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1. Preliminaries

1.1. Relations

1.1.1. Definition: Relation

A relation on a set 𝐴 is a subset 𝑅 ⊆ 𝐴 × 𝐴. 𝑎 ∼ 𝑏 ⟺ (𝑎, 𝑏) ∈ 𝑅. We say that 𝑅 is
• reflexive if 𝑎 ∼ 𝑎∀𝑎 ∈ 𝐴
• symmetric if 𝑎 ∼ 𝑏 ⟺ 𝑏 ∼ 𝑎∀𝑎, 𝑏 ∈ 𝐴
• transitive if 𝑎 ∼ 𝑏 ∧ 𝑏 ∼ 𝑐 ⟹ 𝑎 ∼ 𝑐∀𝑎, 𝑏, 𝑐 ∈ 𝐴

1.1.2. Definition: Equivalence Relation

An equivalence relation is a relation which is reflexive, symmetric, and transitive.

1.1.3. Definition: Equivalence Class

Let 𝑅 be an equivalence relation on 𝐴. The equivalence class of 𝑎 ∈ 𝐴 is the set {𝑥 ∈ 𝐴 | 𝑥 ∼ 𝑎} = [𝑎]𝑅 = 𝑎. Any
𝑐 ∈ [𝑎]𝑅 is a representative of [𝑎]𝑅 .

The set 𝐴/𝑅 = {[𝑎]𝑅 | 𝑎 ∈ 𝐴} is called a quotient set. This is the set of equivalence classes (as defined by the
equivalence relation 𝑅) on the set 𝐴.

Reference

1.1.4. Exercise

𝐴 = ℝ2 \ {(0, 0)}. Define a relation ∼ on 𝐴 by (𝑥, 𝑦) ∼ (𝑧, 𝑤) ⟺ ∃𝜆 ∈ ℝ𝑥 such that (𝑥, 𝑦) = 𝜆(𝑧, 𝑤). (ℝ𝑥 =
ℝ \ {0}).

Is this an equivalence relation? What are the equivalence classes and the quotient set?

Solution

Check properties:
• reflexive: (𝑥, 𝑦) = 1(𝑥, 𝑦)∀(𝑥, 𝑦) ∈ 𝐴)
• symmetric: ∀(𝑥, 𝑦), (𝑧, 𝑤) ∈ 𝐴, suppose (𝑥, 𝑦) = 𝜆(𝑧, 𝑤) for some 𝜆 ∈ ℝ𝑥, so (𝑧, 𝑤) = 𝜆−1(𝑥, 𝑦) with 𝜆 ∈ ℝ𝑥

• transitive: ∀(𝑥, 𝑦), (𝑧, 𝑤), (𝑠, 𝑡) ∈ 𝐴, if (𝑥, 𝑦) = 𝜆1(𝑧, 𝑤) and (𝑧, 𝑤) = 𝜆2(𝑠, 𝑡) for some 𝜆1, 𝜆2 ∈ ℝ𝑥, then (𝑥, 𝑦) =
𝜆1𝜆2(𝑠, 𝑡) with 𝜆1𝜆2 ∈ ℝ𝑥

Thus this is an equivalence relation on 𝐴.

Given some (𝑥, 𝑦) ∈ 𝐴, [(𝑥, 𝑦)] = {(𝑠, 𝑡) ∈ 𝐴 | (𝑠, 𝑡) = 𝜆(𝑥, 𝑦) for some 𝜆 ∈ ℝ𝑥} (which is the line through (𝑥, 𝑦)
and (0, 0)). Then the quotient set is the set of lines through (0, 0) in ℝ2 (this is the same as the projective real line
𝑃 1(ℝ)).

Page 2 of 77

https://math.stackexchange.com/questions/594458/definition-of-quotient-set


Preliminaries Relations — 1.1

1.1.5. Definition: Partition

A partition of a set 𝐴 is a collection {𝐴𝑖 | 𝑖 ∈ 𝐼} of nonempty subsets of 𝐴 such that

𝐴 = ∪𝑖∈𝐼 𝐴𝑖 and 𝐴𝑖 ∩ 𝐴𝑗 = ∅ if 𝑖 ≠ 𝑗.

1.1.6. Definition: Relation on Partition

Let 𝑃 = {𝐴𝑖 | 𝑖 ∈ 𝐼} be a partition of 𝐴. The relation defined by 𝑃  on 𝐴, denoted 𝑅𝑃 , is defined by 𝑎 ∼ 𝑏 ⟺ ∃𝑖 ∈ 𝐼
such that 𝑎, 𝑏 ∈ 𝐴𝑖.

1.1.7. Theorem

Let 𝐴 be a set.

1. If 𝑅 is an equivalence relation on 𝐴, then 𝑃 = 𝐴/𝑅 is a partition of 𝐴 and 𝑅𝑃 = 𝑅.
2. If 𝑃  is a partition of 𝐴, then 𝑅𝑃  is an equivalence relation and 𝐴/𝑅𝑃 = 𝑃 .

Proof:

1. Let 𝑎 ∈ 𝐴 with 𝑅 an equivalence relation. Recall 𝑃 = 𝐴/𝑅 = {[𝑎]𝑅 | 𝑎 ∈ 𝐴} by definition, and since 𝑎 ∈ [𝑎]𝑅 , we
must have ∪𝑎∈𝐴 [𝑎] = 𝐴. Further, since each equivalence class at least contains 𝑎, it is nonempty. Now suppose by
contradiction 𝑥 ∈ [𝑎], [𝑏], two distinct equivalence classes. Then 𝑥𝑅𝑎 and 𝑥𝑅𝑏, so by transitivity and symmetry,
𝑎𝑅𝑏, a contradiction. Thus, 𝑃  is a partition.

Notice 𝑎 ∼ 𝑏 in 𝑅𝑃  if ∃𝑖 ∈ 𝐼 such that 𝑎, 𝑏 ∈ 𝐴𝑖 = [𝑎]𝑅 = {𝑏 ∈ 𝐴 | 𝑎 ∼ 𝑏} ⇔ 𝑎 ∼ 𝑏 in 𝑅. Thus 𝑅𝑃 = 𝑅.

2. Let 𝑃  be a partition of 𝐴.
• reflexivity: let 𝑎 ∈ 𝐴 and note ∃𝑖 ∈ 𝐼 such that 𝑎 ∈ 𝐴𝑖 ∈ 𝑃  so 𝑎 ∼ 𝑎
• symmetry: suppose 𝑎 ∼ 𝑏 for some 𝑎, 𝑏 ∈ 𝐴. Thus ∃𝑖 ∈ 𝐼 such that 𝑎, 𝑏 ∈ 𝐴𝑖 ∈ 𝑃 . But then 𝑏 ∼ 𝑎 because sets

aren’t ordered
• transitivity: suppose 𝑎 ∼ 𝑏 and 𝑏 ∼ 𝑐 for 𝑎, 𝑏, 𝑐 ∈ 𝐴. Thus exists 𝑖, 𝑗 ∈ 𝐼  such that 𝑎, 𝑏 ∈ 𝐴𝑖 and 𝑏, 𝑐 ∈ 𝐴𝑗. Thus

𝑏 ∈ 𝐴𝑖 ∩ 𝐴𝑗, but this is only possible if 𝑖 = 𝑗 since otherwise it would be empty. Thus 𝑎, 𝑐 ∈ 𝐴𝑖 and 𝑎 ∼ 𝑐.

Now let 𝑆 ∈ 𝐴/𝑅𝑃 = {[𝑎]𝑅𝑃
| 𝑎 ∈ 𝐴}. Equivalently, 𝑆 = {𝑏 ∈ 𝐴 | 𝑎 ∼ 𝑏} for some 𝑎 ∈ 𝐴 under 𝑅𝑃 . Note

equivalence relations form partitions and vice versa, and in fact 𝑆 = {𝑎 | 𝑎 ∈ 𝐴𝑖 ⊆ 𝐴} ∈ 𝑃 . This satisfies both
directions.

⬜
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Preliminaries Relations — 1.1

1.2. Properties of Integers

1.2.1. Definition: Divides

Let 𝑎, 𝑏 ∈ ℤ. We say that 𝑎 divides 𝑏, written 𝑎 ∣ 𝑏, if ∃𝑐 ∈ ℤ such that 𝑏 = 𝑎𝑐.

Properties
• ∀𝑎 ∈ ℤ, 𝑎 ∣ 𝑎 (reflexive)
• ∀𝑎, 𝑏 ∈ ℤ, if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎 then |𝑎| = |𝑏| (symmetric)
• ∀𝑎, 𝑏, 𝑐 ∈ ℤ, if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑐, then 𝑎 ∣ 𝑐 (transitive)
• ∀𝑑, 𝑎, 𝑏, 𝑚, 𝑛 ∈ ℤ if 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏, then 𝑑 ∣ 𝑚𝑎 + 𝑛𝑏 (linearity)

Transitivity proof: 𝑎 ∣ 𝑏 ⇒ ∃𝑛 ∈ ℤ such that 𝑎𝑛 = 𝑏 and 𝑏 ∣ 𝑐 ⇒ ∃𝑚 ∈ ℤ such that 𝑏𝑚 = 𝑐. Then 𝑎(𝑛𝑚) = 𝑐 ⇒
𝑎 | 𝑐. Notice logically this means 𝑎 ∤ 𝑐 ⇒ 𝑎 ∤ 𝑏 ∨ 𝑏 ∤ 𝑐

1.2.2. Definition: GCD and LCM

Let 𝑎, 𝑏 ∈ ℤ.
1. ∃!𝑑 ∈ ℤ≥0 such that

• 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏,
• ∀𝑒 ∈ ℤ if 𝑒 ∣ 𝑎 and 𝑒 ∣ 𝑏, then 𝑒 ∣ 𝑑

𝑑 is called the greatest common divisor (gcd) of 𝑎 and 𝑏, denoted 𝑑 = gcd(𝑎, 𝑏) = (𝑎, 𝑏). Note we define
gcd(0, 0) = 0.

2. ∃!𝑚 ∈ ℤ≥0 such that

• 𝑎 ∣ 𝑚 and 𝑏 ∣ 𝑚,
• ∀𝑛 ∈ ℤ, if 𝑎 ∣ 𝑚 and 𝑏 ∣ 𝑛, then 𝑚 ∣ 𝑛.

𝑚 is the least common multiple (lcm) of 𝑎 and 𝑏, i.e. 𝑚 = lcm(𝑎, 𝑏).

1.2.3. Theorem: Division Algorithm

Let 𝑎, 𝑏 ∈ ℤ with 𝑏 ≠ 0. Then ∃!𝑞, 𝑟 ∈ ℤ such that 𝑎 = 𝑞𝑏 + 𝑟 and 0 ≤ 𝑟 < |𝑏|

1.2.4. Theorem: Euclidean Algorithm

Let 𝑎, 𝑏 ∈ ℤ with 𝑏 > 0. Set 𝑟−1 = 𝑎 and 𝑟0 = 𝑏. Apply division algorithm repeatedly: 𝑟−1 = 𝑞1𝑟0 + 𝑟1 with 0 <
𝑟1 < 𝑟0 Then 𝑟0 = 𝑞2𝑟1 + 𝑟2, 0 < 𝑟2 < 𝑟1 and eventually 𝑟𝑛−2 = 𝑞𝑛𝑟𝑛−1 + 𝑟𝑛 and 𝑟𝑛−1 + 𝑞𝑛+1𝑟𝑛 + 0. Note this
eventually becomes zero because the sequence 𝑟𝑛 is strictly decreasing. The theorem tells us that 𝑟𝑛 = gcd(𝑎, 𝑏).
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Preliminaries Properties of Integers — 1.2

1.2.5. Exercise

𝑎 = 3132 and 𝑏 = 936. Find GCD.

Solution

1. 3132 = 3 ⋅ 936 + 324
2. 936 = 2 ⋅ 324 + 288
3. 324 = 1 ⋅ 288 + 36
4. 288 = 8 ⋅ 36 + 0

Ergo gcd(𝑎, 𝑏) = 36.

We can also work backwards:

36 = 324 − 1 ⋅ 288
= 324 − 1 ⋅ (936 − 2 ⋅ 324)
= 3 ⋅ 324 − 1 ⋅ 936
= 3 ⋅ (3132 − 3 ⋅ 936) − 1 ⋅ 936
= 3 ⋅ 3132 − 10 ⋅ 936

and we were able to give the GCD in terms of a linear combination of our numbers.

1.2.6. Theorem: Bezout’s Identity

Let 𝑎, 𝑏 ∈ ℤ. Then ∃𝑚, 𝑛 ∈ ℤ such that (𝑎, 𝑏) = 𝑚𝑎 + 𝑛𝑏.

Remark: If 𝑎 ≠ 0 or 𝑏 ≠ 0, gcd(𝑎, 𝑏) is the smallest positive integer of the form 𝑠𝑎 + 𝑡𝑏 with 𝑠, 𝑡 ∈ ℤ.

1.2.7. Definition: Prime Number

An integer 𝑝 ∈ ℤ>1 is prime if its only positive divisors are 1 and 𝑝. An integer is composite if it is not prime.

So ∀𝑛 ∈ ℤ+ \ {1, 𝑝}, we have 𝑛 ∤ 𝑝.

1.2.8. Lemma: Euclid’s Lemma

Let 𝑝 be prime and let 𝑎, 𝑏 ∈ ℤ. If 𝑝 ∣ 𝑎𝑏, then 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏.

Proof: If 𝑝 ∤ 𝑎, then (𝑎, 𝑝) = 1. This is because given 𝑑 ∈ ℤ+ such that 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑝, by primality either 𝑑 = 1 ⇔ 1 ∣
𝑑 or 𝑑 = 𝑝, but the latter is impossible since 𝑑 divides 𝑎 but not 𝑝.

By Bezout, ∃𝑚, 𝑛 ∈ ℤ such that 𝑎𝑚 + 𝑛𝑝 = 1. Then 𝑚𝑎𝑏 + 𝑛𝑏𝑝 = 𝑏, and since 𝑝 ∣ 𝑎𝑏 we have 𝑝 ∣ 𝑏, but this is a
contradiction.

⬜
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Preliminaries Properties of Integers — 1.2

1.2.9. Proposition

Let 𝑎, 𝑏, 𝑐 ∈ ℤ. Assume (𝑎, 𝑐) = 1 (they are relatively prime) and 𝑐 ∣ 𝑎𝑏, then 𝑐 ∣ 𝑏.

Proof: Closely related to the previous result. By Bezout, ∃𝑛, 𝑚 ∈ ℤ such that 𝑚𝑎 + 𝑛𝑐 = 1. Then 𝑚𝑎𝑏 + 𝑛𝑐𝑏 = 𝑏,
and since 𝑐 ∣ 𝑎𝑏 we have 𝑐 ∣ 𝑏.

⬜

1.2.10. Theorem: Fundamental Theorem of Arithmetic

Every integer greater than 1 can be written as the product of prime numbers and the factorization is unique up to
the order of the factors.

Corollary: 𝑎 = 𝑝𝛼1
1 𝑝𝛼2

2 ⋅ ⋅ ⋅ 𝑝𝛼𝑟𝑟 , 𝑏 = 𝑝𝛽1
1 𝑝𝛽2

2 ⋅ ⋅ ⋅ 𝑝𝛽𝑟𝑟  where 𝑝1, 𝑝2, …, 𝑝𝑟 are distinct primes and
𝛼1, 𝛼2, …, 𝛼𝑟, 𝛽1, 𝛽2, …, 𝛽𝑟 ∈ ℤ≥0. Then (𝑎, 𝑏) = 𝑝min{𝛼1,𝛽1}

1 ⋅ ⋅ ⋅ 𝑝min{𝛼𝑟,𝛽𝑟}
𝑟  and lcm(𝑎, 𝑏) = 𝑝max{𝛼1,𝛽1}

1 ⋅ ⋅ ⋅
𝑝max{𝛼𝑟,𝛽𝑟}

𝑟 .

1.3. Modular Arithmetic

1.3.1. Definition: Modulo

Let 𝑎, 𝑏 ∈ ℤ with 𝑛 ∈ ℤ≥0 fixed. We say that 𝑎 is congruent to 𝑏 modulo 𝑛, i.e. 𝑎 ≡ 𝑏(mod 𝑛) if 𝑛 | 𝑏 − 𝑎.

1.3.2. Proposition

Congruence modulo 𝑛 is an equivalence relation.

1.3.3. Definition: Residue Class

The equivalence class of 𝑎 ∈ ℤ for this relation is called the congruence / residue class of 𝑎 mod 𝑛.

We can also write 𝑎 = 𝑎 mod 𝑛 = {𝑎 + 𝑘𝑛 : 𝑘 ∈ ℤ}

1.3.4. Proposition

There are exactly 𝑛 different residue classes modulo 𝑛: 0, 1, …𝑛 − 1 (can be proved using division algorithm). The
quotient set is denoted by ℤ/𝑛ℤ = {0, 1, …, 𝑛 − 1}.
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Preliminaries Modular Arithmetic — 1.3

1.3.5. Proposition

Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ. If 𝑎 ≡ 𝑏(mod 𝑛) and 𝑐 ≡ 𝑑(mod 𝑛) then 𝑎 + 𝑐 ≡ 𝑏 + 𝑐(mod 𝑛) and 𝑎𝑐 ≡ 𝑏𝑑(mod 𝑛).

In particular, 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎 + 𝑐 = 𝑏 + 𝑑 and 𝑎𝑐 = 𝑏𝑑

1.3.6. Definition: Group of Units

The group of units of ℤ/𝑛ℤ, denoted by (ℤ/𝑛ℤ)×, is the subset of ℤ/𝑛ℤ consisting of the residue classes which are
invertible for the multiplication operation, i.e.

(ℤ/𝑛ℤ)× = {𝑎 ∈ ℤ/𝑛ℤ | ∃𝑐 ∈ ℤ/𝑛ℤ such that 𝑎 ⋅ 𝑐 = 1}.

1.3.7. Proposition

(ℤ/𝑛ℤ)× = {𝑎 ∈ ℤ/𝑛ℤ | (𝑎, 𝑛) = 1}.

Proof: (⊆) Let 𝑎 ∈ (ℤ/𝑛ℤ)×. Then ∃𝑐 ∈ ℤ/𝑛ℤ such that 𝑎 ⋅ 𝑐 = 1. Therefore 𝑎𝑐 = 1 + 𝑛𝑘 for some 𝑘 ∈ ℤ, which we
can rewrite as 𝑎𝑐 + 𝑛(−𝑘) = 1. Therefore by the remark on Bezout’s Identity, we have (𝑎, 𝑛) = 1.

(⊇) Let 𝑎 ∈ ℤ/𝑛ℤ and suppose (𝑎, 𝑛) = 1. By Bezout’s Identity, ∃𝑥, 𝑦 ∈ ℤ such that 𝑎𝑥 + 𝑛𝑦 = 1. Thus 𝑎𝑥 = 1 −
𝑛𝑦 ≡ 1 (mod 𝑛), so 𝑎 ⋅ 𝑥 = 1 and therefore 𝑎 ∈ (ℤ/𝑛ℤ)×.

⬜

1.3.8. Example

(ℤ/9ℤ)× = {1, 2, 4, 5, 7, 8}.

1.4. Problems

1.4.1. Exercise

(Dummit and Foote, 0.2.4) Let 𝑎, 𝑏, 𝑁  be fixed integers with 𝑎 and 𝑏 nonzero and let 𝑑 = (𝑎, 𝑏). Suppose (𝑥0, 𝑦0) is
a particular solution to 𝑎𝑥 + 𝑏𝑦 = 𝑁 , i.e., 𝑎𝑥0 + 𝑏𝑦0 = 𝑁 . Prove that, for any integer 𝑡, the pair of integers

𝑥 = 𝑥0 + 𝑏
𝑑
𝑡, 𝑦 = 𝑦0 − 𝑎

𝑑
𝑡

is also a solution to 𝑎𝑥 + 𝑏𝑦 = 𝑁 . Also try to prove that all solutions to 𝑎𝑥 + 𝑏𝑦 = 𝑁  are of the form above.

Solution
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Preliminaries Problems — 1.4

1.4.2. Exercise

(Dummit and Foote, 0.3.11) Let 𝑎, 𝑏 ∈ ℤ/𝑛ℤ. Prove that if 𝑎, 𝑏 ∈ (ℤ/𝑛ℤ)×, then 𝑎 ⋅ 𝑏 ∈ (ℤ/𝑛ℤ)×.

Solution

1.4.3. Exercise

(Dummit and Foote, 0.3.15) For each of the following pairs of integers 𝑎 and 𝑛, show that 𝑎 is relatively prime to 𝑛
and determine the multiplicative inverse of 𝑎 in ℤ/𝑛ℤ.

Solution
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2. Groups

2.1. Groups

2.1.1. Definition: Binary Operation

A binary operation ⋆ on a set 𝑆 is a function ⋆ : 𝑆 × 𝑆 → 𝑆. For 𝑎, 𝑏 ∈ 𝑆, we will write 𝑎 ⋆ 𝑏 for ⋆ (𝑎, 𝑏).

A binary operation ⋆ on a set 𝑆 is associative if, for all 𝑎, 𝑏, 𝑐 ∈ 𝑆,

𝑎 ⋆ (𝑏 ⋆ 𝑐) = (𝑎 ⋆ 𝑏) ⋆ 𝑐.

A binary operation ⋆ on a set 𝑆 is commutative if, ∀𝑎, 𝑏 ∈ 𝑆,

𝑎 ⋆ 𝑏 = 𝑏 ⋆ 𝑎.

2.1.2. Example

1. + (usual addition) is an associative and commutative binary operation on ℤ and other sets
2. × (usual multiplication) is an associative and commutative binary operation for these sets as well
3. The function

⋆ : ℤ × ℤ ⟶ ℤ
(𝑚, 𝑛) ↦ 𝑚2 + 𝑛2

is a commutative binary operation on ℤ, but not associative.

2.1.3. Definition: Identity

Let ⋆ be a binary operation on a set 𝑆. An identity is an element 𝑒 ∈ 𝑆 such that

𝑒 ⋆ 𝑎 = 𝑎 and 𝑎 ⋆ 𝑒 = 𝑎∀𝑎 ∈ 𝑆.

2.1.4. Proposition

Let ⋆ be a binary operation on a set 𝑆. Then 𝑆 has at most one identity.

Proof: Suppose that 𝑒, 𝑒′ ∈ 𝑆 are both identities. Then, since 𝑒 is an identity, we have 𝑒 ⋆ 𝑒′ = 𝑒′ but also, since 𝑒′ is
an identity, we have 𝑒 ⋆ 𝑒′ = 𝑒. Therefore 𝑒 = 𝑒′.

⬜
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2.1.5. Definition: Invertible

Let ⋆ be an associative binary operation on a set 𝑆 and suppose there is an identity 𝑒. We say that an element of 𝑎 ∈
𝑆 is invertible if ∃𝑏 ∈ 𝑆 such that

𝑎 ⋆ 𝑏 = 𝑒 and 𝑏 ⋆ 𝑎 = 𝑒

and in this case, we say that 𝑏 is an inverse of 𝑎.

2.1.6. Proposition

Let ⋆ be an associative binary operation on a set 𝑆 and suppose that there is an identity 𝑒. If 𝑎 ∈ 𝑆 is invertible,
then 𝑎 has a unique inverse.

Proof: Suppose that 𝑏, 𝑐 ∈ 𝑆 are inverses of 𝑎 ∈ 𝑆. Then

𝑏 = 𝑏 ⋆ 𝑒 = 𝑏 ⋆ (𝑎 ⋆ 𝑐) = (𝑏 ⋆ 𝑎) ⋆ 𝑐 = 𝑒 ⋆ 𝑐 = 𝑐.

We denote inverses by 𝑎−1.

⬜

2.1.7. Definition: Group

A group is an ordered pair (𝐺, ⋆), where 𝐺 is a set and ⋆ is a binary operation on 𝐺 satisfying
1. the operation is associative
2. 𝐺 has an identity
3. every element 𝑎 ∈ 𝐺 is invertible

(fourth one that 𝐺 is closed under ⋆ is implicit)

2.1.8. Definition: Abelian Group

A group is abelian if ⋆ is commutative.

2.1.9. Definition: Group Order

The order of a group (𝐺, ⋆) is the cardinality |𝐺| of the set 𝐺. If the order is finite, then (𝐺, ⋆) is a finite group.

2.1.10. Definition: General and Special Linear Groups

The general linear group over a field 𝐹  of degree 𝑛, denoted by GL𝑛(𝐹), is the set of 𝑛 × 𝑛 invertible matrices
together with the operation matrix multiplication. I.e., we have

GL𝑛(𝐹) = {𝐴 ∈ 𝑀𝑛(𝐹) : det 𝐴 ≠ 0}

The special linear group over a field 𝐹  of degree 𝑛, denoted by SL𝑛(𝐹), is the subgroup of GL𝑛(𝐹) of matrices
with determinant 1.
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2.1.11. Example

1. (ℤ, +) is an abelian group.
2. (ℤ≥0, +) is not a group since there are no inverses.
3. (ℤ, ×) is not a group since there are no inverses.

