group of finite order n. Let n = p* - - pZ’“ be the prime factorization of n, where py, ..., p;, are distinct
primes. Then, the elementary divisor decomposition of G is of the form

by, ‘
G ~ (Z/pI;UZX XZ/pll 1) X o0 X (Z/kaIZX XZ/p:ka)

with

byy + - +byy, = ay,

bpr + -+ by, = ag.

Therefore, there is a one-to-one correspondence between the set of isomorphism classes of finite abelian groups of
order n and the set

partitions of a;} x --- x {partitions of a, }.
1 k
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6.3. Exercises

6.3.1. Exercise

Let G be a finite abelian group with invariant factors n,, n,, ..., n,. Prove that G contains an element of order m if
and only if m | n.

Solution

Take the isomorphism
G2Z/nZ XL[nyZ X -+ X L/n,Z

wheren,; ; |n;fori=1,...,s —1.Letz € Z/n,Z x --- Z/n,Z. Then = ([al] ooy (@] ) and

mz = (Imarl, oo tmad, = (0, 00,,))

soord(z) | n;. Then if 3z € G with ord(z) = m, thenm | n,.If m | n,, take

([%]n ,[O]nz,...,[()]ns>

has order m.
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6.3.2. Exercise

Let G = (1) X (x4) X -+ X (z}) where ord(z;) = p* for some a; > 0. Define
p:G— G
a+— aP

1. Show that ¢ is a homomorphism.
2. Find ker ¢ and im ¢.

Solution

1. Since G is abelian, p(ab) = (ab)? = aPb? = ¢(a)p(b).
pal—l -1

2. We have ker p = (xl ) X+ X (miak ).Also ime = (zf) x -+ x (z}). Thus ker o = Z/pZ X - -+ x Z/pZ.

k times
Thus

(@) x - x () /((27) x -+ x (2})) = (z1)/(2]) ¥ (x3)/(25) X -+ x (z3)/ (%)
So if we define
$:Z— (z;)/(2F)
a — zf(z7)
with
kerp ={a €Z:z? € ()}
={aezzxg=xfp forsomekEZ}

={a €Z:a=kp(modp;*) for some k € Z}

Then by the First Isomorphism Theorem,

Z/pL = (z;)/ (7).

Page 77 of 77



	Preliminaries
	Relations
	Definition: Relation
	Definition: Equivalence Relation
	Definition: Equivalence Class
	Exercise
	Definition: Partition
	Definition: Relation on Partition
	Theorem

	Properties of Integers
	Definition: Divides
	Definition: GCD and LCM
	Theorem:  Division Algorithm
	Theorem:  Euclidean Algorithm
	Exercise
	Theorem:  Bezout's Identity
	Definition: Prime Number
	Lemma:  Euclid's Lemma
	Proposition
	Theorem:  Fundamental Theorem of Arithmetic

	Modular Arithmetic
	Definition: Modulo
	Proposition
	Definition: Residue Class
	Proposition
	Proposition
	Definition: Group of Units
	Proposition
	Example

	Problems
	Exercise
	Exercise
	Exercise


	Groups
	Groups
	Definition: Binary Operation
	Example
	Definition: Identity
	Proposition
	Definition: Invertible
	Proposition
	Definition: Group
	Definition: Abelian Group
	Definition: Group Order
	Definition: General and Special Linear Groups
	Example
	Definition: Direct Product of Groups
	Proposition
	Proposition
	Remark
	Definition: Element order
	Example

	Dihedral Groups
	Definition: Dihedral Group

	Symmetric Groups
	Definition: Permutation
	Definition: k-cycle
	Example
	Definition: Disjoint cycle
	Proposition
	Theorem:  Cycle Decomposition
	Example
	Example
	Definition: Transpositions
	Proposition
	Definition: Inversion
	Definition: Permutation Sign
	Example
	Lemma
	Proposition
	Proposition
	Definition: Alternating Group of Degree n
	Definition: Klein 4-group

	Problems
	Exercise
	Exercise
	Exercise
	Exercise


	Subgroups
	Subgroups
	Definition: Subgroup
	Example
	Definition: Centralizer
	Definition: Center
	Definition: Normalizer
	Proposition
	Proposition

	Cyclic Groups and Subgroups
	Proposition
	Definition: Cyclic Subgroup
	Example
	Definition: Cyclic Group and Group Generator
	Example
	Proposition
	Proposition
	Corollary


	Homomorphisms
	Group Homomorphisms
	Definition: Group Homomorphism
	Proposition
	Proposition
	Definition: Image and Kernel
	Proposition
	Example
	Proposition
	Definition: Isomorphism
	Example
	Proposition
	Definition: Isomorphic Groups
	Definition: Isomorphism Class
	Definition: Automorphism
	Definition: Inner Automorphism
	Proposition
	Proposition

	Cosets
	Definition: Coset
	Example
	Lemma
	Proposition
	Proposition
	Definition: Index
	Proposition
	Corollary:  Counting Formula
	Corollary:  Lagrange's Theorem
	Corollary
	Proposition

	Normal Subgroups
	Remark
	Definition: Normal Subgroup
	Remark
	Proposition
	Example
	Proposition
	Proposition
	Remark
	Proposition
	Remark
	Proposition
	Proposition
	Remark
	Proposition
	Proposition
	Corollary

	Quotient Groups
	Definition: Quotient Group
	Definition: Canonical Projection
	Proposition
	Example
	Remark
	Theorem:  Correspondence Theorem

	Isomorphism Theorems
	Theorem
	Theorem:  First Isomorphism Theorem
	Remark
	Corollary
	Example
	Theorem:  Second Isomorphism Theorem
	Theorem:  Third Isomorphism Theorem

	Simple Groups
	Definition: Simple Group
	Example
	Theorem
	Lemma:  1
	Lemma:  2
	Lemma:  3
	Theorem

	Normal Towers
	Definition: Normal Tower and Factor Group
	Definition: Composition Series
	Remark
	Example
	Theorem
	Theorem:  Jordan-Hölder Theorem
	Definition: Abelian Tower
	Definition: Solvable Group
	Example
	Theorem
	Theorem:  Feit-Thompson Theorem

	Problems
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise


	Group Actions
	Group Actions
	Remark
	Definition: Group Action
	Remark
	Remark
	Remark
	Definition: Action Kernel and Faithful Action
	Proposition
	Definition: Trivial Action
	Example
	Definition: Regular Action
	Remark
	Theorem:  Cayley's Theorem

	Orbits and Stabilizers
	Definition: Stabilizer
	Lemma
	Definition: Orbit, Transitive Action
	Example
	Theorem:  Orbit-Stabilizer Theorem
	Corollary
	Corollary:  Orbits Formula
	Example
	Proposition
	Definition: Fixed Point
	Example
	Lemma:  Burnside's Lemma
	Theorem
	Theorem:  Cauchy's Theorem
	Definition: p-group
	Theorem
	Corollary

	Exercises
	Exercise
	Exercise


	Classification of Finitely Generated Abelian Groups
	Direct Products
	Definition: Direct Product
	Proposition
	Proposition
	Proposition
	Proposition
	Corollary

	Fundamental Theorem of Finitely Generated Abelian Groups
	Theorem:  Fundamental Theorem of Finitely Generated Abelian Groups
	Remark
	Definition: Torsion Subgroup and Free Abelian Group
	Remark
	Example

	Exercises
	Exercise
	Exercise