2.1.12. Definition: Direct Product of Groups

If (𝐺, ⋆) and (𝐻, ⋄) are groups, then we can form a new group called their direct product, denoted by

𝐺 × 𝐻 = {(𝑔, ℎ) : 𝑔 ∈ 𝐺, ℎ ∈ 𝐻}

and whose binary operation is defined componentwise:

(𝑔1, ℎ1)(𝑔2, ℎ2) = (𝑔1 ⋆ 𝑔2, ℎ1 ⋄ ℎ2).

2.1.13. Proposition

Let (𝐺, ⋆) be a group. Let 𝑒 be the identity element. Then
1. (𝑎−1)−1 = 𝑎∀𝑎 ∈ 𝐺
2. ∀𝑎, 𝑏 ∈ 𝐺, if 𝑎 ⋆ 𝑏 = 𝑒 or 𝑏 ⋆ 𝑎 = 𝑒, then 𝑏 = 𝑎−1

3. (𝑎 ⋆ 𝑏)−1 = 𝑏−1 ⋆ 𝑎−1∀𝑎, 𝑏 ∈ 𝐺
4. ∀𝑎1, 𝑎2, …, 𝑎𝑛 ∈ 𝐺, the value of 𝑎1 ⋆ 𝑎2 ⋆ ⋅ ⋅ ⋅ ⋆ 𝑎𝑛 is independent of how the expression is bracketed

Proof:

1. By definition, 𝑎 ⋆ 𝑎−1 = 𝑒 and 𝑎−1 ⋆ 𝑎 = 𝑒. But this also shows that 𝑎 is the inverse of 𝑎−1, i.e., that 𝑎 = (𝑎−1)−1.

2. Suppose that 𝑎 ⋆ 𝑏 = 𝑒 (the case 𝑏 ⋆ 𝑎 = 𝑒 is similar).

Then

𝑎 ⋆ 𝑏 = 𝑒 ⇒ 𝑎−1 ⋆ (𝑎 ⋆ 𝑏) = 𝑎−1 ⋆ 𝑒 ⇒ (𝑎−1 ⋆ 𝑎) ⋆ 𝑏 = 𝑎−1 ⇒ 𝑒 ⋆ 𝑏 = 𝑎−1 ⇒ 𝑏 = 𝑎−1

3. By (b), it suffices to show that

(𝑎 ⋆ 𝑏) ⋆ (𝑏−1 ⋆ 𝑎−1) = 𝑒.

To show this, observe that

(𝑎 ⋆ 𝑏) ⋆ (𝑏−1 ⋆ 𝑎−1) = 𝑎 ⋆ (𝑏 ⋆ (𝑏−1 ⋆ 𝑎−1)) = 𝑎 ⋆ ((𝑏 ⋆ 𝑏−1) ⋆ 𝑎−1) = 𝑎 ⋆ (𝑒 ⋆ 𝑎−1) = 𝑎 ⋆ 𝑎−1 = 𝑒.

4. Can be shown by induction on 𝑛 – see DF section 1.1 prop 1.

⬜
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2.1.14. Proposition

Let 𝐺 be a group. Let 𝑒 be the identity element. Let 𝑎, 𝑏, 𝑐 ∈ 𝐺. We have
1. If 𝑎 ⋆ 𝑏 = 𝑎 ⋆ 𝑐, then 𝑏 = 𝑐
2. If 𝑏 ⋆ 𝑎 = 𝑐 ⋆ 𝑎, then 𝑏 = 𝑐

Proof:
1. Left multiplying by 𝑎−1 on both sides we get

𝑎−1 ⋆ (𝑎 ⋆ 𝑏) = 𝑎−1 ⋆ (𝑎 ⋆ 𝑐) ⇒ (𝑎−1 ⋆ 𝑎) ⋆ 𝑏 = (𝑎−1 ⋆ 𝑎) ⋆ 𝑐 = 𝑒 ⋆ 𝑏 = 𝑒 ⋆ 𝑐 ⇒ 𝑏 = 𝑐.

2. Similar with a right multiplication.

⬜

2.1.15. Remark

We will use multiplicative notation for groups:

𝑎𝑛 =

{
{
{
{
{
{
{𝑎 ⋅ 𝑎 ⋅ ⋅ ⋅ 𝑎⏟⏟⏟⏟⏟

𝑛 times

if 𝑛 > 0

1 if 𝑛 = 0
𝑎−1 ⋅ 𝑎−1 ⋅ ⋅ ⋅ 𝑎−1⏟⏟⏟⏟⏟⏟⏟

n times

if 𝑛 < 0

Notice then 𝑎𝑚𝑎𝑛 = 𝑎𝑚+𝑛, but 𝑎𝑛𝑏𝑛 ≠ (𝑎𝑏)𝑛 in the general case.

For an abelian group, we may also use additive notation, i.e.

𝑛𝑎 =

{{
{{
{
{{
{{𝑎 + ⋅ ⋅ ⋅ +𝑎⏟⏟⏟⏟⏟

n times

if 𝑛 > 0

1 if 𝑛 = 0
(−𝑎) + (−𝑎) + ⋅ ⋅ ⋅ +(−𝑎)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

−𝑛 times

if 𝑛 < 0

2.1.16. Definition: Element order

Let 𝐺 be a group and let 𝑎 ∈ 𝐺. The order of 𝑎 is the smallest positive integer 𝑛 such that 𝑎𝑛 = 1, if such an integer
exists; otherwise, the order of 𝑎 is defined to be infinity. We denote the order of 𝑎 by |𝑎| or ord(𝑎).

2.1.17. Example

1. An element of a group has order 1 iff it’s the identity
2. In the additive group ℤ, every element has infinite order
3. In the group GL2(ℚ), the matrix (2

0
0
3) has infinite order, and (0

1
−1
0 ) has order 4.

4. A matrix 𝐴 ∈ GL𝑛(ℂ) has finite order iff 𝐴 is diagonalizable and all its eigenvalues are roots of unity
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2.2. Dihedral Groups

2.2.1. Definition: Dihedral Group

Let 𝑛 ≥ 3 be an integer. The dihedral group 𝐷2𝑛 is the set of isometries of the plane ℝ2 that take the regular 𝑛-gon
centered at (0, 0) and with a vertex at (1, 0) to itself. (Equivalently, it is the set of rigid motions in ℝ3 taking this 𝑛-
gon to itself). The binary operation on this group is composition.) Other books may denote this 𝐷𝑛.

It consists of
• (counterclockwise) rotation through an angle 2𝜋𝑘/𝑛 for 𝑘 = 0, 1, …, 𝑛 − 1
• reflection wrt the line passing through (0, 0) of slope tan(𝜋𝑘/𝑛) for 𝑘 = 0, 1, …, 𝑛 − 1

Let 𝑟 denote the rotation by 2𝜋/𝑛 and let 𝑠 denote the reflection wrt the 𝑥-axis. Then
• 𝑟𝑘 is the rotation by 2𝜋𝑘/𝑛
• 𝑟𝑘𝑠 is the reflection wrt the line passing through (0, 0) of slope tan(𝜋𝑘/𝑛)

Therefore 𝐷2𝑛 = {1, 𝑟, …, 𝑟𝑛−1, 𝑠, 𝑟𝑠, …, 𝑟𝑛−1𝑠}. Writing the isometries above in terms of their matrices, we have

𝑟𝑘 = (
cos(2𝜋𝑘

𝑛 )
sin(2𝜋𝑘

𝑛 )
− sin(2𝜋𝑘

𝑛 )
cos(2𝜋𝑘

𝑛 )
); 𝑟𝑘𝑠 = (

cos(2𝜋𝑘
𝑛 )

sin(2𝜋𝑘
𝑛 )

sin(2𝜋𝑘
𝑛 )

− cos(2𝜋𝑘
𝑛 )

)

Since every element of 𝐷2𝑛 can be expressed in terms of 𝑟 and 𝑠 and their inverses, we say that 𝑟 and 𝑠 generate or
are generators of the group 𝐷2𝑛. The elements 𝑟 and 𝑠 satisfy the relations

𝑟𝑛 = 1, 𝑠2 = 1, 𝑠𝑟 = 𝑟−1𝑠

These relations suffice to show that any product involving the elements 𝑟 and 𝑠 and their inverses is equal to one of
the products 1, 𝑟, …, 𝑟𝑛−1, 𝑠, 𝑟𝑠, …, 𝑟𝑛−1𝑠. These generators, together with the relations 𝑟𝑛 = 1, 𝑠2 = 1, 𝑠𝑟 = 𝑟−1𝑠
form a presentation of 𝐷2𝑛 and we indicate this by writing

𝐷2𝑛 = ⟨𝑟, 𝑠 : 𝑟𝑛 = 1, 𝑠2 = 1, 𝑠𝑟 = 𝑟−1𝑠⟩.
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2.3. Symmetric Groups

2.3.1. Definition: Permutation

Let Ω be a set and let 𝑆Ω = Perm(Ω) denote the set of all permutations of Ω. A permutation of Ω is a bijective
function 𝜎 : Ω → Ω. Since bijective functions are closed under composition, if 𝜎, 𝜏 ∈ 𝑆Ω then 𝜎𝜏 = 𝜎 ∘ 𝜏 ∈ 𝑆Ω.
Composition is a binary operation on 𝑆Ω.

Notice (𝑆Ω, ∘) is a group:
1. Composition is associative
2. idΩ ∈ 𝑆Ω is an identity
3. Every 𝜎 ∈ 𝑆Ω is invertible because 𝜎 is bijective and so 𝜎−1 ∈ 𝑆Ω

We call (𝑆Ω, ∘) the symmetric group on Ω. If Ω = {1, 2, …, 𝑛} then 𝑆Ω = 𝑆𝑛, the symmetric group of degree 𝑛. We
remark that |𝑆𝑛| = 𝑛! (there are 𝑛 permutations of a set of 𝑛 elements).

2.3.2. Definition: k-cycle

A permutation 𝜎 ∈ 𝑆𝑛 is a 𝑘-cycle if ∃ distinct 𝑎1, 𝑎2, …, 𝑎𝑘 ∈ {1, 2, …, 𝑛} such that
• 𝜎(𝑎1) = 𝑎2, …, 𝜎(𝑎𝑘−1) = 𝑎𝑘, 𝜎(𝑎𝑘) = 𝑎1 and
• 𝜎(𝑖) = 𝑖∀𝑖 ∈ {1, 2, …, 𝑛} \ {𝑎1, 𝑎2, …, 𝑎𝑛}

2.3.3. Example

1. 𝜎 ∈ 𝑆5 defined by

1 ↦ 5, 2 ↦ 1, 3 ↦ 3, 4 ↦ 4, 5 ↦ 2

has a 3-cycle, 𝜎 = (1 5 2)
2. 𝜎 ∈ 𝑆4 defined by

1 ↦ 3, 2 ↦ 4, 3 ↦ 1, 4 ↦ 2

has cycles (1 3), (2 4) and can be written as the product (1 3)(2 4)

2.3.4. Definition: Disjoint cycle

Two cycles (𝑎1 𝑎2 ⋅ ⋅ ⋅  𝑎𝑘) and (𝑏1 𝑏2 ⋅ ⋅ ⋅  𝑏𝑙) are disjoint if 𝑎𝑖 ≠ 𝑏𝑗∀𝑖, 𝑗.
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2.3.5. Proposition

1. Any 𝑘-cycle has order 𝑘
2. If (𝑎1, 𝑎2, ⋅ ⋅ ⋅, 𝑎𝑘) is a 𝑘-cycle in 𝑆𝑛, then (𝑎1𝑎2 ⋅ ⋅ ⋅ 𝑎𝑘)−1 = (𝑎𝑘𝑎𝑘−1 ⋅ ⋅ ⋅ 𝑎1)
3. If (𝑎1𝑎2 ⋅ ⋅ ⋅ 𝑎𝑘) and (𝑏1𝑏2 ⋅ ⋅ ⋅ 𝑏𝑙) are disjoint then they commute

Proof:
1. We can show that ∀𝑛 ∈ ℕ and 𝑗 ∈ ℤ/𝑘ℤ, we have

𝜎𝑛(𝑎𝑗) = 𝑎𝑗+𝑛(mod 𝑘).

This is done via induction, since trivially 𝜎(𝑎𝑗+𝑛(mod 𝑘)) = 𝑎𝑗+𝑛+1(mod 𝑘). Then note this implies 𝜎𝑘 = Id and ∀𝑗 <
𝑘, 𝜎𝑗 ≠ Id.

2. Let 𝜎 = (𝑎1𝑎2 ⋅ ⋅ ⋅ 𝑎𝑘) and 𝜏 = (𝑎𝑘𝑎𝑘−1 ⋅ ⋅ ⋅ 𝑎1). We want to show

𝜏𝜎 = 1 = Id .

Then for 1 ≤ 𝑗 < 𝑘,
• 𝜎(𝑎𝑗) = 𝑎𝑗+1, (𝜏𝜎)(𝑎𝑗) = 𝜏(𝑎𝑗+1) = 𝑎𝑗
• 𝜎(𝑎𝑘) = 𝑎1, (𝜏𝜎)(𝑎𝑘) = 𝜏(𝑎1) = 𝑎𝑘

For 𝑗 ∈ {1, 2, …, 𝑛} \ {𝑎1, 𝑎2, …, 𝑎𝑘}
• 𝜎(𝑗) = 𝑗, (𝜏𝜎)(𝑗) = 𝜏(𝑗) = 𝑗

3.

⬜
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2.3.6. Theorem: Cycle Decomposition

Every 𝜎 ∈ 𝑆𝑛 can be written as a product of disjoint cycles. We call this factorization the cycle decomposition of
𝑣. It is unique up to the order of the cycles.

To find this factorization:
1. To start a new cycle, pick the smallest element of {1, 2, …, 𝑛} which has not yet appeared in a previous cycle –

call it 𝑎.
2. Read off 𝜎(𝑎) from the given description fo 𝜎 – call it 𝑏. If 𝑏 = 𝑎, close the cycle with a right parenthesis; this

completes a cycle – return to step 1. If 𝑏 ≠ 𝑎, write 𝑏 next to 𝑎 in this cycle. Repeat this step iteratively with
𝜎(𝑏).

Proof: The algorithm above gives a constructive proof of existence of cycle decompositions. To prove uniqueness, we
need to show that if

𝜎 = 𝛼1𝛼2 ⋅ ⋅ ⋅ 𝛼𝑝 = 𝛽1𝛽2 ⋅ ⋅ ⋅ 𝛽𝑞

are two cycle decompositions of a permutation 𝜎 ∈ 𝑆𝑛, with no 1-cycles, then 𝑝 = 𝑞, and up to rearranging the
cycles, 𝛼𝑖 = 𝛽𝑖 for 𝑖 = 1, 2, …, 𝑝. We proceed by induction on 𝑚 = max{𝑝, 𝑞}.

For 𝑚 = 0 the result is trivial. Suppose the result holds for 𝑚 = 𝑡 − 1 for 𝑡 ≥ 1. Suppose

𝜎 = 𝛼1𝛼2 ⋅ ⋅ ⋅ 𝛼𝑝 = 𝛽1𝛽2 ⋅ ⋅ ⋅ 𝛽𝑞

are two cycle decompositions of a permutation 𝜎 ∈ 𝑆𝑛, with no 1-cycles and with max{𝑝, 𝑞} = 𝑡. Without loss of
generality assume 𝑝 = 𝑡 ≥ 1. Let 𝛼1 = (𝑎1 𝑎2 ⋅ ⋅ ⋅  𝑎𝑘). Without loss of generality, suppose that 𝑎1 appears in 𝛽1, and
write 𝛽1 = (𝑎1 𝑏2 ⋅ ⋅ ⋅  𝑏ℓ). Then

𝑎2 = 𝜎(𝑎1) = 𝑏2

⇒ 𝑎3 = 𝜎(𝑎2) = 𝜎(𝑏2) = 𝑏3

⋮
⇒ 𝑎𝑘 = 𝜎(𝑎𝑘−1) = 𝜎(𝑏𝑘−1) = 𝑏𝑘

⇒ 𝜎(𝑏𝑘) = 𝜎(𝑎𝑘) = 𝑎1

Therefore 𝑘 = ℓ and 𝛼1 = 𝛽1. Let 𝜎′ = 𝛼−1
1 𝜎 = 𝛽−1

1 𝜎 so 𝜎′ = 𝛼2 ⋅ ⋅ ⋅ 𝛼𝑝 = 𝛽2 ⋅ ⋅ ⋅ 𝛽𝑞 . Iterate this process and we get
the desired result.

⬜

2.3.7. Example

𝑖 1 2 3 4 5 6 7 8

𝜎(𝑖) 4 7 2 8 5 6 3 1

Notice the cycles are 𝜎 = (1 4 8)(2 7 3)(5)(6).
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2.3.8. Example

We compute products by reading the permutations right to left. I.e. (1 2)(1 3) = (1 3 2). (1 is mapped to 3 and 3 is
mapped to itself, then 3 is mapped to 1 and 1 is mapped to 2, then 2 is mapped to itself and 2 is mapped to 1).

𝜎 = (1 4 6)(2 3)(5 7)
𝜏 = (1 3 5 7)(2 4 6)
𝜏𝜎 = (1 6 3 4 2 5)

𝜎−1 = (6 4 1)(3 2)(7 5) = (1 6 4)(2 3)(5 7)

Note that 𝑆𝑛 is non abelian for 𝑛 ≥ 3, since (1 2) ∘ (1 3) ≠ (1 3) ∘ (1 2). Note also that since disjoint cycles permute
numbers in disjoint sets, it follows that disjoint cycles commute.

2.3.9. Definition: Transpositions

2-cycles are also called transpositions.

2.3.10. Proposition

Every 𝜎 ∈ 𝑆𝑛 can be written as a product of transpositions.

Proof: Since every 𝜎 ∈ 𝑆𝑛 is a product of cycles, it suffices to prove the proposition for cycles. Observe (𝑎1 ⋅ ⋅ ⋅ 𝑎𝑘) =
(𝑎1𝑎2)(𝑎2𝑎3) ⋅ ⋅ ⋅ (𝑎𝑘−1𝑎𝑘), so this is true.

⬜

2.3.11. Definition: Inversion

A pair of integers (𝑖, 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 is said to be an inversion for 𝜎 ∈ 𝑆𝑛 if 𝜎(𝑖) > 𝜎(𝑗). We say 𝜎 is even
(resp. odd) if it has an even (resp. odd) number of inversions.

2.3.12. Definition: Permutation Sign

The sign of a permutation 𝜎 ∈ 𝑆𝑛 with 𝑁(𝜎) inversions is

𝜀(𝜎) = (−1)𝑁(𝜎) = {+1 if 𝜎 is even
−1 if 𝜎 is odd

Notice we can write this as

𝜀(𝜎) = ∏
1≤𝑖<𝑗≤𝑛

𝜎(𝑖) − 𝜎(𝑗)
𝑖 − 𝑗

.
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2.3.13. Example

1. 1 ∈ 𝑆𝑛 is even (zero inversions)
2. (1 4 3 2) ∈ 𝑆4

• 𝜎(1) = 4 > 𝜎(2) = 1 ⇒ (1, 2) is an inversion
• 𝜎(1) = 4 > 𝜎(3) = 2 ⇒ (1, 3) is an inversion
• Also (1, 4) is but the rest (2, 3), (2, 4), (3, 4) are not

Therefore the number of inversions for 𝜎 is 𝑁(𝜎) = 3 and 𝜀(𝜎) = (−1)𝑁(𝜎) = −1.

2.3.14. Lemma

For every 𝜌 ∈ 𝑆𝑛 and for every transposition 𝜏 ∈ 𝑆𝑛, 𝜀(𝜌𝜏) = −𝜀(𝜌), i.e., these permutations have opposite
parity.

Proof: Let 𝜌 ∈ 𝑆𝑛. Let (𝑖𝑗) ∈ 𝑆𝑛 with 𝑖 < 𝑗. Then for 𝑎 ∈ {1, 2, …, 𝑛},

𝜌𝜏(𝑎) =
{{
{
{{𝜌(𝑎) if 𝑎 ≠ 𝑖, 𝑗

𝜌(𝑗) if 𝑎 = 𝑖
𝜌(𝑖) if 𝑎 = 𝑗

Therefore, for any pair of integers (𝑥, 𝑦) with 1 ≤ 𝑥 < 𝑦 ≤ 𝑛 and {𝑥, 𝑦} ∩ {𝑖, 𝑗} = ∅:

(𝑥, 𝑦) is an inversion for 𝜌𝜏 ⟺ (𝑥, 𝑦) is an inversion for 𝜌.

• For 𝑥 ∈ {1, 2, …, 𝑛} \ {𝑖, 𝑗}
1. 𝑥 < 𝑖 < 𝑗

‣ (𝑟, 𝑖) is an inversion for 𝜌𝜏 ⟺ (𝑥, 𝑗) is an inversion for 𝜌
‣ (𝑥, 𝑗) is an inversion for 𝜌𝜏 ⟺ (𝑥, 𝑖) is an inversion for 𝜌

2. 𝑖 < 𝑥 < 𝑗
‣ (𝑖, 𝑥) is an inversion for 𝜌𝜏 ⟺ (𝑥, 𝑗) is not an inversion for 𝜌
‣ (𝑥, 𝑗) is an inversion for 𝜌𝜏 ⟺ (𝑖, 𝑥) is not an inversion for 𝜌

3. 𝑖 < 𝑗 < 𝑥
‣ (𝑖, 𝑥) is an inversion for 𝜌𝜏 ⟺ (𝑗, 𝑥) is an inversion for 𝜌
‣ (𝑗, 𝑥) is an inversion for 𝜌𝜏 ⟺ (𝑖, 𝑥) is an inversion for 𝜌

4. (𝑖, 𝑗) is an inversion for 𝜌𝜏 ⟺ (𝑖, 𝑗) is not an inversion for 𝜌

Thus the number of inversions for 𝜌𝜏 ≢ the number of inversions for 𝜌 (mod 2).

⬜
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2.3.15. Proposition

A permutation 𝜎 ∈ 𝑆𝑛 is even (resp. odd) iff it can be written as a product of an even (resp. odd) number of
transpositions.

Proof: Let 𝜎 ∈ 𝑆𝑛. We know 𝜎 can be written as a product of transpositions, say 𝜎 = 𝛾1𝛾2 ⋅ ⋅ ⋅ 𝛾𝑘 so we just need to
show 𝜀(𝜎) = (−1)𝑘. We can do this from the lemma + induction.

⬜

2.3.16. Proposition

Suppose 𝜎, 𝜏 ∈ 𝑆𝑛. Then
• 𝜀(𝜎𝜏) = 𝜀(𝜎)𝜀(𝜏)
• 𝜀(𝜎−1) = 𝜀(𝜎)

Proof: Suppose 𝜎 = 𝛾1𝛾2 ⋅ ⋅ ⋅ 𝛾𝑘 and 𝑧 = 𝛾′
1𝛾′

2 ⋅ ⋅ ⋅ 𝛾′
𝑙  where the 𝛾′

𝑖 ’s are transpositions.

⬜

2.3.17. Definition: Alternating Group of Degree 𝑛

The group consisting of the set of all even permutations in 𝑆𝑛 under composition. We denote it by 𝐴𝑛.

2.3.18. Definition: Klein 4-group

The Klein 4-group, denoted by 𝑉4, is the group presentation 𝑉4 = (𝑎, 𝑏 : 𝑎2 = 𝑏2 = (𝑎𝑏)2 = 𝑒). I.e., the group is an
abelian group with 4 elements where every element is a self inverse. We can think of it as the permutation group

𝑉 = {(), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

2.4. Problems

2.4.1. Exercise

(Dummit and Foote, 1.1.35) If 𝑥 is an element of finite order 𝑛 in a group 𝐺, use the Division Algorithm to show
that any integral power of 𝑥 equals one of the elements of the set {1, 𝑥, 𝑥2, …, 𝑥𝑛−1}.

Solution
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2.4.2. Exercise

(Dummit and Foote, 1.2.4) If 𝑛 = 2𝑘 is even and 𝑛 ≥ 4, show that 𝑧 = 𝑟𝑘 is an element of order 2 which commutes
with all elements of 𝐷2𝑛. Show also that 𝑧 is the only non-identity element of 𝐷2𝑛 which commutes with all
elements of 𝐷2𝑛.

Solution

2.4.3. Exercise

Prove that, for all 𝑛 ≥ 2, |𝐴𝑛| = 𝑛!/2.

Solution

2.4.4. Exercise

(Dummit and Foote, 1.3.16) Prove that the number of 𝑘-cycles in 𝑆𝑛 is given by

𝑛(𝑛 − 1)(𝑛 − 2) ⋅ ⋅ ⋅ (𝑛 − 𝑘 + 1)
𝑘

.

Solution
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3. Subgroups

3.1. Subgroups

3.1.1. Definition: Subgroup

A subset 𝐻  of a group 𝐺 is a subgroup if it satisfies:
1. Closure: If 𝑎 and 𝑏 are in 𝐻 , then 𝑎𝑏 ∈ 𝐻
2. Identity: 1 ∈ 𝐻
3. Inverses: If 𝑎 ∈ 𝐻 , then 𝑎−1 ∈ 𝐻

We write 𝐻 ≤ 𝐺 to indicate that 𝐻  is a subgroup of 𝐺.

3.1.2. Example

1. If 𝐺 is a group, then {1} and 𝐺 are both subgroups of 𝐺. The former is the trivial subgroup and a subgroup 𝐻 ≤
𝐺 is called proper if 𝐻 ≠ 𝐺

2. The subgroup relation is transitive
3. 𝐴𝑛 ≤ 𝑆𝑛
4. The set {1, (1 2)} is a subgroup of 𝑆3
5. Let 𝐹  be a field. The special linear group of degree n over F, defined as

SL𝑛(𝐹) = {𝐴 ∈ GL𝑛(𝐹) : det(𝐴) = 1},

is a subgroup of GL𝑛(𝐹).

3.1.3. Definition: Centralizer

Let 𝐴 be a subset of a group 𝐺. The centralizer of 𝐴 in 𝐺, defined by

𝐶𝐺(𝐴) = {𝑔 ∈ 𝐺 : 𝑔𝑎𝑔−1 = 𝑎∀𝑎 ∈ 𝐴}

is a subgroup of 𝐺.

Proof: Let 𝑔, ℎ ∈ 𝐶𝐺(𝐴), so 𝑔𝑎𝑔−1 = 𝑎 and ℎ𝑎ℎ−1 = 𝑎∀𝑎 ∈ 𝐴. Then 𝑔ℎ = (𝑎𝑔𝑎−1)(𝑎ℎ𝑎−1) = 𝑎𝑔ℎ𝑎−1 ⇒
(𝑔ℎ)𝑎𝑔ℎ−1 = 𝑎 so 𝑔ℎ ∈ 𝐻 . Thus 𝐶𝐺(𝐴) is closed. Notice 𝑒𝑎𝑒−1 = 𝑎∀𝑎 ∈ 𝐴, so 𝑒 ∈ 𝐶𝐺(𝐴). Suppose 𝑔 ∈ 𝐶𝐺(𝐴), so
𝑔𝑎𝑔−1 = 𝑎∀𝑎 ∈ 𝐴. Then 𝑎 = 𝑔−1𝑎𝑔∀𝑎 ∈ 𝐴, so 𝑔−1 ∈ 𝐶𝐺(𝐴).

3.1.4. Definition: Center

The center of a group 𝐺, defined as

𝑍(𝐺) = {𝑔 ∈ 𝐺 : 𝑔𝑥 = 𝑥𝑔∀𝑥 ∈ 𝐺}

is a subgroup of 𝐺. Actually, since 𝑍(𝐺) = 𝐶𝐺(𝐺), this is just a special case of the centralizer.
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3.1.5. Definition: Normalizer

Let 𝐴 be a subset of a group 𝐺. For 𝑔 ∈ 𝐺, define 𝑔𝐴𝑔−1 = {𝑔𝑎𝑔−1 : 𝑎 ∈ 𝐴}. The normalizer of 𝐴 in 𝐺, defined as

𝑁𝐺(𝐴) = {𝑔 ∈ 𝐺 : 𝑔𝐴𝑔−1 = 𝐴},

is a subgroup of 𝐺.

3.1.6. Proposition

Let 𝐴 be a subset of a group 𝐺. Then 𝑍(𝐺) ≤ 𝐶𝐺(𝐴) ≤ 𝑁𝐺(𝐴) ≤ 𝐺.

Proof: Notice since 𝐴 ⊆ 𝐺, 𝑍(𝐺) ⊆ 𝐶𝐺(𝐴). Also 𝑁𝐺(𝐴) ⊆ 𝐺, so the only nontrivial inequality is the middle one.
Let 𝑔 ∈ 𝐶𝐺(𝐴) so that 𝑔𝑎𝑔−1 = 𝑎∀𝑎 ∈ 𝐴. Then 𝑔𝐴𝑔−1 = {𝑔𝑎𝑔−1 : 𝑎 ∈ 𝐴} = 𝐴 so 𝑔 ∈ 𝑁𝐺(𝐴).

⬜

3.1.7. Proposition

A subset 𝐻  of a group 𝐺 is a subgroup if and only if
1. 𝐻 ≠ ∅
2. ∀𝑥, 𝑦 ∈ 𝐻, 𝑥𝑦−1 ∈ 𝐻

Proof: (⟹) Suppose that 𝐻  is a subgroup. Then 1 ∈ 𝐻 , so 𝐻 ≠ ∅. Also, if 𝑥, 𝑦 ∈ 𝐻 , then 𝑦−1 ∈ 𝐻  and 𝑥𝑦−1 ∈ 𝐻 .

(⟸) Suppose a and b hold for 𝐻 ⊆ 𝐺. Since 𝐻  is nonempty, let 𝑐 ∈ 𝐻 . By condition 2, 𝑐𝑐−1 = 1 ∈ 𝐻 . Let 𝑎 ∈ 𝐻
and notice 1 ⋅ 𝑎−1 ∈ 𝐻  so 𝐻  is closed under inverses. Let 𝑎, 𝑏 ∈ 𝐻  and notice 𝑏−1 ∈ 𝐻  by the previous statement, so
𝑎(𝑏−1)−1 = 𝑎𝑏 ∈ 𝐻  so 𝐻  is closed under the operation.

⬜
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3.2. Cyclic Groups and Subgroups

3.2.1. Proposition

Let 𝐺 be a group and let 𝑎 ∈ 𝐺 be an element of finite order 𝑛. Then
1. ∀𝑚 ∈ ℤ, we have that 𝑎𝑚 = 1 ⟺ 𝑛 ∣ 𝑚
2. ∀𝑚, 𝑚′ ∈ ℤ, we have that 𝑎𝑚 = 𝑎𝑚′ ⟺ 𝑚 ≡ 𝑚′ (mod 𝑛)
3. ∀𝑚 ∈ ℤ, we have that ord(𝑎𝑚) = 𝑛

(𝑛,𝑚) .

Proof:

1. If 𝑛 ∣ 𝑚, then 𝑚 = 𝑛𝑞 for some 𝑞 ∈ ℤ and 𝑎𝑚 = 𝑎𝑛𝑞 = (𝑎𝑛)𝑞 = 1𝑞 = 1. Conversely, suppose 𝑎𝑚 = 1. By the
division algorithm, 𝑚 = 𝑛𝑞 + 𝑟, 𝑞, 𝑟 ∈ ℤ and 0 ≤ 𝑟 < 𝑛. Then 𝑎𝑟 = 𝑎𝑚−𝑛𝑞 = 𝑎𝑚𝑎−𝑛𝑞 = 𝑎𝑚(𝑎𝑛)−𝑞 = 1 ⋅ 1−𝑞 = 1.
Since 𝑛 = ord(𝑎) and 0 ≤ 𝑟 < 𝑛, this implies 𝑟 = 0.

2. 𝑎𝑚 = 𝑎𝑚′ ⇔ 𝑎𝑚𝑎−𝑚′ = 1 ⇔ 𝑎𝑚−𝑚′ = 1 ⇔
(𝑎)

𝑛 | 𝑚 − 𝑚′ ⇔ 𝑚 ≡ 𝑚′ (mod 𝑛).

3. Let 𝑘 = ord(𝑎𝑚). We have that

(𝑎𝑚)
𝑛

(𝑛,𝑚) = 𝑎
𝑚𝑛

(𝑛,𝑚) = (𝑎𝑛)
𝑚

(𝑛,𝑚) = 1
𝑚

(𝑛,𝑚) ⇒
(𝑎)

𝑘 ∣ 𝑛
(𝑛, 𝑚)

and

𝑎𝑚𝑘 = (𝑎𝑚)𝑘 = 1 ⟹
(𝑎)

𝑛 ∣ 𝑚𝑘 ⇒ 𝑛
(𝑛, 𝑚)

∣ 𝑚
(𝑛, 𝑚)

𝑘 ⇒ 𝑛
(𝑛, 𝑚)

∣ 𝑘.

Thus 𝑘 = 𝑛
(𝑛,𝑚) .

⬜

3.2.2. Definition: Cyclic Subgroup

Let 𝐺 be a group. The cyclic subgroup of 𝐺 generated by an element 𝑎 ∈ 𝐺, denoted (𝑎), is the subgroup consisting
of all powers of 𝑎, i.e.,

(𝑎) = {𝑎𝑘 : 𝑘 ∈ ℤ}.

The cyclic subgroup generated by 𝑎 is the smallest subgroup of 𝐺 containing 𝑎: any subgroup of 𝐺 containing 𝑎 will
have (𝑎) as a subgroup.

3.2.3. Example

1. The cyclic subgroup generated by (1 2 3) ∈ 𝑆3 is

((1 2 3)) = {1, (1 2 3), (1 3 2)}.
2. The cyclic subgroup generated by 𝜋 in the additive group (ℝ, +) is the set of all integer multiples of 𝜋, i.e.,

(𝜋) = {𝑘𝜋 : 𝑘 ∈ ℤ}.
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3.2.4. Definition: Cyclic Group and Group Generator

A group 𝐺 is cyclic if it can be generated by a single element, i.e., ∃𝑎 ∈ 𝐺 such that 𝐺 = (𝑎). In this case, we say
that 𝑎 is a generator of 𝐺.

3.2.5. Example

1. For 𝑛 ∈ ℤ≥0, the additive group ℤ/𝑛ℤ is a cyclic group of order 𝑛: ℤ/𝑛ℤ = (1).
2. The additive group ℤ is a cyclic group of infinite order: ℤ = (1).

3.2.6. Proposition

Let 𝐺 = (𝑎) be a cyclic group.

1. If ord(𝑎) = 𝑛, then 1, 𝑎, …, 𝑎𝑛−1 are the distinct elements of 𝐺 (which therefore has order 𝑛).
2. If ord(𝑎) = ∞, then the elements 𝑎𝑘 with 𝑘 ∈ ℤ are all distinct (and therefore 𝐺 has infinite order.)

Proof:

1. Suppose ord(𝑥) = 𝑛. By contradiction, suppose that that 𝑥𝑎 = 𝑥𝑏 for some 𝑎, 𝑏 ∈ {0, 1, …, 𝑛 − 1} with 𝑎 ≠ 𝑏.
Without loss of generality, suppose 𝑎 < 𝑏. Then 𝑥−𝑎𝑥𝑎 = 1 = 𝑥−𝑎𝑥𝑏 = 𝑥𝑏−𝑎. But since 𝑏 − 𝑎 ≤ (𝑛 − 1) − 0 < 𝑛,
we must have that 𝑥 cannot be order 𝑛, a contradiction. Therefore 1, 𝑥, …, 𝑥𝑛−1 are all distinct. Since 𝐺 is a cyclic
group, these are the only elements of 𝐺, so 𝑛 = |𝑥| = |𝐺|.

2. Apply the previous result in the limit as 𝑛 → ∞.

⬜
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3.2.7. Proposition

Let 𝐺 = (𝑎) be a cyclic group of finite order 𝑛.
1. For all 𝑏 ∈ 𝐺, we have ord(𝑏) ∣ 𝑛.
2. For every positive divisor 𝑑 of 𝑛, we have 𝑛𝑑 ≔ |{𝑏 ∈ 𝐺 : ord(𝑏) = 𝑑}| = 𝜑(𝑑).

Proof:

1. Let 𝑏 ∈ 𝐺. Then 𝑏 = 𝑎𝑚 for some 𝑚 ∈ ℤ. By 3.2.1, ord(𝑏) = 𝑛
(𝑛,𝑚) ∣ 𝑛.

2. By the previous proposition, 1, 𝑎, …, 𝑎𝑛−1 are the distinct elements of 𝐺. By Prop 3.2.1, ord(𝑎𝑚) = 𝑛
(𝑛,𝑚) . Thus 𝑛𝑑

is the number of integers 𝑚 with 0 ≤ 𝑚 < 𝑛 such that 𝑛
(𝑛,𝑚) = 𝑑. We will prove that

{𝑚 ∈ ℤ : 0 ≤ 𝑚 < 𝑛, 𝑛
(𝑛, 𝑚)

= 𝑑} = {𝑛𝑘
𝑑

: 𝑘 ∈ ℤ, 0 ≤ 𝑘 < 𝑑, (𝑘, 𝑑) = 1}.

Note the cardinality of the right hand side is precisely 𝜑(𝑑), so this will conclude the proof of the proposition.

To establish the above equality of sets, let first 𝑚 ∈ ℤ with 0 ≤ 𝑚 < 𝑛 and 𝑛
(𝑛,𝑚) = 𝑑. Then (𝑛, 𝑚) = 𝑛

𝑑 , so ∃𝑘 ∈
ℤ such that 𝑚 = 𝑛𝑘

𝑑 . Notice

0 ≤ 𝑚 < 𝑛 ⟹ 0 ≤ 𝑛𝑘
𝑑

< 𝑛𝑑
𝑑

⟹ 0 ≤ 𝑘 < 𝑑.

Since (𝑛, 𝑚) = 𝑛
𝑑 , we have 𝑛𝑑 = (𝑛𝑘

𝑑 , 𝑛𝑑
𝑑 ) = 𝑛

𝑑 (𝑘, 𝑑), so (𝑘, 𝑑) = 1.

In the other direction, let 𝑚 = 𝑛𝑘
𝑑  with 𝑘 ∈ ℤ and 0 ≤ 𝑘 < 𝑑 with (𝑘, 𝑑) = 1. Then 0 ≤ 𝑚 < 𝑛𝑑

𝑑 = 𝑛. Also
(𝑛, 𝑚) = (𝑛𝑑

𝑑 , 𝑛𝑘
𝑑 ) = 𝑛

𝑑 (𝑑, 𝑘) = 𝑛
𝑑 , so 𝑛

(𝑛,𝑚) = 𝑑.

⬜

3.2.8. Corollary

For every 𝑛 ∈ ℕ,

∑
1≤𝑑∣𝑛

𝜑(𝑑) = 𝑛.

Proof: Let 𝐺 = (𝑎) be a cyclic group of order 𝑛, (e.g., ℤ/𝑛ℤ). Then

𝑛 = |𝐺| = ∑
1≤𝑑∣𝑛

𝑛𝑑 = ∑
1≤𝑑∣𝑛

𝜑(𝑑).

Example: 10 = 𝜑(1) + 𝜑(2) + 𝜑(5) + 𝜑(10) = 1 + 1 + 4 + 4.

Alternate proof: consider rational numbers 1
𝑛 , 2

𝑛 , …, 𝑛
𝑛 . Obtain a new list by reducing each number to lowest terms, so

that the denominators in the new list are exactly divisors of 𝑛. If 𝑑 ∣ 𝑛, exactly 𝜑(𝑑) of the numbers will have 𝑑 as
their denominator, so there are ∑

1≤𝑑∣𝑛
𝜑(𝑑) elements in the new list, but since the lists have the same number of terms,

we’re done.

⬜
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4.1. Group Homomorphisms

4.1.1. Definition: Group Homomorphism

Let (𝐺1, ⋆) and (𝐺2, ⋄) be groups. A homomorphism from (𝐺1, ⋆) to (𝐺2, ⋄), is a function 𝜑 : 𝐺1 ⟶ 𝐺2 such that

𝜑(𝑥𝑦) = 𝜑(𝑥)𝜑(𝑦)∀𝑥, 𝑦 ∈ 𝐺1.

4.1.2. Proposition

Let 𝜑 : 𝐺1 → 𝐺2 be a group homomorphism.
1. If 𝑥1, 𝑥2, …, 𝑥𝑘 are elements of 𝐺1, then 𝜑(𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑘) = 𝜑(𝑥1)𝜑(𝑥2) ⋅ ⋅ ⋅ 𝜑(𝑥𝑘).
2. 𝜑(1𝐺1

) = 1𝐺2
.

3. ∀𝑥 ∈ 𝐺1, 𝜑(𝑎−1) = 𝜑(𝑥)−1.

Proof:

⬜

4.1.3. Proposition

Let 𝜑 : 𝐺1 → 𝐺2 be a group homomorphism.
1. If 𝐻1 ≤ 𝐺1, then 𝜑(𝐻1) ≤ 𝐺2
2. If 𝐻2 ≤ 𝐺2, then 𝜑−1(𝐻2) ≤ 𝐺1

Recall 𝜑(𝐻1) = {𝜑(𝑥) : 𝑥 ∈ 𝐻1} and 𝜑−1(𝐻2) = {𝑥 ∈ 𝐺 : 𝜑(𝑥) ∈ 𝐻2}.

Proof:
1. Let 𝐻1 ≤ 𝐺1. Since 𝐻1 is a subgroup, 1𝐺1

∈ 𝐻1. Therefore 1𝐺1
= 𝜑(1𝐺1

) ∈ 𝜑(𝐻1). Let 𝑎, 𝑏 ∈ 𝜑(𝐻1). Then 𝑎 =
𝜑(𝑥) and 𝑏 = 𝜑(𝑦) for some 𝑥, 𝑦 ∈ 𝐻1. Then 𝑎𝑏−1 = 𝜑(𝑥)𝜑(𝑦)−1 = 𝜑(𝑥)𝜑(𝑦−1) = 𝜑(𝑥𝑦−1). Since 𝐻1 is a
subgroup, 𝑥𝑦−1 ∈ 𝐻1. Then 𝑎𝑏−1 ∈ 𝜑(𝐻1).

⬜
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4.1.4. Definition: Image and Kernel

Let 𝜑 : 𝐺1 → 𝐺2 be a group homomorphism.
• The image of 𝜑 is

im 𝜑 = 𝜑(𝐺1) = {𝜑(𝑥) : 𝑥 ∈ 𝐺1}
• The kernel of 𝜑 is

ker 𝜑 = 𝜑−1({1}) = {𝑥 ∈ 𝐺1 : 𝐺(𝑥) = 1}

By the previous proposition, ker 𝜑 ≤ 𝐺 and im 𝜑 ≤ 𝐺2.

4.1.5. Proposition

Let 𝜑 : 𝐺1 → 𝐺2 be a group homomorphism. Then 𝜑 is injective ⟺ ker 𝜑 = {1𝐺1
}.

Proof: (⟹) Suppose 𝜑 is injective. Let 𝑥 ∈ ker 𝜑. Then 𝜑(𝑥) = 1𝐺1
= 𝜑(1𝐺1

). By injectivity, 𝑥 = 1𝐺1
.

(⟸) Suppose ker 𝜑 = {1𝐺1
}. Let 𝑥, 𝑦 ∈ 𝐺1. Then

𝜑(𝑥) = 𝜑(𝑦) ⟺ 𝜑(𝑥)(𝜑(𝑦))−1 = 1

⟺ 𝜑(𝑥𝑦−1) = 1

⟺ 𝑥𝑦−1 = 1
⟺ 𝑥 = 𝑦

⬜

4.1.6. Example

1. Recall the determinant det : GL𝑛(ℚ) → ℚ𝑥. Then ker(det) = SL𝑛(ℚ) and im(det) = ℚ𝑥.

2. For 𝜀 : 𝑆𝑛 → {±1} we have

ker(𝜀) = 𝐴𝑛

im(𝜀) = {{1} if 𝑛 = 1
{±1} if 𝑛 ≥ 2

3. Note |⋅| : ℂ𝑥 → ℝ𝑥 has ker(|⋅|) = {𝑧 ∈ ℂ : |𝑧| = 1} = 𝑆1 and im(|⋅|) = ℝ>0.

4. exp : (ℝ, +) → ℝ𝑥 has kernel ker(exp) = {0} and im(exp) = ℝ>0.

5. expℂ : (ℂ, +) → ℂ𝑥 has ker(expℂ) = 2𝜋𝑖ℤ and im(expℂ) = ℂ𝑥. Then exp−1
ℂ (𝑆1) = 𝑖ℝ and expℂ(𝑎 + 𝑏𝑖) =

𝑒𝑎(cos 𝑏 + 𝑖 sin 𝑏).

6. 𝜑 : 𝐷2𝑛 → 𝑆𝑛 is the map 𝜎𝑥(𝑖) = 𝑗 ⟺ 𝑥 takes vertex 𝑖 to vertex = 𝑗. Then ker 𝜑 = {1} because an isometry
of ℝ2 fixing 3 non collinear points is the identity. For 𝑛 = 3, |𝐷6| = |𝑆3| = 6, so 𝜑 is surjective. For 𝑛 > 3, 2𝑛 =
|𝐷2𝑛| < |𝑆𝑛| = 𝑛!.
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4.1.7. Proposition

Let 𝜑 : 𝐺1 → 𝐺2 and 𝜓 : 𝐺2 → 𝐺3 be group homomorphisms. Then 𝜓 ∘ 𝜑 is a group homomorphism.

Proof: Let 𝑥, 𝑦 ∈ 𝐺1. Then

(𝜓 ∘ 𝜑)(𝑥𝑦) = 𝜓(𝜑(𝑥𝑦)) = 𝜓(𝜑(𝑥)𝜑(𝑦)) = 𝜓(𝜑(𝑥))𝜓(𝜑(𝑦)) = ((𝜓 ∘ 𝜑)(𝑥))((𝜓 ∘ 𝜑)(𝑦)).

⬜

4.1.8. Definition: Isomorphism

An isomorphism from a group 𝐺1 to a group 𝐺2 is a bijective homomorphism from 𝐺1 to 𝐺2.

4.1.9. Example

1. If 𝐺 is a group then id𝐺 : 𝐺 → 𝐺 is an isomorphism.
2. exp : (ℝ, +) → ℝ>0 is an isomorphism.
3. log : ℝ>0 → (ℝ, +) is an isomorphism.

We remark log ∘ exp = idℝ and exp ∘ log = idℝ>0.

4.1.10. Proposition

Let 𝜑 : 𝐺1 → 𝐺2 be an isomorphism. Then 𝜑−1 : 𝐺2 → 𝐺1 is also an isomorphism.

Proof: We know 𝜑−1 is bijective since 𝜑 is bijective, so we need to check that 𝜑−1 is a homomorphism. Since 𝜑 is
injective, for 𝑎, 𝑏 ∈ 𝐺2 we have

𝜑−1(𝑎𝑏) = 𝜑−1(𝑎)𝜑−1(𝑏) ⟺ 𝜑(𝜑−1(𝑎𝑏)) = 𝜑(𝜑−1(𝑎)𝜑−1(𝑏))

⟺ 𝜑(𝜑−1(𝑎𝑏)) = 𝜑(𝜑−1(𝑎)) ⋅ 𝜑(𝜑−1(𝑏))
⟺ 𝑎𝑏 = 𝑎𝑏.

⬜

4.1.11. Definition: Isomorphic Groups

The groups 𝐺1 and 𝐺2 are isomorphic if ∃ an isomorphism 𝜑 : 𝐺1 → 𝐺2. Notation: 𝐺1 ≅ 𝐺2 or 𝐺1 ≃ 𝐺2.

4.1.12. Definition: Isomorphism Class

The isomorphism class of a group 𝐺 is the class of all groups isomorphic to 𝐺.
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4.1.13. Definition: Automorphism

An automorphism of a group 𝐺 is an isomorphism from 𝐺 to 𝐺. If 𝐺 is a group, then Aut(𝐺) denotes the set of all
automorphisms of 𝐺.

Notice Aut(𝐺) is a group under composition:
• 𝜑, 𝜓 ∈ Aut(𝐺) ⟹ 𝜓 ∘ 𝜑 ∈ Aut(𝐺)
• id𝐺 ∈ Aut(𝐺) is an identity
• 𝜑 ∈ Aut(𝐺) ⟹ 𝜑−1 ∈ Aut(𝐺)

4.1.14. Definition: Inner Automorphism

An inner automorphism of a group 𝐺 is an automorphism of the form 𝜑𝑔 for some 𝑔 ∈ 𝐺, where 𝜑𝑔 : 𝐺 → 𝐺 is
defined by 𝜑𝑔(𝑥) = 𝑔𝑥𝑔−1. I.e., it is the image of the map 𝐺 → Aut(𝐺) defined by 𝑔 ↦ 𝜑𝑔. We denote the group of
inner automorphisms of 𝐺 by Inn(𝐺).

4.1.15. Proposition

Let 𝑔 ∈ 𝐺.
1. Conjugation by g is the map

𝜑𝑔 : 𝐺 → 𝐺
𝑥 ↦ 𝑔𝑥𝑔−1

is an automorphism.
2. The map

𝐺 → Aut(𝐺)
𝑔 ↦ 𝜑𝑔

is a homomorphism.

Proof:

1. We show it’s homomorphic: 𝜑𝑔(𝑥𝑦) = 𝑔𝑥𝑦𝑔−1 = 𝑔𝑥𝑔−1𝑔𝑦𝑔−1 = 𝜑𝑔(𝑥)𝜑𝑔(𝑦). We show it’s bijective: 𝜑𝑔−1  is an
inverse of 𝜑𝑔.

2. Let 𝑔, ℎ ∈ 𝐺. Then

𝜑𝑔ℎ(𝑥) = 𝑔ℎ𝑥(𝑔ℎ)−1 = 𝑔(ℎ𝑥ℎ−1)𝑔−1

= 𝜑𝑔(ℎ𝑥ℎ−1) = 𝜑𝑔(𝜑ℎ(𝑥))

= (𝜑𝑔 ∘ 𝜑ℎ)(𝑥)

Notice the kernel of the map is 𝑍(𝐺) since 𝜑𝑔 = id𝐺 if and only if 𝑥 = 𝑔𝑥𝑔−1∀𝑥 ∈ 𝐺. The image is Inn(𝐺). Since
this is the image of a group homomorphism, we know by Proposition 4.1.3 that

Inn(𝐺) ≤ Aut(𝐺).

⬜
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4.1.16. Proposition

Let 𝐺 = (𝑎) be a cyclic group.
1. If 𝐺 has finite order 𝑛, then 𝐺 ≅ ℤ/𝑛ℤ.
2. If 𝐺 has infinite order, then 𝐺 ≅ ℤ.

Proof:

1. Let 𝐺 = (𝑎) with ord(𝑎) = 𝑛. Define

𝜑 : ℤ/𝑛ℤ ⟶ 𝐺

𝑘 ⟼ 𝑎𝑘.

We will show that 𝜑 is an isomorphism.

We first need to check that 𝜑 is well-defined, i.e., we need to check that, if 𝑘1 = 𝑘2, then 𝑎𝑘1 = 𝑎𝑘2 . Indeed, we
have

𝑘1 = 𝑘2 ⟺ 𝑘1 ≡ 𝑘2 (mod 𝑛) ⟺
Prop 3.2.1(ii)

𝑎𝑘1 = 𝑎𝑘2 .

Note that this also shows that 𝜑 is injective. It is also surjective, since any element 𝑥 ∈ 𝐺 is of the form 𝑥 =
𝑎𝑘 for some 𝑘 ∈ ℤ, and therefore 𝑥 = 𝑎𝑘 = 𝜑(𝑘). Thus 𝜑 is bijective.

Finally, we show that 𝜑 is a homomorphism. Let 𝑘1, 𝑘2 ∈ ℤ/𝑛ℤ. Then

𝜑(𝑘1 + 𝑘2) = 𝜑(𝑘1 + 𝑘2) = 𝑎𝑘1+𝑘2 = 𝑎𝑘1𝑎𝑘2 = 𝜑(𝑘1)𝜑(𝑘2).

2. Let 𝐺 = (𝑎), with ord(𝑎) = ∞. Define

𝜑 : ℤ ⟶ 𝐺

𝑘 ⟼ 𝑎𝑘.

We will show that 𝜑 is an isomorphism. To show it’s a homomorphism, let 𝑘1, 𝑘2 ∈ ℤ and note

𝜑(𝑘1 + 𝑘2) = 𝑎𝑘1+𝑘2 = 𝑎𝑘1𝑎𝑘2 = 𝜑(𝑘1)𝜑(𝑘2).

By Proposition 3.2.6(ii), the elements 𝑎𝑘 with 𝑘 ∈ ℤ are all distinct. Thus, for any 𝑗 ∈ ℤ,

𝜑(𝑗) = 1 ⟹ 𝑎𝑗 = 1 ⟹ 𝑗 = 0.

Therefore, 𝜑 is injective. It is also surjective since any element 𝑥 ∈ 𝐺 is of the form 𝑥 = 𝑎𝑘 for some 𝑘 ∈ ℤ and
therefore 𝑥 = 𝑎𝑘 = 𝜑(𝑘).

⬜
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4.2. Cosets

4.2.1. Definition: Coset

Let 𝐻 ≤ 𝐺. A left (resp. right) coset of 𝐻  in 𝐺 is a subset of 𝐺 of the form

𝑎𝐻 = {𝑎ℎ : ℎ ∈ 𝐻} 𝐻𝑎 = {ℎ𝑎 : ℎ ∈ 𝐻}

for some 𝑎 ∈ 𝐺. Notationally we write 𝐺/𝐻 = set of all left cosets of 𝐻 in 𝐺 and 𝐻\𝐺 for the converse. We
remark 𝐻 = 1 ⋅ 𝐻 = 𝐻 ⋅ 1 so 𝐻  is both a left and right coset.

4.2.2. Example

1. Consider the dihedral groups 𝐷2𝑛. Notice the left cosets are 𝑟𝑘𝐻 = (𝑟𝑘, 𝑟𝑘𝑠) = 𝑟𝑘𝑠𝐻  for 0 ≤ 𝑘 < 𝑛 and the right
cosets are 𝐻𝑟𝑘 = (𝑟𝑘, 𝑠𝑟𝑘) = (𝑟𝑘, 𝑟−𝑘𝑠) for 0 ≤ 𝑘 < 𝑛. Thus 𝐺/𝐻 ≠ 𝐻 \ 𝐺.

2. Consider 𝑆𝑛 with 𝑛 ≥ 2. If 𝜎 ∈ 𝑆𝑛 is even, then 𝜎𝐴𝑛 = 𝐴𝑛 = 𝐴𝑛𝜎. For 𝑛 odd, we have 𝜎𝐴𝑛 = 𝐴𝑛𝜎 is the set of
all odd permutations in 𝑆𝑛. Then 𝑆𝑛/𝐴𝑛 = ⟨𝐴𝑛, (1 2)𝐴𝑛⟩ = ⟨𝐴𝑛, 𝐴𝑛(1 2)⟩ = 𝐴𝑛\𝑆𝑛.

4.2.3. Lemma

Let 𝐻 ≤ 𝐺. The relation ∼ on 𝐺 defined by 𝑎 ∼ 𝑏 ⟺ 𝑎−1𝑏 ∈ 𝐻  for 𝑎, 𝑏 ∈ 𝐺 is an equivalence relation.

Proof:
• Reflexive: For all 𝑎 ∈ 𝐺, 𝑎−1𝑎 = 1 ∈ 𝐻 , so 𝑎 ∼ 𝑎.
• Symmetric: Let 𝑎, 𝑏 ∈ 𝐺 and suppose 𝑎 ∼ 𝑏. Then 𝑎−1𝑏 ∈ 𝐻 . Then (𝑎−1𝑏)−1 ∈ 𝐻  but thus 𝑏−1𝑎 ∈ 𝐻  so 𝑏 ∼ 𝑎.
• Transitive: Let 𝑎, 𝑏𝑐 ∈ 𝐺. Suppose 𝑎 ∼ 𝑏 and 𝑏 ∼ 𝑐. Then 𝑎−1𝑏, 𝑏−1𝑐 ∈ 𝐻 . Then (𝑎−1𝑏)(𝑏−1𝑐) = 𝑎−1𝑐 ∈ 𝐻 . Thus

𝑎 ∼ 𝑐.

⬜
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4.2.4. Proposition

Let 𝐻 ≤ 𝐺.
1. Let 𝑎, 𝑏 ∈ 𝐺. Then

𝑎−1𝑏 ∈ 𝐻 ⟺ 𝑏 ∈ 𝑎𝐻 ⟺ 𝑎𝐻 = 𝑏𝐻.
2. The left cosets of 𝐻  in 𝐺 form a partition of 𝐺.

Proof: Let 𝑎, 𝑏 ∈ 𝐺. Then

𝑎−1𝑏 ∈ 𝐻 ⟺ 𝑎−1𝑏 = ℎ for some ℎ ∈ 𝐻
⟺ 𝑏 = 𝑎ℎ for some ℎ ∈ 𝐻
⟺ 𝑏 ∈ 𝑎𝐻

It follows that

𝑎𝐻 = {𝑥 ∈ 𝐺 : 𝑎−1𝑥 ∈ 𝐻}

i.e., 𝑎𝐻  is the equivalence class of 𝑎 for the equivalence relation defined in the previous lemma. Since left cosets are
the equivalence class for ∼, they form a partition of 𝐺 and 𝑏 ∈ 𝑎𝐻 ⟺ 𝑎𝐻 = 𝑏𝐻 .

⬜

4.2.5. Proposition

Let 𝐻 ≤ 𝐺. Then all the left cosets of 𝐻  in 𝐺 have the same cardinality.

Proof: Let 𝑎 ∈ 𝐺. We have a map

𝐻 ⟶ 𝑎𝐻
ℎ ↦ 𝑎ℎ.

It is bijective (with inverse 𝑥 ↦ 𝑎−1𝑥) so |𝑎𝐻| = |𝐻|.

⬜

4.2.6. Definition: Index

Let 𝐻 ≤ 𝐺. The index of 𝐻  in 𝐺 is the number of left cosets of 𝐻  in 𝐺. (This is the same as the number of right
cosets). Notation: [𝐺 : 𝐻].
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4.2.7. Proposition

Let 𝐾 ≤ 𝐻 ≤ 𝐺. Then

[𝐺 : 𝐾] = [𝐺 : 𝐻] ⋅ [𝐻 : 𝐾].

Proof: Let {𝑎𝑖 : 𝑖 ∈ 𝐼} be a complete set of representatives for the left cosets of 𝐻  in 𝐺:

𝐺 = ⋃
𝑖∈𝐼

𝑎𝑖𝐻.

Let {𝑏𝑗 : 𝑗 ∈ 𝐽} be a complete set of representatives for the left cosets of 𝐾 in 𝐻 :

𝐻 = ⋃
𝑗∈𝐽

𝑏𝑗𝐾.

For any 𝑖 ∈ 𝐼 , left multiplication by 𝑎𝑖 is injective. Then

𝑎𝑖𝐻 = ⋃
𝑗∈𝐽

𝑎𝑖𝑏𝑗𝐾

Then

𝐺 = ⋃
𝑖∈𝐼

𝑎𝑖𝐻

= ⋃
𝑖∈𝐼

⋃
𝑗∈𝐽

𝑎𝑖𝑏𝑗𝐾

Thus {𝑎𝑖𝑏𝑗 : 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽} is a complete set of representatives for the left cosets of 𝐾 in 𝐺. So [𝐺 : 𝐾] = |𝐼 × 𝐽| =
|𝐼| ⋅ |𝐽 | = [𝐺 : 𝐻][𝐻 : 𝐾].

⬜

4.2.8. Corollary: Counting Formula

Let 𝐻 ≤ 𝐺. Then |𝐺| = [𝐺 : 𝐻] ⋅ |𝐻|.

Proof: Take 𝐾 = {1} in the previous proposition.

⬜

4.2.9. Corollary: Lagrange’s Theorem

Let 𝐺 be a finite group. Let 𝐻 ≤ 𝐺. Then |𝐻| divides |𝐺|.

Proof: Follows immediately from the counting formula.

⬜
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4.2.10. Corollary

Let 𝐺 be a finite group and let 𝑎 ∈ 𝐺. Then ord(𝑎) divides |𝐺|.

Proof: Notice ord(𝑎) = |(𝑎)| ∣ |𝐺| by Lagrange’s Theorem.

⬜

4.2.11. Proposition

Let 𝐺 be a group with 𝐻 ≤ 𝐺. Then 𝑔𝐻 = 𝐻 ⟺ 𝑔 ∈ 𝐻 .

Proof: (⟹) First suppose 𝑔𝐻 = 𝐻 . Then ∃ℎ ∈ 𝐻 such that 𝑔ℎ ∈ 𝐻 . Then ∃ℎ′ ∈ 𝐻 such that 𝑔ℎ = ℎ′, so 𝑔 =
ℎ′ℎ−1, meaning 𝑔 ∈ 𝐻 .

(⟸) Suppose 𝑔 ∈ 𝐻 .
• (⊆) Let ℎ ∈ 𝐻 , so that 𝑔ℎ ∈ 𝐻  clearly, meaning 𝑔𝐻 ⊆ 𝐻 .
• (⊇) Let ℎ ∈ 𝐻 , and define ℎ′ = ℎ𝑔−1, and note ℎ′ ∈ 𝐻  since 𝑔 ∈ 𝐻 . Then ℎ = 𝑔ℎ′, so ℎ ∈ 𝑔𝐻 , meaning 𝐻 ⊆ 𝑔𝐻 .

⬜

4.3. Normal Subgroups

4.3.1. Remark

If 𝑆 and 𝑇  are subsets of a group 𝐺, we use the notation 𝑆𝑇  to refer to the set

𝑆𝑇 = {𝑠𝑡 : 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇}.

Note that, with this notation, if 𝑆, 𝑇 , and 𝑈  are subsets of 𝐺, then (𝑆𝑇 )𝑈 = 𝑆(𝑇𝑈). If a set consists of a single
element 𝑎, we may write 𝑎 instead of {𝑎}. Thus, for example, we will usually write 𝑎𝑇  instead of {𝑎}𝑇 , with exactly
the same meaning.

4.3.2. Definition: Normal Subgroup

Let 𝐺 be a group. A subgroup 𝐻  of 𝐺 is a normal subgroup if 𝑔𝐻𝑔−1 = 𝐻∀𝑔 ∈ 𝐺. We write 𝐻 ⊴ 𝐺 to indicate
this.

We remark that a subgroup 𝐻  of a group 𝐺 is normal iff 𝑁𝐺(𝐻) = 𝐺. We always have 𝐻 ⊴ 𝑁𝐺(𝐻) because if we let
𝑔 ∈ 𝑁𝐺(𝐻), then 𝑔𝐻𝑔−1 = 𝐻  by definition. This also means that 𝑁𝐺(𝐻) is the largest subgroup of 𝐺 satisfying this
property.
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4.3.3. Remark

Intuition behind normal subgroups on stack exchange

The reason why this seemingly arbitrary definition is so key is that it’s the condition that allows taking the quotient
of two groups to be a group. Suppose 𝐻 ≤ 𝐺 and suppose we use the Equivalence relation defined in Lemma 4.2.3 to
create a set of cosets

𝐺/𝐻 = {[𝑔] = 𝑔𝐻 : 𝑔 ∈ 𝐺}

The problem is that this is not a group in the general case. The natural way to induce a group structure is to make the
map 𝐺 → 𝐺/𝐻  a homomorphism, meaning that

[𝑔1 ∗ 𝑔2] = [𝑔1] ∗new [𝑔2].

But this means

(𝑔1𝑔2)𝐻 = [𝑔1 ∗ 𝑔2] = [𝑔1] ∗new [𝑔2] = (𝑔1𝐻)(𝑔2𝐻) = 𝑔1(𝐻𝑔2)𝐻.

We notice that if 𝐻𝑔2 = 𝑔2𝐻 , then right hand side would become 𝑔1𝑔2𝐻𝐻 = 𝑔1𝑔2𝐻  as desired, so this would
become a well-defined operation. But this is exactly the condition for a normal subgroup.

4.3.4. Proposition

Let 𝐻 ≤ 𝐺. The following are equivalent:
1. 𝐻 ⊴ 𝐺
2. 𝑔𝐻𝑔−1 ⊆ 𝐻∀𝑔 ∈ 𝐺
3. 𝑔𝐻 = 𝐻𝑔∀𝑔 ∈ 𝐺
4. 𝑔𝐻 ⊆ 𝐻𝑔∀𝑔 ∈ 𝐺
5. Every left coset is a right coset
6. 𝐺/𝐻 = 𝐻\𝐺.

Proof: (𝑖) ⟺ (𝑖𝑖𝑖): 𝐻 ⊴ 𝐺 ⟺ 𝑔𝐻𝑔−1 = 𝐻∀𝑔 ∈ 𝐺 ⟺ 𝑔𝐻 = 𝐻𝑔∀𝑔 ∈ 𝐺.

(𝑖𝑖) ⟺ (𝑖𝑣): 𝑔𝐻𝑔−1 ⊆ 𝐻∀𝑔 ∈ 𝐺 ⟺ 𝑔𝐻 ⊆ 𝐻𝑔∀𝑔 ∈ 𝐺.

(𝑖) ⟹ (𝑖𝑖): 𝐻 ⊴ 𝐺 ⟹ 𝑔𝐻𝑔−1 = 𝐻∀𝑔 ∈ 𝐺 ⟹ 𝑔𝐻𝑔−1 ⊆ 𝐻 .

(𝑖𝑖) ⟹ (𝑖): Suppose 𝑔𝐻𝑔−1 ⊆ 𝐻∀𝑔 ∈ 𝐺. Replacing 𝑔 by 𝑔−1 we get that 𝑔−1𝐻𝑔 ⊆ 𝐻∀𝑔 ∈ 𝐺. Thus 𝐻 ⊆
𝑔𝐻𝑔−1∀𝑔 ∈ 𝐺 via left and right multiplying, so 𝐻 = 𝑔𝐻𝑔−1∀𝑔 ∈ 𝐺.

Thus the first 4 are equivalent. Now,

(𝑖𝑖𝑖) ⇒ (𝑣𝑖) is clear.

(𝑣𝑖) ⇒ (𝑣) is clear.

(𝑣) ⇒ (𝑖𝑖𝑖): Suppose every left coset is a right coset. Let 𝑔 ∈ 𝐺, then 𝑔𝐻 = 𝐻𝑎 for some 𝑎 ∈ 𝐺. Since 𝑔 ∈ 𝑔𝐻 = 𝐻𝑎,
then 𝐻𝑎 = 𝐻𝑔, so 𝑔𝐻 = 𝐻𝑔.

⬜
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4.3.5. Example

1. If 𝐺 is a group, {1} ⊴ 𝐺 and 𝐺 ⊴ 𝐺. Note the first is because 𝑔{1}𝑔−1 = {1} is clear. Then if ℎ ∈ 𝐺, then for 𝑥 =
𝑔ℎ𝑔−1 we have ℎ = 𝑔−1𝑥𝑔, so ℎ ∈ 𝑔𝐺𝑔−1, and thus 𝐺 ⊴ 𝐺 via (ii) in the previous proposition.

2. (𝑟) ⊴ 𝐷2𝑛. An arbitrary 𝑔 ∈ 𝐷2𝑛 can be written 𝑠𝑖𝑟𝑗. Then if 𝑥 ∈ 𝑠𝑖𝑟𝑗(𝑟)𝑟−𝑗𝑠−𝑖, so 𝑥 = 𝑠𝑖𝑟𝑘𝑠−𝑖 = 𝑟−𝑘 ∈ (𝑟), so
this is true by (ii) again.

3. 𝐴𝑛 ⊴ 𝑆𝑛 To see this, let 𝜎 ∈ 𝑆𝑛 and suppose 𝜏 ∈ 𝜎𝐴𝑛𝜎−1, so 𝜏 = 𝜎 ∏
2𝑛

(𝑎𝑖 𝑎𝑗)𝜎−1. But if 𝜎 is length 𝑘, then we
can decompose it into 𝑘 transpositions, and 𝜎−1 is another 𝑘 transpositions, so 𝜏  has 2𝑛 + 2𝑘 = 2(𝑛 + 𝑘)
transpositions overall, meaning 𝜏 ∈ 𝐴𝑛 and 𝐴𝑛 ⊴ 𝑆𝑛.

4. If 𝐻  is a subgroup of index 2 of a group 𝐺, then 𝐻 ⊴ 𝐺. This is because 𝐺/𝐻 = {𝐻, 𝐺\𝐻} = 𝐻\𝐺.
5. 𝑉𝑟 = {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ⊴ 𝑆4. For all 𝜎 ∈ 𝑆4, we have 𝜎 ⋅ 1𝜎−1 ∈ 𝑉4. Any product of two

disjoint transpositions will remain a product of two disjoint transpositions. Thus 𝜎(1 2)(3 4)𝜎−1 =
(𝜎(1) 𝜎(2))(𝜎(3) 𝜎(4)).

4.3.6. Proposition

If 𝐺 is an abelian group, every subgroup is normal.

Proof: Suppose 𝐺 is an abelian group and let 𝐻 ≤ 𝐺. Let 𝑔 ∈ 𝐺 and let 𝑔ℎ𝑔−1 ∈ 𝑔𝐻𝑔−1. Then since 𝐺 is abelian,
𝑔ℎ𝑔−1 = 𝑔𝑔−1ℎ = ℎ ∈ 𝐻 , so 𝑔𝐻𝑔−1 ⊆ 𝐻 , so 𝐻 ⊴ 𝐺.

⬜

4.3.7. Proposition

If 𝐾 ≤ 𝐻 ≤ 𝐺 and 𝐾 ⊴ 𝐺, then 𝐾 ⊴ 𝐻 .

Proof: Let ℎ ∈ 𝐻 . Since Then ℎ𝐾ℎ−1 = 𝐾 since 𝐻 ≤ 𝐺 ⟹ ℎ ∈ 𝐺, and since 𝐾 ≤ 𝐻 , we have 𝐾 ⊴ 𝐻 .

⬜

4.3.8. Remark

𝐾 ⊴ 𝐻 ⊴ 𝐺 does not imply 𝐾 ⊴ 𝐺. For example, {1, (1 2)(3 4)} ⊴ 𝑉4 ⊴ 𝐴4, but {1, (1 2)(3 4)} ⋬ 𝐴4.

To see this, note (1 3)((1 2)(3 4))(1 3) = (1 4)(2 3) ∉ {1, (1 2)(3 4)}.
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4.3.9. Proposition

Let 𝜑 : 𝐺1 → 𝐺2 be a group homomorphism.
1. If 𝐻2 ⊴ 𝐺2, then 𝜑−1(𝐻2) ⊴ 𝐺1.
2. If 𝐻1 ⊴ 𝐺1, then 𝜑(𝐻1) ⊴ im 𝜑.

Proof:

1. Let 𝐻2 ⊴ 𝐺2. It suffices to show that 𝑔𝜑−1(𝐻2)𝑔−1 ⊆ 𝜑−1(𝐻2)∀𝑔 ∈ 𝐺1.

Let 𝑎 ∈ 𝐺1, ℎ ∈ 𝜑−1(𝐻2). We want to show 𝑎ℎ𝑎−1 ∈ 𝜑−1(𝐻2). We have 𝜑(𝑎ℎ𝑎−1) = 𝜑(𝑎)𝜑(ℎ)𝜑(𝑎−1). Since ℎ ∈
𝜑−1(𝐻2), 𝜑(ℎ) ∈ 𝐻2. Since 𝐻 ⊴ 𝐺2, 𝜑(𝑎)𝜑(ℎ)𝜑(𝑎)−1 ∈ 𝐻2 Then 𝜑(𝑎ℎ𝑎−1) ∈ 𝐻2 ⇒ 𝑎ℎ𝑎−1 ∈ 𝜑−1(𝐻2).

2. Let 𝐻1 ⊴ 𝐺1. It suffices to show 𝑔𝜑(𝐻1)𝑔−1 ⊆ 𝜑(𝐻1)∀𝑔 ∈ im 𝜑.

Let 𝑏 ∈ im 𝜑, 𝑘 ∈ 𝜑(𝐻1).T Then 𝑏 = 𝜑(𝑎) for some 𝑎 ∈ 𝐺1 and 𝑘 = 𝜑(ℎ) for some ℎ ∈ 𝐻1. Then 𝑏𝑘𝑏−1 =
𝜑(𝑎)𝜑(ℎ)𝜑(𝑎)−1 = 𝜑(𝑎ℎ𝑎−1). Since 𝐻1 ⊴ 𝐺1, 𝑎ℎ𝑎−1 ∈ 𝐻1. Then 𝑏𝑘𝑏−1 = 𝜑(𝑎ℎ𝑎−1) ∈ 𝜑(𝐻1).

⬜

4.3.10. Remark

In general, 𝐻1 ⊴ 𝐺1 ⇏ 𝜑(𝐻1) ⊴ 𝐺2. For example, let 𝐻  be a subgroup of a group 𝐺 which is not normal. If the
inclusion map 𝑖 : 𝐻 ⟶ 𝐺, then 𝐻 ⊴ 𝐻  but 𝑖(𝐻) = 𝐻 ⋬ 𝐺.

4.3.11. Proposition

Let 𝜑 : 𝐺1 → 𝐺2 be a group homomorphism. Then ker 𝜑 ⊴ 𝐺1.

Proof: ker 𝜑 = 𝜑−1({1}) so this is a special case of previous prop.

⬜

Page 37 of 77



Homomorphisms Normal Subgroups — 4.3

4.3.12. Proposition

Let 𝐺 be a group and 𝐻  be a subgroup of 𝐺.
1. The operation on 𝐺/𝐻  defined by

𝑎𝐻 ⋅ 𝑏𝐻 = 𝑎𝑏𝐻

is well-defined if and only if 𝐻  is a normal subgroup of 𝐺.
2. If the operation in (i) is well-defined, then it makes 𝐺/𝐻  into a group.

Proof:

1. Suppose that the operation is well-defined. Therefore, for all 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ 𝐺, if 𝑎𝐻 = 𝑎′𝐻  and 𝑏𝐻 = 𝑏′𝐻 , then
𝑎𝑏𝐻 = 𝑎′𝑏′𝐻 . We will show that 𝑔𝐻𝑔−1 ⊆ 𝐻  for all 𝑔 ∈ 𝐺. Let 𝑔 ∈ 𝐺 and let ℎ ∈ 𝐻 . Taking 𝑎 = 1, 𝑎′ = ℎ, and
𝑏 = 𝑏′ = 𝑔−1 above, we deduce that 𝑔−1𝐻 = ℎ𝑔−1𝐻 . By Proposition 4.2.4, this implies 𝑔ℎ𝑔−1 ∈ 𝐻 . This shows
that 𝑔𝐻𝑔−1 ⊆ 𝐻∀𝑔 ∈ 𝐺 and therefore, by Proposition 4.3.3, 𝐻 ⊴ 𝐺.

Conversely, suppose 𝐻  is a normal subgroup of 𝐺 and let 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ 𝐺. Suppose 𝑎𝐻 = 𝑎′𝐻 and 𝑏𝐻 = 𝑏′𝐻 . We
want to show that 𝑎𝑏𝐻 = 𝑎′𝑏′𝐻 . Since 𝑎𝐻 = 𝑎′𝐻  and 𝑏𝐻 = 𝑏′𝐻 , ∃ℎ1, ℎ2 ∈ 𝐻 such that 𝑎′ = 𝑎ℎ1 and 𝑏′ =
𝑏ℎ2. Thus

𝑎′𝑏′ = 𝑎ℎ1𝑏ℎ2 = 𝑎𝑏(𝑏−1ℎ1𝑏)ℎ2

and therefore

(𝑎𝑏)−1𝑎′𝑏′ = (𝑏−1ℎ1𝑏)ℎ2.

Since 𝐻  is a normal subgroup, we have that 𝑏−1ℎ1𝑏 ∈ 𝐻 . Then (𝑎𝑏)−1𝑎′𝑏′ ∈ 𝐻  and therefore 𝑎𝑏𝐻 = 𝑎′𝑏′𝐻  by
Proposition 4.2.4.

2. Suppose that the operation in (i) is well-defined. We will check that 𝐺/𝐻  is a group under this operation.
• Associativity: Let 𝑎, 𝑏, 𝑐 ∈ 𝐺. Then:

𝑎𝐻 ⋅ (𝑏𝐻 ⋅ 𝑐𝐻) = 𝑎𝐻 ⋅ 𝑏𝑐𝐻 = 𝑎(𝑏𝑐)𝐻 = (𝑎𝑏)𝑐𝐻 = 𝑎𝑏𝐻 ⋅ 𝑐𝐻 = (𝑎𝐻 ⋅ 𝑏𝐻) ⋅ 𝑐𝐻.
• Identity: The coset 𝐻 = 1𝐻  is an identity.
• Inverses: For all 𝑔 ∈ 𝐺, the coset 𝑔𝐻  has inverse 𝑔−1𝐻 .

⬜

4.3.13. Remark

Let 𝐻 ≤ 𝐺. We could have defined

𝑎𝐻 ⋅ 𝑏𝐻 = 𝑎𝐻𝑏𝐻
= {𝑠𝑡 : 𝑠 ∈ 𝑎𝐻, 𝑡 ∈ 𝑏𝐻}
= {𝑎ℎ1𝑏ℎ2 : ℎ1, ℎ2 ∈ 𝐻}

This is always well defined. If 𝐻 ⊴ 𝐺, then 𝑎𝐻𝑏𝐻 = 𝑎𝑏𝐻 .
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4.3.14. Proposition

Let 𝐺 be a group. Let 𝐻  and 𝐾 be subgroups of 𝐺. Then 𝐻𝐾 is a subgroup of 𝐺 if and only if 𝐻𝐾 = 𝐾𝐻 .

Proof: Suppose that 𝐻𝐾 is a subgroup. First we show that 𝐾𝐻 ⊆ 𝐻𝐾 . Note that 𝐻 ≤ 𝐾 and 𝐾 ≤ 𝐻𝐾 . Let 𝑎 ∈
𝐾𝐻 . Write 𝑎 = 𝑘ℎ. Write 𝑎 = 𝑘ℎ, with 𝑘 ∈ 𝐾 and ℎ ∈ 𝐻 . Since 𝑘, ℎ ∈ 𝐻𝐾 and 𝐻𝐾 is a subgroup, it follows that
𝑎 = 𝑘ℎ ∈ 𝐻𝐾 . Now we show that 𝐻𝐾 ⊆ 𝐾𝐻 . Let 𝑎 ∈ 𝐻𝐾 . Since 𝐻𝐾 is a subgroup, we have that 𝑎−1 ∈ 𝐻𝐾 .
Therefore 𝑎−1 = ℎ𝑘 for some ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾 . Thus 𝑎 = (ℎ𝑘)−1 = 𝑘−1ℎ−1. Since ℎ−1 ∈ 𝐻  and 𝑘−1 ∈ 𝐾 , it
follows that 𝑎 = 𝑘−1ℎ−1 ∈ 𝐾𝐻 .

Conversely, suppose 𝐻𝐾 = 𝐾𝐻 . Clearly, 1 = 1 ⋅ 1 ∈ 𝐻𝐾 . Now let 𝑎, 𝑏 ∈ 𝐻𝐾 . Then 𝑎 = ℎ1𝑘1 and 𝑏 =
ℎ2𝑘2 for some ℎ1, ℎ2 ∈ 𝐻  and 𝑘1, 𝑘2 ∈ 𝐾 . Therefore we have that 𝑎𝑏−1 = ℎ1𝑘1𝑘−1

2 ℎ−1
2 . Let 𝑘3 = 𝑘1𝑘−1

2 ∈ 𝐾 and let
ℎ3 = ℎ−1

2 ∈ 𝐻 . Then 𝑘3ℎ3 ∈ 𝐾𝐻 . Since 𝐻𝐾 = 𝐾𝐻 , we can write 𝑘3ℎ3 = ℎ4𝑘4 for some ℎ4 ∈ 𝐻  and 𝑘4 ∈ 𝐾 .
Therefore 𝑎𝑏−1 = ℎ1𝑘3ℎ3 = ℎ1ℎ4𝑘4. Since ℎ1ℎ4 ∈ 𝐻  and 𝑘4 ∈ 𝐾 , we have 𝑎𝑏−1 ∈ 𝐻𝐾 .

⬜

4.3.15. Proposition

If 𝐻  and 𝐾 are finite subgroups of a group then

|𝐻𝐾| = |𝐻| |𝐾|
|𝐻 ∩ 𝐾|

.

Proof: Notice that 𝐻𝐾 is a union of left cosets of 𝐾 , namely,

𝐻𝐾 = ∪ℎ∈𝐻 ℎ𝐾.

Since each coset of 𝐾 has |𝐾| elements it suffices to find the number of distinct left cosets of the form ℎ𝐾, ℎ ∈ 𝐻 . But
ℎ1𝐾 = ℎ2𝐾 for ℎ1, ℎ2 ∈ 𝐻  if and only if ℎ−1

2 ℎ1 ∈ 𝐾 . Thus

ℎ1𝐾 = ℎ2𝐾 ⇔ ℎ−1
2 ℎ1 ∈ 𝐻 ∩ 𝐾 ⇔ ℎ1(𝐻 ∩ 𝐾) = ℎ2(𝐻 ∩ 𝐾).

Thus the number of distinct cosets of the form ℎ𝐾 , for ℎ ∈ 𝐻 , is the number of distinct cosets ℎ(𝐻 ∩ 𝐾), for ℎ ∈ 𝐻 .
The latter number, by Lagrange’s Theorem, equals |𝐻|

|𝐻∩𝐾| . Thus 𝐻𝐾 consists of |𝐻|
|𝐻∩𝐾|  distinct cosets of 𝐾 (each of

which has 𝐾 elements) which gives the formula above.

⬜
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4.3.16. Corollary

Let 𝐺 be a group. Let 𝐻  and 𝐾 be subgroups of 𝐺. If 𝐻 ≤ 𝑁𝐺(𝐾), then 𝐻𝐾 is a subgroup of 𝐺.

In particular, if 𝐾 ⊴ 𝐺 then 𝐻𝐾 ≤ 𝐺 for any 𝐻 ≤ 𝐺.

Proof: We prove that 𝐾𝐻 = 𝐻𝐾 . First we show that 𝐻𝐾 ⊆ 𝐾𝐻 . Let 𝑎 ∈ 𝐻𝐾 . Then 𝑎 = ℎ𝑘 for some ℎ ∈
𝐻 and 𝑘 ∈ 𝐾 . We can write 𝑎 = (ℎ𝑘ℎ−1)ℎ. Since 𝐻 ≤ 𝑁𝐺(𝐾), it follows that ℎ𝑘ℎ−1 ∈ 𝐾 and therefore 𝑎 ∈ 𝐾𝐻 .

Now we show that 𝐾𝐻 ⊆ 𝐻𝐾 . Let 𝑎 ∈ 𝐾𝐻 . Then 𝑎 = 𝑘ℎ for some 𝑘 ∈ 𝐾 and ℎ ∈ 𝐻 . We can write 𝑎 =
ℎ(ℎ−1𝑘ℎ). Since 𝐻 ≤ 𝑁𝐺(𝐾), it follows that ℎ−1𝑘ℎ ∈ 𝐾 and therefore 𝑎 ∈ 𝐻𝐾 .

⬜

4.4. Quotient Groups

4.4.1. Definition: Quotient Group

Let 𝐻 ⊴ 𝐺. The quotient group 𝐺 modulo 𝐻  is the set 𝐺/𝐻  under the operation defined by 𝑎𝐻 ⋅ 𝑏𝐻 = 𝑎𝑏𝐻 .
Notation: We may write 𝑎 instead of 𝑎𝐻 .

4.4.2. Definition: Canonical Projection

Let 𝐻 ⊴ 𝐺. The canonical projection of 𝐺 onto 𝐺/𝐻  is the homomorphism 𝜋 : 𝐺 → 𝐺/𝐻  defined by 𝜋(𝑎) = 𝑎𝐻
for all 𝑎 ∈ 𝐺.

We remark that ker 𝜋 = 𝐻 . This is because

𝑔 ∈ ker 𝜋 ⇔ 𝜋(𝑔) = 1 ⋅ 𝐻 ⇔ 𝑔𝐻 = 𝐻 ⟺
Prop 4.2.11

𝑔 ∈ 𝐻.

4.4.3. Proposition

Let 𝐻 ≤ 𝐺. Then 𝐻 ⊴ 𝐺 if and only if 𝐻  is the kernel of some group homomorphism 𝜑 : 𝐺 → 𝐾 .

Proof: (⟸) We proved that the kernel of a group homomorphism is a normal subgroup of the domain in Proposition
4.3.10.

(⟹) If 𝐻 ⊴ 𝐺, then 𝐻 = ker 𝜋 by the argument in the definition above.

⬜
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4.4.4. Example

1. Let 𝑛 ∈ ℤ+. Then 𝑛ℤ is a normal subgroup of ℤ. This is because for 𝑚 ∈ ℤ, 𝑚 + 𝑛ℤ + (−𝑚) = 𝑛ℤ (easily follows
from ℤ being abelian - this is Proposition 4.3.5).

The quotient group ℤ/𝑛ℤ is the set of integers modulo 𝑛. To see this is consistent with the definition, notice if
𝑎, 𝑏 ∈ ℤ/𝑛ℤ then our left cosets are 𝑎 + 𝑛ℤ and 𝑏 + 𝑛ℤ, and our group operation is 𝑎 + 𝑏 + 𝑛ℤ.

The canonical projection is the map ℤ → ℤ/𝑛ℤ defined by 𝑎 → 𝑎 = 𝑎 + 𝑛ℤ.

2. Consider the dihedral group 𝐷2𝑛 with its usual presentation and let 𝐻 = (𝑟). Then 𝐻 ⊴ 𝐷2𝑛 (proved in Example
4.3.4) and 𝐺/𝐻 = {𝐻, 𝑠𝐻} = {1, 𝑠}, which is isomorphic to ℤ/2ℤ. The canonical projection 𝐷2𝑛 → 𝐷2𝑛/𝐻  is
defined by 𝑟𝑗 ↦ 𝑟𝑗 = 1, 𝑟𝑗𝑠 ↦ 𝑟𝑗𝑠 = 𝑠.

4.4.5. Remark

Notice 𝑓(𝑓−1(𝐴)) ⊆ 𝐴. To show this, let 𝑥 ∈ 𝑓(𝑓−1(𝐴)) so ∃𝑦 ∈ 𝑓−1(𝐴) such that 𝑓(𝑦) = 𝑥. But 𝑓(𝑦) ∈ 𝐴, so 𝑥 ∈
𝐴.

Also, 𝑓−1(𝑓(𝐴)) ⊇ 𝐴. Let 𝑎 ∈ 𝐴. Then 𝑓(𝑎) ∈ 𝑓(𝐴) and 𝑎 ∈ 𝑓−1(𝑓(𝑎)) ⊆ 𝑓−1(𝑓(𝐴)).
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4.4.6. Theorem: Correspondence Theorem

Let 𝐻 ⊴ 𝐺. Let 𝜋 : 𝐺 → 𝐺/𝐻  be the canonical projection. Then the map

𝑓 : {subgroups of 𝐺 containing 𝐻} ⟶ {subgroups of 𝐺/𝐻}
𝐾 ↦ 𝜋(𝐾) = 𝐾/𝐻.

is well-defined and bijective. The inverse is given by 𝑀 → 𝜋−1(𝑀).

Also:
1. If 𝐾 is a subgroup of 𝐺 containing 𝐻 , then 𝐾 ⊴ 𝐺 if and only if 𝜋(𝐾) ⊴ 𝐺/𝐻 .
2. If 𝐾1, 𝐾2 are subgroups of 𝐺 containing 𝐻 , then 𝐾1 ≤ 𝐾2 ⟺ 𝜋(𝐾1) ≤ 𝜋(𝐾2).

Proof: To check 𝑓  is well-defined, we just need to check that if 𝐾 is a subgroup of 𝐺 containing 𝐻 , then 𝜋(𝐾) is a
subgroup of 𝐺/𝐻 . But 𝜋 is a homomorphism, so this follows from Prop 4.1.3(i).

By Prop 4.1.3(ii), if 𝒦 is a subgroup of 𝐺/𝐻 , then 𝜋−1(𝒦) is a subgroup of 𝐺, so we have that 𝐻 = 𝜋−1({1}) ⊆
𝜋−1(𝒦) since {1} ≤ 𝑀 . This shows that the function

{subgroups of 𝐺/𝐻} ⟶ {subgroups of 𝐺 containing 𝐻}

𝒦 ↦ 𝜋−1(𝒦)

We want to show that 𝑓  and 𝑔 are inverses of each other:
1. If 𝐾 ≤ 𝐺 and 𝐻 ≤ 𝐾 , then 𝜋−1(𝜋(𝐾)) = 𝐾 .
2. If 𝑀 ≤ 𝐺/𝐻  then 𝜋(𝜋−1(𝑀)) = 𝑀 .

We show these as follows:
1. Let 𝐾 ≤ 𝐺 such that 𝐻 ≤ 𝐾 . We want to show 𝜋−1(𝜋(𝐾)) = 𝐾 . So 𝐾 ⊆ 𝜋−1(𝜋(𝐾)). Now we need to show

𝜋−1(𝜋(𝐾)) ⊆ 𝐾 . Let 𝑥 ∈ 𝜋−1(𝜋(𝐾)). Then 𝜋(𝑥) ∈ 𝜋(𝐾). Thus 𝜋(𝑥) = 𝜋(𝑎) for some 𝑎 ∈ 𝐾 . Then 𝜋(𝑎−1𝑥) = 1.
2. Notice this holds because 𝜋 is surjective.

Now we show the remaining parts:
1. If 𝐾 ≤ 𝐺 such that 𝐻 ≤ 𝐾 , then 𝐾 ⊴ 𝐺 ⟺ 𝜋(𝐾) ⊴ 𝐺/𝐻 .

(⟹) If 𝐾 ⊴ 𝐺, then 𝜋(𝐾) ⊴ im 𝜋 = 𝐺/𝐻 . (⟸) If 𝜋(𝐾) ⊴ 𝐺/𝐻 , then 𝐾 = 𝜋−1(𝜋(𝐾)) ⊴ 𝐺.
2. If 𝐾1, 𝐾2 are subgroups of 𝐺 containing 𝐻 , then 𝐾1 ≤ 𝐾2 ⟸ 𝜋(𝐾1) ≤ 𝜋(𝐾2).

(⟹) is clear

(⟸) If 𝜋(𝐾1) ≤ 𝜋(𝐾2), then 𝐾1 = 𝜋−1(𝜋(𝐾1)) ≤ 𝜋−1(𝜋(𝐾2)) = 𝐾2.

⬜
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4.5. Isomorphism Theorems

4.5.1. Theorem

Let 𝜑 : 𝐺1 → 𝐺2 be a group homomorphism. Let 𝐻 ⊴ 𝐺1. Let 𝜋 : 𝐺1 → 𝐺1/𝐻  denote the canonical projection.
Suppose that 𝐻 ≤ ker 𝜑. Then, ∃ a unique homomorphism 𝜑 : 𝐺1/𝐻 → 𝐺2 such that 𝜑 = 𝜑 ∘ 𝜋. The
homomorphism 𝜑 is defined by 𝑎𝐻 ↦ 𝜑(𝑎).

↑𝜑

↑

𝜑

↑

𝜋

𝐺1 𝐺2

𝐺1/𝐻

Proof: We first check that the map

𝜑 : 𝐺1/𝐻 ⟶ 𝐺2

𝑎𝐻 ⟼ 𝜑(𝑎)

is a well-defined homomorphism.

To prove this map is well-defined, observe that, for all 𝑎, 𝑏 ∈ 𝐺1,

𝑎𝐻 = 𝑏𝐻 ⟹
(Prop 4.2.4)

𝑎−1𝑏 ∈ 𝐻 ⇒ 𝑎−1𝑏 ∈ ker 𝜑 ⇒ 𝜑(𝑎−1𝑏) = 1

⇒ 𝜑(𝑎)−1𝜑(𝑏) = 1 ⇒ 𝜑(𝑎) = 𝜑(𝑏)

To prove that 𝜑 is a homomorphism, observe that, for all 𝑎, 𝑏 ∈ 𝐺1,

𝜑(𝑎𝐻 ⋅ 𝑏𝐻) = 𝜑(𝑎𝑏𝐻) = 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) = 𝜑(𝑎𝐻)𝜑(𝑏𝐻).

To check that 𝜑 = 𝜑 ∘ 𝜋, observe that, for all 𝑎 ∈ 𝐺1,

(𝜑 ∘ 𝜋)(𝑎) = 𝜑(𝜋(𝑎)) = 𝜑(𝑎𝐻) = 𝜑(𝑎).

For the uniqueness claim, note that, if 𝜑′ : 𝐺1/𝐻 → 𝐺2 is a homomorphism such that 𝜑 = 𝜑′ ∘ 𝜋, then for all 𝑎𝐻 ∈
𝐺1/𝐻 ,

𝜑(𝑎𝐻) = 𝜑′(𝜋(𝑎)) = (𝜑′ ∘ 𝜋)(𝑎) = 𝜑(𝑎),

so 𝜑′ = 𝜑.

⬜
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4.5.2. Theorem: First Isomorphism Theorem

Let 𝜑 : 𝐺1 → 𝐺2 be a group homomorphism and let 𝐾 = ker 𝜑. Then
1. 𝐾 ⊴ 𝐺1
2. im 𝜑 ≤ 𝐻
3. The map

𝜑 : 𝐺1/𝐾 ⟶ im 𝜑
𝑎𝐾 ⟼ 𝜑(𝑎)

is a well-defined isomorphism.

Proof: The fact that 𝐾 ⊴ 𝐺1 follows from Proposition 4.3.10.

The fact that im 𝜑 ≤ 𝐻  follows from a note in Definition 4.1.4.

The map 𝜑 is a well-defined homomorphism by the previous theorem (and the fact that it takes values in im 𝜑).
Surjectivity is immediate. We finally prove injectivity. Let 𝑎𝐾 ∈ 𝐺1/𝐾 . Then via Proposition 4.1.5,

𝜑(𝑎𝐾) = 1 ⇒ 𝜑(𝑎) = 1 ⇒ 𝑎 ∈ 𝐾 ⇒ 𝑎𝐾 = 𝐾.

⬜

4.5.3. Remark

The idea of the First Isomorphism Theorem is to “quotient out” some elements in the group in order to make the
homomorphism injective. Obviously, any homomorphism 𝜑 with range im 𝜑 is surjective, so if we can only make the
homomorphism injective, it becomes a bijection and we get an isomorphism. To do this, we group up elements of 𝐺1
according to whether they’re in ker 𝜑 or not–i.e., we create a coset of all elements in ker 𝜑 and other, mutually
exclusive cosets. This means there will be only one element in the kernel of the new homomorphism 𝜑 :
𝐺1/ ker 𝜑 ⟶ im 𝜑, so we have an isomorphism between them.

4.5.4. Corollary

1. If 𝜑 : 𝐺1 → 𝐺2 is a surjective group homomorphism, then 𝐺1/ ker 𝜑 ≅ 𝐺2.
2. If 𝜑 : 𝐺1 → 𝐺2 is an injective group homomorphism, then 𝐺1 ≅ 𝜑(𝐺1).

Proof:
1. Suppose that 𝜑 : 𝐺1 → 𝐺2 were a surjective group homomorphism. Thus 𝐺2 = im 𝜑, so by the previous

proposition, 𝐺1/ ker 𝜑 ≅ 𝐺2.
2. Suppose that 𝜑 : 𝐺1 → 𝐺2 were an injective group homomorphism. Thus ker 𝜑 = {1}, so 𝐺1/ ker 𝜑 = 𝐺1. Then

by the previous theorem, 𝐺1 ≅ im 𝜑.

⬜
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4.5.5. Example

1. The map det : GL𝑛(ℚ) → ℚ× is a surjective homomorphism with kernel SL𝑛(ℚ). We deduce from the First
Isomorphism Theorem that GL𝑛(ℚ)/ SL𝑛(ℚ) ≅ ℚ×.

2. Consider the group 𝑆4, which we defined as the set of permutations of {1, 2, 3, 4}. Consider the following three
partitions of the set:

Π1 = {{1, 2}, {3, 4}}
Π2 = {{1, 3}, {2, 4}}
Π3 = {{1, 4}, {2, 3}}.

An element 𝜎 ∈ 𝑆4 permutes the four indices 1, 2, 3, 4 and thus it also permutes the three partitions Π1, Π2, Π3.
We denote by 𝜎(Π𝑖) the partition obtained by applying 𝜎 to all the indices in the partition Π𝑖. For example

𝜎(Π1) = {{𝜎(1), 𝜎(2)}, {𝜎(3), 𝜎(4)}}.

We define a map 𝜑 : 𝑆4 → 𝑆3 by defining 𝜑(𝜎) to be the permutation in 𝑆3 such that 𝜎(Π𝑖) = Π𝜑(𝜎)(𝑖) for 𝑖 =
1, 2, 3. One easily checks that this map is a homomorphism with kernel

𝑉4 = {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

By the First Isomorphism Theorem, we deduce that 𝑆4/𝑉4 ≅ im 𝜑. Moreover, since |𝑆4/𝑉4| = 6 = |𝑆3|, the
homomorphism 𝜑 is surjective, so 𝑆4/𝑉4 ≅ 𝑆3.
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4.5.6. Theorem: Second Isomorphism Theorem

Let 𝐺 be a group. Let 𝐻 ≤ 𝐺 and let 𝐾 ⊴ 𝐺 (more generally, this applies when 𝐻 ≤ 𝑁𝐺(𝐾)). Then
1. 𝐻𝐾 ≤ 𝐺
2. 𝐾 ⊴ 𝐻𝐾
3. 𝐻 ∩ 𝐾 ⊴ 𝐻
4. 𝐻𝐾/𝐾 ≅ 𝐻/𝐻 ∩ 𝐾 .

↑
⊴

↑

↑
⊴

↑

𝐻𝐾

𝐻 𝐾

𝐻 ∩ 𝐾

Proof: The fact that 𝐻𝐾 is a subgroup of 𝐺 follows from Corollary 4.3.16. Since 𝐻 ≤ 𝑁𝐺(𝐾) by assumption and
𝐾 ≤ 𝑁𝐺(𝐾) trivially, it follows that 𝐻𝐾 ≤ 𝑁𝐺(𝐾). Therefore 𝐾 ⊴ 𝐻𝐾 . Thus the quotient group is well-defined.

Consider the map

𝜑 : 𝐻 ⟶ 𝐻𝐾/𝐾
𝑎 ⟼ 𝑎𝐾.

For all 𝑎, 𝑏 ∈ 𝐻 ,

𝜑(𝑎𝑏) = 𝑎𝑏𝐾 = 𝑎𝐾 ⋅ 𝑏𝐾 = 𝜑(𝑎)𝜑(𝑏),

so 𝜑 is a homomorphism. Note that, for ℎ ∈ 𝐻 ,

ℎ ∈ ker 𝜑 ⟺ 𝜑(ℎ) = 𝐾 ⟺ ℎ𝐾 = 𝐾 ⟺ ℎ ∈ 𝐾 ⟺ ℎ ∈ 𝐻 ∩ 𝐾.

Thus ker 𝜑 = 𝐻 ∩ 𝐾 . Since every element in 𝐻𝐾/𝐾 is of the form ℎ𝐾 for some ℎ ∈ 𝐻 , the map 𝜑 is surjective. By
the First Isomorphism Theorem, 𝐻 ∩ 𝐾 ⊴ 𝐻  and the map

𝜑 : 𝐻/𝐻 ∩ 𝐾 ⟶ 𝐻𝐾/𝐾
𝑎(𝐻 ∩ 𝐾) ⟼ 𝑎𝐾

yields an isomorphism between 𝐻/𝐻 ∩ 𝐾 and 𝐻𝐾/𝐾 .

⬜
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4.5.7. Theorem: Third Isomorphism Theorem

Let 𝐺 be a group. Let 𝐻  and 𝐾 be normal subgroups of 𝐺 and suppose that 𝐻 ≤ 𝐾 . Then 𝐾/𝐻 ⊴ 𝐺/𝐻  and

(𝐺/𝐻)/(𝐾/𝐻) ≅ 𝐺/𝐾.

Proof: The kernel of the canonical projection 𝜋 : 𝐺 → 𝐺/𝐾 is precisely 𝐾 . Since 𝐻 ⊴ 𝐺 and 𝐻 ≤ 𝐾 , it follows from
Theorem 4.5.1 that the map

𝜑 : 𝐺/𝐻 ⟶ 𝐺/𝐾
𝑎𝐻 ⟼ 𝑎𝐾

is a well-defined homomorphism. It is clearly surjective. Also note that

ker 𝜑 = {𝑔𝐻 ∈ 𝐺/𝐻 : 𝑔𝐾 = 𝐾} =
Prop 4.2.11

{𝑔𝐻 ∈ 𝐺/𝐻 : 𝑔 ∈ 𝐾} = 𝐾/𝐻.

Therefore, by the First Isomorphism Theorem, it follows that 𝐾/𝐻 ⊴ 𝐺/𝐻  and

(𝐺/𝐻)/(𝐾/𝐻) ≅ 𝐺/𝐾.

⬜

4.6. Simple Groups

4.6.1. Definition: Simple Group

A group 𝐺 is simple if |𝐺| > 1 and the only normal subgroups of 𝐺 are {1} and 𝐺.

4.6.2. Example

Non-examples

1. {1} ⊴ (𝑟) ⊴ 𝐷2𝑛, so 𝐷2𝑛 is not simple.
2. For 𝑛 ≥ 3, {1} ⊴ 𝐴𝑛 ⊴ 𝑆𝑛, so 𝑆𝑛 is not simple.
3. {1} ⊴ 𝑉4 ⊴ 𝐴4 so 𝐴4 is not simple.
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4.6.3. Theorem

Let 𝐺 be an abelian group. Then 𝐺 is simple if and only if 𝐺 is cyclic of finite prime order.

Proof: (⟸) Suppose 𝐺 = (𝑎) is cyclic of prime order 𝑝. 𝐺 has only two subgroups: {1}, 𝐺. So 𝐺 is simple.

(⟹) Suppose 𝐺 is simple. Then 𝐺 ≠ {1}, so ∃𝑎 ∈ 𝐺 with 𝑎 ≠ 1. Then

{1} ≠ (𝑎) ⊴ 𝐺

(since 𝐺 is abelian, every subgroup of 𝐺 is normal). Then 𝐺 = (𝑎). If ord(𝑎) = ∞, then {1} ≠ (𝑎𝑑) ⋬ (𝑎), so 𝐺
would not be simple (𝑑 ≥ 2). Then ord(𝑎) = 𝑛 for some 𝑛 ∈ ℤ>1. Recall (normal) subgroups of (𝑎) are in bijection
with the positive divisors of 𝑛. Since 𝐺 is simple, 𝑛 must be prime.

⬜
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4.6.4. Lemma: 1

For 𝑛 ≥ 3, 𝐴𝑛 is generated by the 3-cycles in 𝑆𝑛.

Proof: Note: this proof is currently incorrect because it does not include all cases in the second part.

Recall that the alternating group 𝐴𝑛 is the set of all even permutations of 𝑆𝑛 under composition. Then recall that
permutations of 𝑆𝑛 are even if and only if they can be written as a product of an even number of transpositions.

We begin by showing a permutation that is the product of 3-cycles is a member of 𝐴𝑛. Let 𝜎 ∈ 𝑆𝑛 be given by

𝜎 = ∏
𝑚

𝑡=1
(𝑎𝑖 𝑎𝑗 𝑎𝑘)

for some number 𝑚 ∈ ℕ of (𝑖, 𝑗, 𝑘) triplets where no two of 𝑖, 𝑗, 𝑘 are equal. Notice since 𝑛 ≥ 3, we must have 𝑚 ≥
1. Then observe (𝑎𝑖 𝑎𝑗 𝑎𝑘) = (𝑎𝑖 𝑎𝑘)(𝑎𝑖 𝑎𝑗). Thus

𝜎 = ∏
2𝑚

𝑡=1
(𝑎𝑖 𝑎𝑘)(𝑎𝑖 𝑎𝑗),

i.e., we can write 𝜎 as a product of 2𝑚 transpositions, so 𝜎 ∈ 𝐴𝑛.

In the other direction, let 𝜎 ∈ 𝐴𝑛, so that

𝜎 = ∏
2𝑚

𝑡=1
(𝑎𝑖 𝑎𝑗)

where 𝑚 ∈ ℕ and 𝑖 ≠ 𝑗 for each (𝑖, 𝑗) pair. Consider two consecutive terms, (𝑎𝑖 𝑎𝑗) and (𝑎𝑘 𝑎𝑙). Notice
(𝑎𝑖 𝑎𝑗)(𝑎𝑘 𝑎𝑙) = (𝑎𝑖 𝑎𝑗 𝑎𝑘)(𝑎𝑘 𝑎𝑙 𝑎𝑗). Thus

𝜎 = ∏
𝑚

𝑡=1
(𝑎𝑖 𝑎𝑗 𝑎𝑘)(𝑎𝑘 𝑎𝑙 𝑎𝑗)

so any 𝜎 ∈ 𝐴𝑛 can be written as a product of 3-cycles.

Thus, we have shown that the alternating group 𝐴𝑛 is generated by the set of all 3-cycles in 𝑆𝑛.

⬜
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4.6.5. Lemma: 2

For 𝑛 ≥ 5, every two 3-cycles in 𝐴𝑛 are conjugate. I.e., if 𝛾1, 𝛾2 ∈ 𝐴𝑛 are 3-cycles, ∃𝜎 ∈ 𝐴𝑛 such that 𝜎𝛾𝜎−1 =
𝛾2.

Proof: Let (𝑎1 𝑎2 𝑎3), (𝑏1, 𝑏2, 𝑏3) ∈ 𝐴𝑛. Choose 𝜎 ∈ 𝑆𝑛 such that 𝜎(𝑎1) = 𝑏1, 𝜎(𝑎2) = 𝑏2 and 𝜎(𝑎3) = 𝑏3. Then

𝜎(𝑎1 𝑎2 𝑎3)𝜎−1 = (𝜎(𝑎1) 𝜎(𝑎2) 𝜎(𝑎3)) = (𝑏1 𝑏2 𝑏3).

If 𝜎 ∈ 𝐴𝑛, we are done. Thus suppose 𝜎 ∉ 𝐴𝑛. Choose two different numbers 𝑎4, 𝑎5 ∈ {1, 2, …, 𝑛} \ {𝑎1, 𝑎2, 𝑎3}
(which is possible because 𝑛 ≥ 5).

Let 𝜏 = 𝜎(𝑎4 𝑎5). Then 𝜏 ∈ 𝐴𝑛 and

𝜏(𝑎1 𝑎2 𝑎3)𝜏−1 = 𝜎(𝑎4 𝑎5)(𝑎1 𝑎2 𝑎3)(𝑎4 𝑎5)𝜎−1

= 𝜎(𝑎1 𝑎2 𝑎3)𝜎−1

= (𝑏1 𝑏2 𝑏3).

⬜
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4.6.6. Lemma: 3

For 𝑛 ≥ 5, if 𝐻  is a non-trivial normal subgroup of 𝐴𝑛, then 𝐻  contains a 3-cycle.

Proof: Let {1} ≠ 𝐻 ⊴ 𝐴𝑛. Notice that if 𝜎 ∈ 𝐻 , 𝜏 ∈ 𝐴𝑛, so 𝜏𝜎𝜏−1𝜎−1 ∈ 𝐻 . Let 1 ≠ 𝜎 ∈ 𝐻 . Let
𝜎 = 𝛾1𝛾2 ⋅ ⋅ ⋅ 𝛾𝑟

be the cycle decomposition of 𝜎.

Case 1: Suppose at least one of the 𝛾𝑖’s has length ≥ 4. Without loss of generality, say 𝛾1 has length ≥ 4. Write 𝛾1 =
(𝑎1 𝑎2 … 𝑎𝑘). Let 𝜏 = (𝑎1 𝑎2 𝑎3). Then

𝜏𝜎𝜏−1𝜎−1 = 𝜏𝛾1𝜏−1𝜏𝛾2𝜏−1 ⋅ ⋅ ⋅ 𝜏𝛾𝑟)𝜏−1𝛾−1
𝑟 ⋅ ⋅ ⋅ 𝛾−1

2 𝛾−1
1

= 𝜏𝜎𝜏−1 ⋅ ⋅ ⋅ 𝛾𝑟𝛾−1
𝑟 ⋅ ⋅ ⋅ 𝛾−1

2 𝛾−1
1

= (𝑎1 𝑎2 𝑎3)(𝑎1 𝑎2 ⋅ ⋅ ⋅  𝑎𝑘)(𝑎3 𝑎2 𝑎1)(𝑎𝑘 ⋅ ⋅ ⋅  𝑎2 𝑎1)
= (𝑎1 𝑎2 𝑎3 𝑎1 𝑎4 ⋅ ⋅ ⋅  𝑎𝑘)(𝑎𝑘 ⋅ ⋅ ⋅  𝑎4 𝑎3 𝑎2 𝑎1)
= (𝑎1 𝑎2 𝑎4) ∈ 𝐻.

Case 2: Suppose there are at least two 3-cycles, among 𝛾1, ⋅ ⋅ ⋅, 𝛾𝑟. Without loss of generality 𝛾1, 𝛾2 are 3-cycles. Write
𝛾1 = (𝑎1 𝑎2 𝑎3) and 𝛾2 = (𝑎4 𝑎5 𝑎6). Let 𝜏 = (𝑎1 𝑎2 𝑎4) ∈ 𝐴𝑛. Then

𝜏𝜎𝜏−1𝜎−1 = 𝜏𝛾1𝜏−1𝜏𝛾2𝜏−1𝛾2𝜏−1𝛾−1
2 𝛾−1

1

= (𝑎2 𝑎4 𝑎3)(𝑎1 𝑎5 𝑎6)(𝑎6 𝑎5 𝑎4)(𝑎3 𝑎2 𝑎1)
= (𝑎1 𝑎2 𝑎5 𝑎3 𝑎4) ∈ 𝐻.

Then we are in case 1.

Case 3: Suppose one of the 𝛾𝑖’s is a 3-cycle and all the others are transpositions. Without loss of generality 𝛾1 is the 3-
cycle. Then

𝜎2 = 𝛾2
1𝛾2

2 ⋅ ⋅ ⋅ 𝛾2
𝑟 = 𝛾2

1

is a 3-cycle in 𝐻 .

Case 4: Suppose 𝜎 is the product of two disjoint transpositions. Write 𝜎 = (𝑎1 𝑎2)(𝑎3 𝑎4). Choose 𝑎5 ∈ {1, 2, …, 𝑛} \
{𝑎1, 𝑎2, 𝑎3, 𝑎4} (possible because 𝑛 ≥ 5). Let 𝜏 = (𝑎1 𝑎2 𝑎5). Then

𝜏𝜎𝜏−1𝜎−1 = 𝜏(𝑎1 𝑎2)𝜏−1(𝑎1 𝑎2)
= (𝑎2 𝑎5)(𝑎1 𝑎2)
= (𝑎1 𝑎5 𝑎2) ∈ 𝐻.

Case 5: Suppose there are at least two transpositions among the 𝛾𝑖’s. Without loss of generality 𝛾1, 𝛾2 are
transpositions. Write 𝛾1 = (𝑎1 𝑎2), 𝛾2 = (𝑎3 𝑎4). Then 𝜏 = (𝑎1 𝑎2 𝑎3) ∈ 𝐴𝑛. Then

𝜏𝜎𝜏−1𝜎−1 = 𝜏𝛾1𝜏−1𝜏𝜎2𝜏−1𝛾−1
2 𝛾−1

1

= (𝑎2 𝑎3)(𝑎1 𝑎4)(𝑎3 𝑎4)(𝑎1 𝑎2)
= (𝑎1 𝑎3)(𝑎2 𝑎4) ∈ 𝐻.

So we are in case 4.

⬜
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4.6.7. Theorem

For 𝑛 ≥ 5, 𝐴𝑛 is simple.

Proof: Let {1} ≠ 𝐻 ⊴ 𝐴𝑛. We want to show 𝐻 = 𝐴𝑛. By Lemma 3, 𝐻  contains a 3-cycle. By Lemma 2, since 𝐻 ⊴
𝐴𝑛 and 𝐻  contains a 3-cycle, 𝐻  contains all the 3-cycles. By Lemma 1, this implies 𝐻 = 𝐴𝑛.

⬜

4.7. Normal Towers

4.7.1. Definition: Normal Tower and Factor Group

Let 𝐺 be a group. A normal tower of 𝐺 is a sequence

{1} = 𝐻0 ⊴ 𝐻1 ⊴⋅ ⋅ ⋅⊴ 𝐻𝑘 = 𝐺.

The quotients 𝐻𝑖/𝐻𝑖−1 are called the factor groups of this normal tower.

4.7.2. Definition: Composition Series

Let 𝐺 be a group. A composition series of 𝐺 is a normal tower of 𝐺 in which all the factor groups are simple. In this
case, the factor groups are called the composition factors of 𝐺.

4.7.3. Remark

Let 𝐺 be a group and let 𝐻  be a normal subgroup of 𝐺. Then 𝐻  is a maximal proper subgroup of 𝐺 if and only if
𝐺/𝐻  is a simple group.

Therefore, a composition series of 𝐺 is a normal tower in which each subgroups is a maximal proper normal
subgroup of the next one.

4.7.4. Example

For example,

{1} ⊴ ((1 2)(3 4)) ⊴ 𝑉4 ⊴ 𝐴4 ⊴ 𝑆4

This is a composition series of 𝑆4. Another example of a composition series is

{1} ⊴ (𝑟3)) ⊴ (𝑟) ⊴ 𝐷30.

Also for 𝑛 ≥ 5, we have

{1} ⊴ 𝐴𝑛 ⊴ 𝑆𝑛
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4.7.5. Theorem

Every finite group 𝐺 has a composition series.

Proof: We proceed by strong induction on |𝐺|. If |𝐺| = 1, then |𝐺 = {1} and {1} is a composition series of length
zero. Let 𝑛 ≥ 2 and suppose that every group of order < 𝑛 has a composition series.

Let 𝐺 be a group with |𝐺| = 𝑛. Let 𝐻 ⊴ 𝐺 be a maximal proper normal subgroup of 𝐺. Then 𝐺/𝐻  is simple and
|𝐻| < 𝑛. By the induction hypothesis 𝐻  has a composition series:

{1} = 𝑁0 ⊴ 𝑁1 ⊴⋅ ⋅ ⋅⊴ 𝑁𝑘 = 𝐻

Then

{1} = 𝑁0 ⊴ 𝑁1 ⊴⋅ ⋅ ⋅⊴ 𝑁𝑘 ⊴ 𝑁𝑘+1 = 𝐺

is a composition series of 𝐺.

⬜

4.7.6. Theorem: Jordan-Hölder Theorem

Let 𝐺 be a finite group with |𝐺| > 1. If

{1} = 𝑀0 ⊴ 𝑀1 ⊴⋅ ⋅ ⋅⊴ 𝑀𝑟 = 𝐺
{1} = 𝑁0 ⊴ 𝑁1 ⊴⋅ ⋅ ⋅⊴ 𝑁𝑠 = 𝐺

are composition series of 𝐺, then 𝑟 = 𝑠 and ∃𝜎 ∈ 𝑆𝑟 such that

𝑀𝜎(𝑖)/𝑀𝜎(𝑖)−1 ≅ 𝑁𝑖/𝑁𝑖−1 for 1 ≤ 𝑖 ≤ 𝑟.

Proof: We proceed by strong induction on |𝐺|. If |𝐺| = 2, then 𝐺 is simple, so 𝐺 has a unique composition series:

{1} ⊴ 𝐺.

Then we are done.

Let 𝑛 ≥ 3. Suppose the statement is true for all groups 𝐺 with 1 < |𝐺| < 𝑛. Let 𝐺 be a group with |𝐺| = 𝑛. If 𝐺 is
simple, {1} ⊴ 𝐺 is the unique composition series and we are done, so suppose that 𝐺 is not simple.

Let

{1} = 𝑀0 ⊴ 𝑀1 ⊴⋅ ⋅ ⋅⊴ 𝑀𝑟 = 𝐺
{1} = 𝑁0 ⊴ 𝑁1 ⊴⋅ ⋅ ⋅⊴ 𝑁𝑠 = 𝐺

be composition series of 𝐺.

Case 1: Suppose 𝑀𝑟−1 = 𝑁𝑠−1. Then

{1} = 𝑀0 ⊴ 𝑀1 ⊴⋅ ⋅ ⋅⊴ 𝑀𝑟−1

{1} = 𝑁0 ⊴ 𝑁1 ⊴⋅ ⋅ ⋅⊴ 𝑁𝑠−1 = 𝑀𝑟−1
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are composition series of 𝑀𝑟−1. Also 1 < |𝑀𝑟−1| < |𝐺| = 𝑛, where the first inequality follows from 𝐺 not being
simple.

By the inductive hypothesis, 𝑟 − 1 = 𝑠 − 1 and ∃𝜏 ∈ 𝑆𝑟−1 such that

𝑀𝜏(𝑖)/𝑀𝜏(𝑖)−1 ≅ 𝑁𝑖/𝑁𝑖−1 for 1 ≤ 𝑖 ≤ 𝑟 − 1.

Then 𝑟 = 𝑠 and defining 𝜎 ∈ 𝑆𝑟 by

𝜎(𝑖) = {𝜏(𝑖) if 1 ≤ 𝑖 ≤ 𝑟 − 1
𝑟 if 𝑖 = 𝑟

so 𝑀𝜎(𝑖)/𝑀𝜎(𝑖)−1 ≅ 𝑁𝑖/𝑁𝑖−1.

Case 2: Suppose 𝑀𝑟−1 ≠ 𝑁𝑠−1. Then 𝑀𝑟−1 ⋬ 𝑀𝑟−1𝑁𝑠−1 ⊴ 𝐺 (the latter relation is an exercise). Since 𝑀𝑟−1 is a
maximal proper normal subgroup of 𝐺, 𝑀𝑟−1𝑁𝑠−1 = 𝐺.

Let 𝐾 = 𝑀𝑟−1 ∩ 𝑁𝑠−1. By the Second Isomorphism Theorem, 𝐾 ⊴ 𝑀𝑟−1, 𝐾 ⊴ 𝑁𝑠−1 and

𝑀𝑟−1/𝐾 ≅ 𝑀𝑟−1𝑁𝑠−1/𝑁𝑠−1 = 𝐺/𝑁𝑠−1 and 𝑁𝑠−1/𝐾 ≅ 𝐺/𝑀𝑟−1.

In particular, 𝑀𝑟−1/𝐾 and 𝑁𝑠−1/𝐾 are simple. Let {1} = 𝐻0 ⊴ 𝑁1 ⊴⋅ ⋅ ⋅⊴ 𝐻𝑡 = 𝐾 be a composition series for 𝐾 .
Then

{1} = 𝐻0 ⊴ 𝐻1 ⊴⋅ ⋅ ⋅⊴ 𝐻𝑡 ⊴ 𝑀𝑟−1

{1} = 𝑀0 ⊴ 𝑀1 ⊴⋅ ⋅ ⋅⊴ 𝑀𝑟−1

are composition series of 𝑀𝑟−1 and

{1} = 𝐻0 ⊴ 𝐻1 ⊴⋅ ⋅ ⋅⊴ 𝐻𝑡 ⊴ 𝑁𝑠−1

{1} = 𝑁0 ⊴ 𝑁1 ⊴⋅ ⋅ ⋅⊴ 𝑁𝑠−1

are composition series of 𝑁𝑠−1. Since 1 < |𝑀𝑟−1| < 𝑛 and 1 < |𝑁𝑠−1| < 𝑛, we can apply the induction hypothesis.
Then 𝑟 = 1 = 𝑡 + 1 = 𝑠 − 1 and ∃𝜏1, 𝜏2 ∈ 𝑆𝑡+1 such that

𝑀𝜏1(𝑖)/𝑀𝜏1(𝑖)−1 ≅ 𝐻𝑖/(𝐻𝑖−1) for 1 ≤ 𝑖 ≤ 𝑡

so

𝑀𝜏1(𝑡+1)/𝑀𝜏1(𝑡+1)−1 ≅ 𝑀𝑟−1/𝐾

and

𝑁𝜏2(𝑖)/𝑁𝜏2(𝑖)−1 ≅ 𝐻𝑖/𝐻𝑖−1 for 1 ≤ 𝑖 ≤ 𝑡

𝑁𝜏2(𝑡+1)/𝑁𝜏2(𝑡+1)−1 ≅ 𝑁𝑠−1/𝐾.

Thus

𝑀𝜏1(𝑖)/𝑀𝜏1(𝑖)−1 ≅ 𝑁𝜏2(𝑖)/𝑁𝜏2(𝑖)−1

𝑀𝜏1(𝑡+1)/𝑀𝜏1(𝑡+1)−1 ≅ 𝑀𝜏−1/𝐾 ≅ 𝑁𝑠/(𝑁𝑠−1)

𝑀𝑟/𝑀𝑟−1 ≅ 𝑁𝑠−1/𝐾 ≅ 𝑁𝜏2(𝑡+1)/𝑁𝜏2(𝑡+1)−1

Then 𝑟 = 𝑠 and defining 𝜏 ∈ 𝑆𝑟 by

Page 54 of 77



Homomorphisms Normal Towers — 4.7

𝜎(𝑖) =
{{
{
{{𝜏1𝜏−1

2 (𝑖) if 𝑖 ∈ {𝜏1(1), …, 𝜏1(𝑡)}
𝜏1(𝑡 + 1) if 𝑖 = 𝑟
𝑟 if 𝑖 = 𝜏2(𝑡 + 1)

so 𝑀𝜎(𝑖)/𝑀𝜎(𝑖)−1 ≅ 𝑁𝑖/𝑁𝑖−1 for 1 ≤ 𝑖 ≤ 𝑟.

⬜

4.7.7. Definition: Abelian Tower

A normal tower of a group 𝐺 is called an abelian tower if all the factor groups are abelian.

4.7.8. Definition: Solvable Group

A group 𝐺 is solvable if it has an abelian tower. This is equivalent to all the composition factors of 𝐺 being cyclic of
prime order (exercise).

4.7.9. Example

1. {1} ⊴ (𝑟) ⊴ 𝐷2𝑛 is an abelian tower, so 𝐷2𝑛 is solvable.
2. 𝑆3 ≅ 𝐷6 is solvable.
3. {1} ⊴ 𝑉4 ⊴ 𝐴4 ⊴ 𝑆4 is an abelian tower, so 𝑆4 is solvable.
4. For 𝑛 ≥ 5, 𝑆𝑛 is not solvable. Because 𝐴𝑛 is a composition factor of 𝑆𝑛 and 𝐴𝑛 is a non-abelian simple group.

(Note: this is the fundamental reason why we can’t deterministically find roots of 5th degree and higher
polynomials, but the reason will be further expanded on in Galois theory).

4.7.10. Theorem

Let 𝐻 ≤ 𝐺.
1. If 𝐺 is solvable, then 𝐻  is solvable.
2. If 𝐻 ⊴ 𝐺 and 𝐺 is solvable, then 𝐺/𝐻  is solvable.
3. If 𝐻 ⊴ 𝐺 and 𝐻  is solvable, and 𝐺/𝐻  is solvable, then 𝐺 is solvable.

Proof:

1. Assume 𝐺 is solvable. Let

{1} = 𝑁0 ⊴ 𝑁1 ⊴⋅ ⋅ ⋅⊴ 𝑁𝑡 = 𝐺

be an abelian tower of 𝐺. Let 𝐾𝑖 = 𝑁𝑖 ∩ 𝐻  for 𝑖 = 0, 1, …𝑡. Let 𝜑𝑖 : 𝐾𝑖 ↪ 𝑁𝑖 ⟶
𝜋𝑖

𝑁𝑖/(𝑁𝑖−1). Then ker 𝜑𝑖 =
𝐾𝑖 ∩ 𝑁𝑖−1 = 𝐻 ∩ 𝑁𝑖 ∩ 𝑁𝑖−1 = 𝐻 ∩ 𝑁𝑖−1 = 𝐾𝑖−1. By the First Isomorphism Theorem, 𝐾𝑖−1 ⊴ 𝐾𝑖 and
𝐾𝑖/(𝐾𝑖−1) ≅ im 𝜑𝑖 ≤ 𝑁𝑖/𝑁𝑖−1. Therefore 𝐾𝑖/𝐾𝑖−1 is abelian. Then

{1} = 𝐾0 ⊴ 𝐾1 ⊴⋅ ⋅ ⋅⊴ 𝐾𝑡 = 𝐻

is an abelian tower of 𝐻 .
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2. Suppose 𝐻 ⊴ 𝐺 and 𝐺 is solvable. Let {1} = 𝑁0 ⊴ 𝑁1 ⊴⋅ ⋅ ⋅⊴ 𝑁𝑡 = 𝐺 be an abelian tower of 𝐺. Let 𝜋𝐻 : 𝐺 ⟶
𝐺/𝐻  be the canonical projection. Let 𝑀𝑖 = 𝜋𝐻(𝑁𝑖) for 𝑖 = 0, 1, …, 𝑡. Notice since 𝑁𝑖−1 ⊴ 𝑁𝑖, we have 𝑀𝑖−1 =
𝜋𝐻(𝑁𝑖−1) ⊴ 𝜋𝐻(𝑁𝑖) = 𝑀𝑖. Let

𝜑𝑖 : 𝑁𝑖 ⟶
𝜋𝐻 | 𝑁𝑖

⟶
𝜋𝑖

𝑀𝑖/𝑀𝑖−1

By definition of 𝑀𝑖, we have 𝜋𝐻(𝑁𝑖) = 𝑀𝑖 and 𝜋𝑖 is surjective. Thus 𝜑𝑖 is a surjective homomorphism. Notice
ker 𝜑𝑖 = {𝑎 ∈ 𝑁𝑖 : 𝜋𝐻(𝑎) ∈ 𝑀𝑖−1} ⊇ 𝑁𝑖−1. Then 𝜑𝑖 induces a homomorphism

𝜑𝑖 : 𝑁𝑖/𝑁𝑖−1 ⟶ 𝑀𝑖/𝑀𝑖−1

𝑎𝑁𝑖−1 ⟼ 𝜑𝑖(𝑎)

Since 𝑁𝑖/𝑁𝑖−1 is abelian, 𝑀𝑖/𝑀𝑖−1 = 𝜑𝑖(𝑁𝑖/𝑁𝑖−1) is also abelian. Thus

{1} = 𝑀0 ⊴ 𝑀1 ⊴⋅ ⋅ ⋅⊴ 𝑀𝑡 = 𝐺/𝐻.

3. Suppose that 𝐻 ⊴ 𝐺, 𝐺/𝐻  is solvable, and 𝐻  is solvable. Let 𝜋𝐻 : 𝐺 → 𝐺/𝐻  denote the canonical projection. Let

{1} = 𝑀0 ⊴ 𝑀1 ⊴⋅ ⋅ ⋅⊴ 𝑀𝑟 = 𝐺/𝐻

be an abelian tower of 𝐺/𝐻  and let

{1} = 𝐾0 ⊴ 𝐾1 ⊴⋅ ⋅ ⋅⊴ 𝐾𝑠 = 𝐻

be an abelian tower of 𝐻 .

For each 𝑖 ∈ {0, 1, …, 𝑟}, let 𝑄𝑖 = 𝜋−1
𝐻 (𝑀𝑖). Let 𝜋𝑖 : 𝑀𝑖 → 𝑀𝑖/𝑀𝑖−1 denote the canonical projection. Let 𝜑𝑖 =

𝜋𝑖 ∘ 𝜋𝐻 | 𝑄𝑖
:

𝜑𝑖 : 𝑄𝑖 ⟶
𝜋𝐻

𝑀𝑖 ⟶
𝜋𝑖

𝑀𝑖/𝑀𝑖−1.

Since 𝜋𝐻  is surjective, 𝜋𝐻(𝑄𝑖) = 𝜋𝐻(𝜋−1
𝐻 (𝑀𝑖)) = 𝑀𝑖. Combining this observation with the fact that 𝜋𝑖 is also

surjective, we deduce that 𝜑𝑖 is a surjective homomorphism. Note that

ker 𝜑𝑖 = {𝑎 ∈ 𝑄𝑖 : 𝜋𝐻(𝑎) ∈ 𝑀𝑖−1} = 𝑄𝑖−1.

Therefore, by the First Isomorphism Theorem, we know that 𝑄𝑖−1 ⊴ 𝑄𝑖 and 𝑄𝑖/𝑄𝑖−1 ≅ 𝑀𝐼/𝑀𝑖−1. In particular,
𝑄𝑖/𝑄𝑖−1 is abelian. Therefore,

{1} = 𝐾0 ⊴ 𝐾𝑠 = 𝐻 = 𝑄0 ⊴ 𝑄1 ⊴⋅ ⋅ ⋅⊴ 𝑄𝑟 = 𝐺

is an abelian tower of 𝐺.

⬜

4.7.11. Theorem: Feit-Thompson Theorem

Every finite group of odd order is solvable.

Proof:

⬜
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4.8. Problems

4.8.1. Exercise

Suppose we have a group 𝐺 with 𝐻 ≤ 𝐺 and 𝑁 ⊴ 𝐺. Prove 𝑁 ∩ 𝐻 ⊴ 𝐻 .

Solution

Let 𝑔 ∈ ℎ(𝑁 ∩ 𝐻)ℎ−1 for some ℎ ∈ 𝐻 . Then 𝑔 = ℎ𝑎ℎ−1 for some 𝑎 ∈ 𝑁 ∩ 𝐻 . Since 𝑎 ∈ 𝐻 , 𝑔 ∈ 𝐻 . Since 𝑁 ⊴ 𝐺,
𝑥𝑁𝑥−1 = 𝑁∀𝑥 ∈ 𝐺. Since 𝑎 ∈ 𝑁  and ℎ ∈ 𝐺, we have 𝑔 ∈ 𝑥𝑁𝑥−1 = 𝑁 , so 𝑔 ∈ 𝑁 . Thus ℎ(𝑁 ∩ 𝐻)ℎ−1 ⊆ 𝑁 ∩
𝐻 ⟹ 𝑁 ∩ 𝐻 ⊴ 𝐻 .

4.8.2. Exercise

Let 𝐺 be a group and let 𝑁  be a finite subgroup of 𝐺. Let 𝑔 ∈ 𝐺. Then show 𝑔 normalizes 𝑁  if and only if
𝑔𝑁𝑔−1 ⊆ 𝑁 .

Is this true if 𝑁  is not finite?

Solution

(⟹) clear since by definition 𝑔𝑁𝑔−1 = 𝑁 .

(⟸) Notice |𝑔𝑁𝑔−1| = |𝑁| since the map

𝑁 ⟶ 𝑔𝑁𝑔−1

𝑛 ↦ 𝑔𝑛𝑔−1

is a bijection.

A counterexample to show that it is not true if 𝑁  is infinite is

𝑁 = {(1
0

𝑎
1) : 𝑎 ∈ ℤ}

where 𝑁 ≤ GL2(ℚ). Take 𝑔 = (2
0

0
1). Then 𝑔𝑁𝑔−1 = {(1

0
2𝑎
1 ) : 𝑎 ∈ ℤ} ⊈ 𝑁 .

4.8.3. Exercise

Let 𝐺 be a group. Prove that Inn(𝐺) ⊴ Aut(𝐺), where the set of inner automorphisms Inn(𝐺) = {𝜑𝑔 : 𝑔 ∈ 𝐺}
where 𝜑𝑔 : 𝐺 → 𝐺 is defined by 𝑥 ↦ 𝑔𝑥𝑔−1.

Solution

Let 𝑔 ∈ 𝐺 and let 𝜎 ∈ Aut(𝐺). For 𝜑 ∈ Inn(𝐺), we want to show that 𝜎𝜑𝜎−1 ∈ Inn(𝐺). Let 𝑥 ∈ 𝐺 and note

(𝜎𝜑𝑔𝜎−1)(𝑥) = 𝜎(𝜑𝑔(𝜎−1(𝑥))) = 𝜎(𝑔𝜎−1(𝑥)𝑔−1) = 𝜎(𝑔)𝑥𝜎(𝑔)−1 = 𝜑𝜎(𝑔) ∈ Inn(𝐺).
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4.8.4. Exercise

Prove that 𝐷24 ≇ 𝑆4.

Solution

(Could check elements of order 12 - 𝐷 has them but not 𝑆4).

Check elements of order 2 - there aer 12 reflections and 𝑟6 so there are 13 such elements in 𝐷24. In 𝑆4 there are
(4

2) = 6 transpositions with the others staying in place, and there are an additional 3 given by products of two cycles:
https://math.stackexchange.com/questions/311680/finding-the-number-of-elements-of-order-two-in-the-symmetric-
group-s-4

4.8.5. Exercise

Prove that for 𝑛 ≥ 3, the homomorphism 𝑆𝑛 → Aut(𝑆𝑛) defined by 𝑔 ↦ 𝜑𝑔 (where 𝜑𝑔 is conjugation by 𝑔) is
injective.

Solution

Notice that it is sufficient to prove ker = {1}. Take 𝜎 ∈ 𝑆𝑛, so that its image is the automorphism 𝜑𝜎(𝑔) = 𝜎𝑔𝜎−1.
This must be the identity automorphism, so 𝜎𝑔𝜎−1 = 𝑔 ⇒ 𝜎𝑔 = 𝑔𝜎, so 𝑔 ∈ 𝑍(𝑆𝑛). The only element that commutes
with all others in the symmetric group for 𝑛 ≥ 3 is 𝑒, so we must have ker = {1} as desired.

4.8.6. Exercise

Suppose that 𝐻  and 𝐾 are subgroup of finite index in the (possibly infinite) group 𝐺 with [𝐺 : 𝐻] = 𝑚 and [𝐺 :
𝐾] = 𝑛. Prove that lcm(𝑚, 𝑛) ≤ [𝐺 : 𝐻 ∩ 𝐾] ≤ 𝑚𝑛. Deduce that if 𝑚 and 𝑛 are relatively prime then [𝐺 : 𝐻 ∩
𝐾] = [𝐺 : 𝐻] ⋅ [𝐺 : 𝐾].

Solution

We need to show [𝐻 : 𝐻 ∩ 𝐾] ≤ [𝐺 : 𝐾] = 𝑛. We want to find an injective function 𝐻/𝐻 ∩ 𝐾 ⟶ 𝐺/𝐾 and 𝑎𝐻 ∩
𝐾 ↦ 𝑎𝐾 . First we show it’s well defined: for 𝑎, 𝑏 ∈ 𝐻

𝑎𝐻 ∩ 𝐾 = 𝑏𝐻 ∩ 𝐾 ⟺ 𝑎−1𝑏 ∈ 𝐻 ∩ 𝐾
⟺ 𝑎−1𝑏 ∈ 𝐾
⟺ 𝑎𝐾 = 𝑏𝐾.

This also shows it’s injective.

Then |𝐻/𝐻 ∩ 𝐾| ≤ |𝐺/𝐾|. Since [𝐺 : 𝐻 ∩ 𝐾] = 𝑚[𝐻 : 𝐻 ∩ 𝐾], we have 𝑚 ∣ [𝐺 : 𝐻 ∩ 𝐾]. Since [𝐺 : 𝐻 ∩ 𝐾] =
[𝐺 : 𝐾][𝐾 : 𝐻 ∩ 𝐾]. Then 𝑛 ∣ [𝐺 : 𝐻 ∩ 𝐾].
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4.8.7. Exercise

Prove that if 𝐺 is a group of prime order 𝑝, then 𝐺 is cyclic.

Solution

By the above corollary, for some 𝑎 ∈ 𝐺, we must have that ord(𝑎) ∣ 𝑝. But then ord(𝑎) = 1 or ord(𝑎) = 𝑝 since 𝑝 is
prime. If the order of the element is 1, we have the identity, and we can just pick another element since |𝐺| = 𝑝 > 1.
Thus we can always pick an element with order 𝑝. Then note 𝐺 at least contains the cyclic group (𝑎), but this has
ord(𝑎) = 𝑝 elements, so 𝐺 also cannot contain anything else. Therefore we must have (𝑎) = 𝐺.

4.8.8. Exercise

Find all the normal subgroups of 𝑆𝑛 for 𝑛 ≥ 5.

Solution

Notice {1}, 𝐴𝑛, 𝑆𝑛 are all normal subgroups of 𝑆𝑛. To show that these are the only normal subgroups, let 𝐻 ⊴ 𝑆𝑛.
Then notice 𝐻 ∩ 𝐴𝑛 ⊴ 𝐴𝑛, so 𝐻 ∩ 𝐴𝑛 = {1} or 𝐴𝑛 by Theorem 4.6.7.

• Case 1: First suppose 𝐻 ∩ 𝐴𝑛 = 𝐴𝑛. Then 𝐴𝑛 ≤ 𝐻 ≤ 𝑆𝑛. Then |𝐴𝑛| ∣ |𝐻| ∣ |𝑆𝑛| = 2 |𝐴𝑛|. Thus |𝐻| = |𝐴𝑛| ⇒
𝐻 = 𝐴𝑛 or |𝐻| = |𝑆𝑛| ⇒ 𝐻 = 𝑆𝑛.

• Case 2: Suppose 𝐻 ∩ 𝐴𝑛 = {1}. Thus any non-identity element in 𝐻  is odd. Suppose 𝐻 ≠ {1}. Then ∃𝑥 ∈ 𝐻, 𝑥 ≠
1. Then 𝑥 is odd. If 𝑦 is any other non-identity element in 𝐻 , then 𝑦 is odd and 𝑥𝑦 is even so 𝑥𝑦 = 1. In particular,
𝑥2 = 1 and any other nonidentity element 𝑦 ∈ 𝐻  satisfies 𝑦 = 𝑥−1 = 𝑥. Then 𝐻 = {1, 𝑥}. Since 𝐻 ⊴ 𝑆𝑛, for all
𝜎 ∈ 𝑆𝑛, we have 𝜎𝐻𝜎−1 = 𝐻 , so 𝜎𝑥𝜎−1 = 𝑥∀𝜎 ∈ 𝑆𝑛. Then 𝑥 ∈ 𝑍(𝑆𝑛) = {1}, a contradiction.
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5.1. Group Actions

5.1.1. Remark

Let 𝑋 be an arbitrary set. Let ℱ be the collection of functions that map 𝑋 to itself. Notice that 𝒢 ⊆ ℱ, the bijections,
form a group under composition.

We want to relate a given group 𝐺 to 𝒢 to better understand the structure of 𝒢. Particularly, is there a
homomorphism 𝜑 : 𝐺 → 𝒢? We want 𝜑 to have the property that the image of the identity is the trivial bijection, i.e.,
𝜑(𝑒)(𝑥) = 𝑥∀𝑥 ∈ 𝑋. Since we want 𝜑 to be a homomorphism, we also define

𝜑(𝑔1𝑔2)(𝑥) = 𝜑(𝑔1) ∘ 𝜑(𝑔2)(𝑥).

This gives rise to the idea of a group action, which we define below.

5.1.2. Definition: Group Action

Let 𝐺 be a group and let 𝑋 be a set. A (left) group action of 𝐺 on 𝑋 is a map 𝜇 : 𝐺 × 𝑋 → 𝑋 such that
1. 𝜇(𝑔ℎ, 𝑥) = 𝜇(𝑔, 𝜇(ℎ, 𝑥)) for all 𝑔, ℎ ∈ 𝐺 and for all 𝑥 ∈ 𝑋
2. 𝜇(1, 𝑥) = 𝑥 for all 𝑥 ∈ 𝑋

Alternately, a more intuitive definition is:

Let 𝐺 be a group and let 𝑋 be a set. Let 𝑆𝑋 be the group of all permutations of 𝑋, i.e., the symmetric group on 𝑋. An
action of 𝐺 on 𝑋 is a homomorphism 𝐺 → 𝑆(𝑋).

5.1.3. Remark

From now on, given a group action 𝜇 : 𝐺 × 𝑋 → 𝑋, we will usually write 𝑔 ⋅ 𝑥 (or simply 𝑔𝑥) instead of 𝜇(𝑔, 𝑥).
With this notation, conditions (i) and (ii) can be written
1. (𝑔ℎ) ⋅ 𝑥 = 𝑔(ℎ ⋅ 𝑥) for all 𝑔, ℎ ∈ 𝐺 and for all 𝑥 ∈ 𝑋
2. 1 ⋅ 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋

Because of condition (i), if 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋, we can write 𝑔ℎ𝑥 without any risk of ambiguity.

5.1.4. Remark

We can also define a right group action of a group 𝐺 on a set 𝑋 as a map 𝜇 : 𝑋 × 𝐺 → 𝑋 such that
1. 𝜇(𝑥, 𝑔ℎ) = 𝜇(𝜇(𝑥, 𝑔), ℎ) for all 𝑔, ℎ ∈ 𝐺 and for all 𝑥 ∈ 𝑋
2. 𝜇(𝑥, 1) = 𝑥 for all 𝑥 ∈ 𝑋

We focus on left actions, but all results have analogous results for right actions.
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5.1.5. Remark

We want to show the equivalence of the two definitions given above.

Suppose that we are given a group action 𝜇 : 𝐺 × 𝑋 → 𝑋. For each 𝑔 ∈ 𝐺, we can define a map 𝜎𝑔 : 𝑋 → 𝑋 by
𝜎𝑔(𝑥) = 𝑔 ⋅ 𝑥. Then we claim that 𝜎𝑔 ∈ 𝑆𝑋 for all 𝑔 ∈ 𝐺 and that the map

𝜑 : 𝐺 ⟶ 𝑆𝑋
𝑔 ⟼ 𝜎𝑔

is a group homomorphism.

Let us first show that 𝜎𝑔 ∈ 𝑆𝑋 for all 𝑔 ∈ 𝐺. To show that 𝜎𝑔 is injective, note that for all 𝑥, 𝑦 ∈ 𝑋,

𝜎𝑔(𝑥) = 𝜎𝑔(𝑦) ⟹ 𝑔 ⋅ 𝑥 = 𝑔 ⋅ 𝑦 ⟹ 𝑔−1 ⋅ (𝑔 ⋅ 𝑥) = 𝑔−1 ⋅ (𝑔 ⋅ 𝑦)

⟹ (𝑔−1𝑔) ⋅ 𝑥 = (𝑔−1𝑔) ⋅ 𝑦 ⟹ 1 ⋅ 𝑥 = 1 ⋅ 𝑦 ⟹ 𝑥 = 𝑦.

To show that 𝜎𝑔 is surjective, note that, given 𝑥 ∈ 𝑋, we have

𝜎𝑔(𝑔−1 ⋅ 𝑥) = 𝑔 ⋅ (𝑔−1 ⋅ 𝑥) = (𝑔𝑔−1) ⋅ 𝑥 = 1 ⋅ 𝑥 = 𝑥.

Now we show that 𝜎 is a homomorphism. Let 𝑔, ℎ ∈ 𝐺. We need to check that 𝜎𝑔ℎ = 𝜎𝑔 ∘ 𝜎ℎ. For that, note that, for
all 𝑥 ∈ 𝑋,

𝜎𝑔ℎ(𝑥) = (𝑔ℎ) ⋅ 𝑥 = 𝑔 ⋅ (ℎ ⋅ 𝑥) = 𝜎𝑔(ℎ ⋅ 𝑥) = 𝜎𝑔(𝜎ℎ(𝑥)) = (𝜎𝑔 ∘ 𝜎ℎ)(𝑥).

Conversely, suppose that we are given a homomorphism 𝜑 : 𝐺 → 𝑆𝑋 . Then, we can define an action of 𝐺 on 𝑋 by

𝐺 × 𝑋 ⟶ 𝑋
(𝑔, 𝑥) ⟼ 𝜑(𝑔)(𝑥).

To check that this is indeed a group action, note that
1. For all 𝑔, ℎ ∈ 𝐺 and for all 𝑥 ∈ 𝑋,

(𝑔ℎ) ⋅ 𝑥 = 𝜑(𝑔ℎ)(𝑥) = (𝜑(𝑔) ∘ 𝜑(ℎ))(𝑥) = 𝜑(𝑔)(𝜑(ℎ)(𝑥)) = 𝑔 ⋅ (ℎ ⋅ 𝑥);

2. For all 𝑥, ∈ 𝑋,

1 ⋅ 𝑥 = 𝜑(1)(𝑥) = id𝑋(𝑥) = 𝑥.

I should check that the map

{actions of 𝐺 on 𝑋} ⟶ {homomorphisms 𝜑 : 𝐺 → 𝑆𝑋}

and the map

{homomorphisms 𝜑 : 𝐺 → 𝑆𝑋} ⟶ {actions of 𝐺 on 𝑋}

that we have just constructed are inverses of each other, thus providing a bijection between these two sets.
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5.1.6. Definition: Action Kernel and Faithful Action

1. The kernel of the action is the set of elements of 𝐺 that act trivially on 𝑋:

{𝑔 ∈ 𝐺 : 𝑔 ⋅ 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋}.

2. The action is said to be faithful if the kernel is the trivial subgroup of 𝐺. More intuitively, an action is faithful if
different elements of the group correspond to different transformations.

5.1.7. Proposition

1. The kernel of the action is the kernel of the associated homomorphism 𝜑 : 𝐺 → 𝑆𝑋 (and is therefore a normal
subgroup of 𝐺).

2. The action is faithful if the associated homomorphism 𝜑 : 𝐺 → 𝑆𝑋 is injective.

Proof:
1. Notice that

{𝑔 ∈ 𝐺 : 𝑔 ⋅ 𝑥 = 𝑥∀𝑥 ∈ 𝑋} = {𝑔 ∈ 𝐺 : 𝜑(𝑔)(𝑥) = 𝑥∀𝑥 ∈ 𝑋}

= {𝑔 ∈ 𝐺 : 𝜑(𝑔) = 1𝑆𝑋
}

= ker 𝜑.

Thus by Proposition 4.4.3, the kernel of the action is a normal subgroup of 𝐺.

2. By the above, if the kernel of the action is just {1𝐺}, then ker 𝜑 = {1𝐺} and by Proposition 4.1.5, 𝜑 is injective.

⬜

5.1.8. Definition: Trivial Action

Let 𝐺 be a group and let 𝑋 be a set. The trivial action of 𝐺 on 𝑋 is the action defined by

𝑔 ⋅ 𝑥 = 𝑥 for all 𝑔 ∈ 𝐺 and for all 𝑥 ∈ 𝑋.

The corresponding homomorphism from 𝐺 to 𝑆𝑋 is the trivial homomorphism 𝑔 → id𝑋 . The kernel of the trivial
action is 𝐺. In particular, the trivial action is not faithful unless 𝐺 = {1}.
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5.1.9. Example

1. Let 𝑋 be a set. Then we can define an action of 𝑆𝑋 on 𝑋 by

𝜎 ⋅ 𝑥 = 𝜎(𝑥) for all 𝜎 ∈ 𝑆𝑋 and for all 𝑥 ∈ 𝑋.

The corresponding homomorphism from 𝑆𝑋 to 𝑆𝑋 is the identity map. This action is faithful.

2. Let 𝐺 be a group acting on a set 𝑋. Let 𝐻 ≤ 𝐺. The action of 𝐺 on 𝑋 induces an action of 𝐻  on 𝑋 via restriction
of the map 𝐺 × 𝑋 → 𝑋 to a map 𝐻 × 𝑋 → 𝑋. Let 𝜑 : 𝐺 → 𝑆𝑋 be the homomorphism corresponding to the
action of 𝐺 on 𝑋. Then the homomorphism corresponding to the action of 𝐻  on 𝑋 is the restriction of 𝜑 to 𝐻 .
Note that ker(𝜑|𝐻) = ker 𝜑 ∩ 𝐻 , so the action of 𝐻  on 𝑋 is faithful if and only if 𝐻 ∩ ker 𝜑 = {1}.

3. Consider the additive group ℝ. We can define an action of ℝ on ℂ by

𝛼 ⋅ 𝑧 = 𝑒𝑖𝛼𝑧 for all 𝛼 ∈ ℝ and for all 𝑧 ∈ ℂ.

To show that this is actually an action, note that:
• for all 𝛼, 𝛽 ∈ ℝ and for all 𝑧 ∈ ℂ,

(𝛼 + 𝛽) ⋅ 𝑧 = 𝑒𝑖(𝛼+𝛽)𝑧 = 𝑒𝑖𝛼(𝑒𝑖𝛽𝑧) = 𝛼 ⋅ (𝛽 ⋅ 𝑧)

• for all 𝑧 ∈ ℂ, we have 0 ⋅ 𝑧 = 𝑒𝑖0𝑧 = 𝑧.

To find the kernel of this action, we want 𝛼 ⋅ 𝑧 = 𝑧∀𝑧 ∈ ℂ. This is 𝑒𝑖𝛼𝑧 = 𝑧 so 𝑒𝑖𝛼 = 1 ⟹ ker 𝜑 = 2𝜋ℤ. In
particular, this action is not faithful. (What if 𝑧 = 0?)

4. Let 𝑛 ≥ 3. The dihedral group 𝐷2𝑛 acts naturally on the set of vertices of a regular 𝑛-gon. If we label the vertices
of a regular 𝑛-gon with the integers 1, 2, …, 𝑛, the corresponding homomorphism 𝜑 : 𝐷2𝑛 → 𝑆𝑛 is given by

𝜑(𝑥)(𝑗) = 𝑘 ⟺ 𝑥 sends the vertex 𝑗 to the vertex 𝑘

This homomorphism was discussed in Example 4.1.6, and is injective, so the action is faithful.

5. Let 𝐺 be a group. We can define an action of 𝐺 on itself by conjugation:

𝐺 × 𝐺 ⟶ 𝐺
(𝑔, 𝑎) ⟼ 𝑔𝑎𝑔−1.

To show that this is indeed an action, note that:
• for all 𝑔, ℎ, 𝑎 ∈ 𝐺,

(𝑔ℎ) ⋅ 𝑎 = (𝑔ℎ)𝑎(𝑔ℎ)−1 = 𝑔(ℎ𝑎ℎ−1)𝑔−1 = 𝑔 ⋅ (ℎ𝑎ℎ−1) = 𝑔 ⋅ (ℎ ⋅ 𝑎)
• for all 𝑎 ∈ 𝐺, we have that 1 ⋅ 𝑎 = 1𝑎1−1 = 𝑎.

The corresponding homomorphism is the map

𝐺 ⟶ Aut(𝐺) ≤ 𝑆𝐺
𝑔 ⟼ 𝜑𝑔

which has kernel 𝑍(𝐺) (this was shown in Proposition 4.1.15), so the action is faithful iff 𝑍(𝐺) = {1}.
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5.1.10. Definition: Regular Action

Let 𝐺 be a group. We can define an action of 𝐺 on itself by

𝑔 ⋅ 𝑎 = 𝑔𝑎 for all 𝑔 ∈ 𝐺 and for all 𝑎 ∈ 𝐺,

where on the right hand side 𝑔𝑎 is the product of 𝑔 and 𝑎 using the group operation on 𝐺. This action is called the
left regular action of 𝐺 on itself. It is faithful: if 𝑔 ∈ 𝐺 acts trivially on 𝐺, then in particular 𝑔 ⋅ 1 = 1 and therefore
𝑔 = 1. Further, the stabilizer of any point is the identity subgroup.

5.1.11. Remark

We can generalize regular actions in the following way: let 𝐻  be any subgroup of 𝐺 and let 𝐴 be the set of all left
cosets of 𝐻  in 𝐺. Define an action of 𝐺 on 𝐴 by

𝑔 ⋅ 𝑎𝐻 = 𝑔𝑎𝐻 for all 𝑔 ∈ 𝐺, 𝑎𝐻 ∈ 𝐴

where 𝑔𝑎𝐻  is the left coset with representative 𝑔𝑎. One easily checks that this satisfies the two axioms for a group
action. In the special case when 𝐻  is the identity subgroup of 𝐺, the coset 𝑎𝐻  is just {𝑎} and if we identify the
element 𝑎 with the set {𝑎}, this action by left multiplication on left cosets of the identity subgroup is the same as the
action of 𝐺 on itself by left multiplication.

5.1.12. Theorem: Cayley’s Theorem

Every group is isomorphic to a subgroup of a symmetric group. A group of finite order 𝑛 is isomorphic to a
subgroup of 𝑆𝑛.

Proof: Let 𝐺 be a group. As we saw in the previous example, the left regular action of 𝐺 on itself is faithful.
Therefore, this action provides an injective homomorphism 𝜑 : 𝐺 → 𝑆𝐺. By the First Isomorphism Theorem, it
follows that 𝐺 ≅ 𝜑(𝐺), so 𝐺 is isomorphic to a subgroup of a permutation group. If 𝐺 is finite of order 𝑛, then we
can define an isomorphism between 𝑆𝐺 and 𝑆𝑛 by choosing a bijection between 𝐺 and {1, 2, …, 𝑛}. Thus 𝐺 is
isomorphic to a subgroup of 𝑆𝑛.

⬜

5.2. Orbits and Stabilizers

5.2.1. Definition: Stabilizer

The stabilizer of 𝑥 is 𝐺𝑥 = {𝑔 ∈ 𝐺 : 𝑔 ⋅ 𝑥 = 𝑥}. Intuitively, the stabilizer of 𝑥 is “the set of all elements of 𝐺 which
don’t move 𝑥 when they act on 𝑥.”
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5.2.2. Lemma

Let 𝐺 act on 𝑋. Define a relation ∼ on 𝑋 by

𝑥 ∼ 𝑦 ⟺ ∃𝑔 ∈ 𝐺 such that 𝑥 = 𝑔𝑦.

Then ∼ is an equivalence relation

Proof: Reflexive: For all 𝑥 ∈ 𝑋, 1 ⋅ 𝑥 = 𝑥, so 𝑥 ∼ 𝑥. Symmetric: Let 𝑥, 𝑦 ∈ 𝑋. Suppose 𝑥 ∼ 𝑦. Then 𝑥 = 𝑔 ⋅ 𝑦 for some
𝑔 ∈ 𝐺. Then 𝑔−1𝑥 = 𝑔−1 ⋅ (𝑔 ⋅ 𝑦) = (𝑔−1𝑔) ⋅ 𝑦 = 1 ⋅ 𝑦 = 𝑦. Then 𝑦 ∼ 𝑥. Transitive: Let 𝑥, 𝑦, 𝑧 ∈ 𝑋. Suppose 𝑥 ∼ 𝑦
and 𝑦 ∼ 𝑧. Then 𝑥 = 𝑔1 ⋅ 𝑦 and 𝑦 = 𝑔2 ⋅ 𝑧. Then 𝑥 = 𝑔1 ⋅ (𝑔2 ⋅ 𝑧) = (𝑔1𝑔2) ⋅ 𝑧. Thus 𝑥 ∼ 𝑧.

⬜

5.2.3. Definition: Orbit, Transitive Action

Let 𝐺 act on 𝑋. The orbit of 𝑥 ∈ 𝑋 is 𝐺 ⋅ 𝑥 = {𝑔 ⋅ 𝑥 : 𝑔 ∈ 𝐺}, an equivalence class of 𝑥 for ∼. Intuitively, the orbit of
𝑥 is “everything that can be reached from 𝑥 by an action of 𝐺.”

The action is transitive if there is only one orbit, i.e., ∀𝑥, 𝑦 ∈ 𝑋, ∃𝑔 ∈ 𝐺 such that 𝑥 = 𝑔 ⋅ 𝑦.

5.2.4. Example

1. Let 𝐺 be the circle group 𝐺 = {𝑧 ∈ ℂ : |𝑧| = 1}. This is a group under multiplication, and in the group action
sense, we think of 𝐺 acting on ℂ by multiplication. Algebraically we multiply by 𝑧 = 𝑒𝑖𝜃, and geometrically we
rotate by some angle 𝜃. If we fix some 𝑥 ∈ ℂ, the orbit through 𝑥 is exactly the circle of radius |𝑥| centered at the
origin, unless 𝑥 = 0.

The stabilizer of 𝑥 in the case that 𝑥 ≠ 0 is just the set of points 𝑧 ∈ ℂ such that 𝑧 ⋅ 𝑥 = 𝑥, implying 𝑧 = 1, so the
stabilizer is just {1}. If 𝑥 = 0, then 𝑧𝑥 = 𝑥∀𝑧 ∈ 𝐺, so the stabilizer is 𝐺.

2. Now consider the dihedral group of order 8, i.e., the symmetries of the square. Here we consider the set 𝑋 =
{1, 2, 3, 4} of the vertices. What is the orbit of vertex 1? Note that it can be sent to any of the other vertices by a
rotation, so its orbit is 𝑋 – this applies for all vertices. What are their stabilizers? None of the rotations fix any
vertices, and only two reflections do, so each vertex has a stabilizer with cardinality 2. For example, for vertex 3,
the stabilizer is {𝑒, 𝑠} if we consider 𝑠 to be reflection through the line joining 1 and 3.
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5.2.5. Theorem: Orbit-Stabilizer Theorem

Let 𝐺 act on 𝑋. Let 𝑥 ∈ 𝑋. The map

𝐺/𝐺𝑥 ⟶ 𝐺 ⋅ 𝑥
𝑎𝐺𝑥 ⟼ 𝑎 ⋅ 𝑥

is well-defined and bijective, and therefore |𝐺 ⋅ 𝑥| = [𝐺 : 𝐺𝑥].

Proof: Let 𝑎, 𝑏 ∈ 𝐺.

𝑎𝐺𝑥 = 𝑏𝐺𝑥 ⟺ 𝑏−1𝑎 ∈ 𝐺𝑥

⟺ 𝑏−1𝑎 ⋅ 𝑥 = 𝑥
⟺ 𝑎 ⋅ 𝑥 = 𝑏 ⋅ 𝑥.

The map is well-defined by (⟹) and injective by (⟸).

Surjectivity: Let 𝑎 ∈ 𝐺. Then 𝑎 ⋅ 𝑥 is the image of 𝑎𝐺𝑥.

⬜

5.2.6. Corollary

Let 𝐺 act on 𝑋. Suppose 𝐺 is finite. The cardinality of every orbit divides |𝐺|.

Proof: Let 𝐺 ⋅ 𝑥 be an orbit. Then |𝐺 ⋅ 𝑥| = [𝐺 : 𝐺𝑥], which divides |𝐺| by the Counting Formula.

⬜

5.2.7. Corollary: Orbits Formula

Let 𝐺 act on 𝑋. Suppose 𝑋 is finite. Let 𝑥1, 𝑥2, …, 𝑥𝑟 be a complete set of representatives for the orbits. Then

|𝑋| = ∑
𝑟

𝑖=1
|𝐺 ⋅ 𝑥𝑖| = ∑

𝑟

𝑖=1
[𝐺 : 𝐺𝑥𝑖

].

Proof: The orbits are the equivalence classes for the equivalence relations defined by Lemma 5.2.2. Therefore, they
form a partition of 𝑋, giving us hte first equality. The second equality follows from the orbit stabilizer theorem.

⬜
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5.2.8. Example

Consider a Rubik’s cube, where 𝐺 represents the possible orientations of the cube and 𝑋 represents the faces, labeled
1-6. If we hold it such that we are facing the yellow side, the stabilizer of the yellow side consists of the four rotations
we can make while keeping the yellow side in front. The other 5 sides are similar. The orbits of every face consist of
every other side, since we can always rotate any face towards us. Then the orbit stabilizer theorem tells us that the
number of equivalence classes created by the stabilizer partition (6 classes consisting of 4 elements each) is the same
as the number of orbits for every element (6 each). We could for example use this to find the total number of
orientations of Rubik’s cube:

|𝐺| = |𝐺 : 𝐺𝑥| ⋅ |𝐺𝑥| = |𝐺 ⋅ 𝑥| ⋅ |𝐺𝑥| = 6 ⋅ 4 = 24.

5.2.9. Proposition

Let 𝐺 act on 𝑋. Suppose 𝑥 and 𝑦 are elements in the same orbit. Then 𝐺𝑥 is conjugate to 𝐺𝑦 in 𝐺.

Proof: Since 𝑥 and 𝑦 are in the same orbit, ∃𝑔 ∈ 𝐺 such that 𝑦 = 𝑔 ⋅ 𝑥. For all 𝑎 ∈ 𝐺,

𝑎 ∈ 𝐺𝑦 ⟺ 𝑎𝑦 = 𝑦 ⟺ 𝑎𝑔𝑥 = 𝑔𝑥 ⟺ 𝑔−1𝑎𝑔𝑥 = 𝑥 ⟺ 𝑔−1𝑎𝑔 ∈ 𝐺𝑥 ⟺ 𝑎 ∈ 𝑔𝐺𝑥𝑔−1.

Thus 𝐺𝑦 = 𝑔𝐺𝑥𝑔−1.

⬜

5.2.10. Definition: Fixed Point

Let 𝐺 act on 𝑋. An element 𝑥 ∈ 𝑋 is a fixed point if 𝑔 ⋅ 𝑥 = 𝑥∀𝑔 ∈ 𝐺. In other words, 𝐺𝑥 = 𝐺 ⟺ 𝐺 ⋅ 𝑥 = {𝑥}.

5.2.11. Example

1. For 𝑛 ≥ 3, 𝐷2𝑛. Label the vertices of the 𝑛-gon by 0, 1, …𝑛 − 1 ∈ ℤ/𝑛ℤ. Then 𝐷2𝑛 acts on ℤ/𝑛ℤ. It is transitive
because given 𝑖, 𝑗 ∈ ℤ/𝑛ℤ, 𝑟𝑗−𝑖 ⋅ 𝑖 = 𝑗. The stabilizer of 𝑘 is 𝑟𝑘{1, 𝑠}𝑟−𝑘 = {1, 𝑟𝑘𝑠𝑟−𝑘} = {1, 𝑟2𝑘𝑠}.

The kernel of the action is thus ∩𝑘∈ℤ/𝑛ℤ {1, 𝑟2𝑘𝑠} = {1}, so the action is faithful.

Applying the orbit formula in this case, we get |ℤ/𝑛ℤ| = [𝐷2𝑛 : (𝑟𝑘𝑠)].

2. Left regular action of 𝐺. I.e.,

𝐺 × 𝐺 ⟶ 𝐺
(𝑔, 𝑎) ⟼ 𝑔𝑎

This is transitive since given 𝑎, 𝑏 ∈ 𝐺, 𝑏 = (𝑏𝑎−1)𝑎. There are no fixed points unless 𝐺 is trivial. The stabilizer of 𝑎
is {1}. From the orbit formula we get |𝐺| = [𝐺 : {1}] (obvious).

3. Let 𝐻 ≤ 𝐺. Restrict left regular actions of 𝐺 to 𝐻 :

𝐻 × 𝐺 ⟶ 𝐺
(ℎ, 𝑎) ⟼ ℎ𝑎

The orbit of 𝑎 is the right coset 𝐻𝑎. This is not transitive unless 𝐻 = 𝐺. The stabilizer of 𝑎 is {1}. Let 𝑥1, …, 𝑥𝑟 be
a complete set of representative for the orbits of 𝐻  in 𝐺. By the orbits formula,
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|𝐺| = ∑
𝑟

𝑖=1
[𝐻 : 𝐻𝑥𝑖

] = ∑
𝑟

𝑖=1
[𝐻 : {1}]

= 𝑟 |𝐻| = [𝐺 : 𝐻] ⋅ |𝐻|

which is the Counting Formula.

4. Let 𝐻 ≤ 𝐺. Define the action of 𝐺 on 𝐺/𝐻  by

𝐺 × 𝐺/𝐻 ⟶ 𝐺/𝐻
(𝑔, 𝑎𝐻) ⟼ 𝑔𝑎𝐻

This is transitive since given 𝑎𝐻, 𝑏𝐻 ∈ 𝐺/𝐻 , we have 𝑏𝑎−1 ⋅ 𝑎𝐻 = 𝑏𝐻 . The stabilizer of 𝐻  is 𝐻 , and the
stabilizer of 𝑎𝐻  is 𝑎𝐻𝑎−1. The kernel is

∩𝑎∈𝐺 𝑎𝐻𝑎−1

which is the largest normal subgroup of 𝐺 contained in 𝐻 . By the orbit formula, |𝐺/𝐻| = [𝐺 : 𝑎𝐻𝑎−1]. To find
the fixed points, note that

𝑎𝐻 fixed point ⟺ stabilizer of 𝑎 = 𝐺
⟺ 𝑎𝐻𝑎−1 = 𝐺 ⟺ 𝐻 = 𝐺.

There will be no fixed points unless 𝐻 = 𝐺.

5. 𝐺 acting on itself by conjugation.

𝐺 × 𝐺 ⟶ 𝐺
(𝑔, 𝑎) ⟼ 𝑔 ⋅ 𝑎 = 𝑔𝑎𝑔−1

The orbit of 𝑎 is 𝐺 ⋅ 𝑎 = {𝑔𝑎𝑔−1 : 𝑔 ∈ 𝐺} which is called the conjugacy class of 𝑎 in 𝐺.

Note 𝐺 ⋅ 1 = {1}. The action is not transitive unless 𝐺 = {1}. The stabilizer of 𝑎 is 𝐶𝐺(𝑎), the centralizer of 𝑎.
The kernel is 𝑍(𝐺). The fixed points are the elements of 𝑍(𝐺).

Let 𝑧1, …, 𝑧𝑘 be the elements of 𝑍(𝐺). Then {𝑧1}, …, {𝑧𝑘} are the trivial conjugacy classes (each has only one
element).

Let 𝑥1, …, 𝑥𝑟 be a complete set of representatives for the nontrivial conjugacy classes. The orbits formula gives

|𝐺| = ∑
𝑘

𝑖=1
|{𝑧𝑖}| = ∑

𝑟

𝑖=1
|𝐺 ⋅ 𝑥𝑖| = |𝑍(𝐺)| + ∑

𝑟

𝑖=1
[𝐺 : 𝐶𝐺(𝑥𝑖)].

This is known as the class equation for the group 𝐺.

5.2.12. Lemma: Burnside’s Lemma

Let 𝐺 be a finite group acting on a finite set 𝑋. For each 𝑔 ∈ 𝐺, we denote by 𝑋𝑔 the set of elements in 𝑋 that are
fixed by 𝑔, i.e., 𝑋𝑔 = {𝑥 ∈ 𝑋 : 𝑔 ⋅ 𝑥 = 𝑥}.

Then

|𝐺\𝑋| = 1
|𝐺|

∑
𝑔∈𝐺

|𝑋𝑔|.
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5.2.13. Theorem

Let 𝐺 be a group, let 𝐻 ≤ 𝐺 and let 𝐺 act by left multiplication on the set 𝐴 of left cosets of 𝐻  in 𝐺. Let 𝜋𝐻  be
the associated permutation representation afforded by this action. Then
1. 𝐺 acts transitively on 𝐴
2. The stabilizer in 𝐺 of the point 1𝐻 ∈ 𝐴 is the subgroup 𝐻
3. The kernel of the action is ∩𝑥∈𝐺 𝑥𝐻𝑥−1, and ker 𝜋𝐻  is the largest normal subgroup of 𝐺 contained in 𝐻

5.2.14. Theorem: Cauchy’s Theorem

Let 𝐺 be a finite group. Let 𝑝 be a prime dividing |𝐺|. Then 𝐺 contains an element of order 𝑝.

Proof:

We proceed by strong induction on |𝐺|. If |𝐺| = 𝑝, any nonidentity element has order 𝑝. Let 𝑛 > 𝑝 be a multiple of 𝑝.
Suppose every finite abelian group 𝐺 with |𝐺| < 𝑛 and 𝑝 ∣ |𝐺| contains an element of order 𝑝.

First assume that 𝐺 is abelian. Let 𝑎 ∈ 𝐺 be a nonidentity element. Let 𝑘 = ord(𝑎). If 𝑝 ∣ 𝑘, then 𝑎
𝑘
𝑝  has order 𝑝. Now

suppose 𝑝 ∤ 𝑘. We know 𝑛 = [𝐺 : (𝑎)] ⋅ 𝑘. Then 𝑝 ∣ [𝐺 : (𝑎)].

Since 𝐺 is abelian, (𝑎) ⊴ 𝐺 (Prop 4.3.5). Note 𝐺/(𝑎) is a group of order divisible by 𝑝, and |𝐺| < 𝑛 because 𝑘 > 1. By
the induction hypothesis, 𝐺/(𝑎) contains an element 𝑏 of order 𝑝.

Now let 𝜋 : 𝐺 → 𝐺/(𝑎) be the canonical projection. 𝜋 is surjective, so ∃𝑐 ∈ 𝐺 such that 𝜋(𝑐) = 𝑏. Let 𝑡 = ord(𝑐).
Then 𝑏𝑡 = 𝜋(𝑐)𝑡 = 𝜋(𝑐𝑡) = 𝜋(1) = 1, so 𝑝 = ord(𝑏) ∣ 𝑡. Thus 𝑐

𝑡
𝑝 ∈ 𝐺 and this element has order 𝑝.

Note this result can be considered a partial converse to Lagrange’s theorem.

⬜

5.2.15. Definition: 𝑝-group

Let 𝑝 be a prime number. A 𝑝-group is a finite group of order 𝑝𝑘 for some integer 𝑘 ≥ 0. In other words, the order of
every element is a power of 𝑝 (by Lagrange’s Theorem).

5.2.16. Theorem

Every nontrivial 𝑝-group has a nontrivial center.

Proof: The Class Equation for 𝐺 reads

|𝐺| = |𝑍(𝐺)| + ∑
𝑟

𝑖=1
[𝐺 : 𝐶𝐺(𝑥𝑖)]

Note that |𝐺| and all the terms [𝐺 : 𝐶𝐺(𝑥𝑖)] are divisible by 𝑝. It follows that 𝑝 divides |𝑍(𝐺)| and therefore 𝑍(𝐺) is
nontrivial.

⬜
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5.2.17. Corollary

Every 𝑝-group is solvable.

Proof: We proceed by strong induction on |𝐺|. If |𝐺| = 1, then 𝐺 is trivial and is clearly solvable. Let 𝑛 > 1 be a
power of 𝑝 and suppose that every 𝑝-group of order smaller than 𝑛 is solvable. Let 𝐺 be a group of order 𝑛. By the
previous theorem, we know that 𝑍(𝐺) is a nontrivial normal subgroup of 𝐺. Therefore, the quotient group 𝐺/𝑍(𝐺)
is a 𝑝-group of order smaller than 𝑛. By the induction hypothesis, 𝐺/𝑍(𝐺) is solvable. Also 𝑍(𝐺) is abelian and
therefore solvable. Finally, since 𝑍(𝐺) and 𝑍/𝑍(𝐺) are solvable, it follows by Proposition 4.7.10(iii) that 𝐺 is
solvable.

⬜

5.3. Exercises

5.3.1. Exercise

Let 𝐺 be a finite group. Let 𝑔1, …, 𝑔𝑟 be a complete set of representatives of the conjugacy classes in 𝐺. Suppose
𝑔1, …, 𝑔𝑟 commute with each other. Prove that 𝐺 is abelian.

Solution

So 𝑔1, …, 𝑔𝑟 ∈ 𝐶𝐺(𝑔𝑖) ⇒ 𝑟 ≤ ∑
𝑖

|𝐶𝐺(𝑔𝑖)| ⇒ |Conj(𝑔𝑖)| ≤ 𝑛
𝑟 . Then 𝑛 = |𝐺| = ∑

𝑟

𝑖=1
|Conj(𝑔𝑖)| ≤ ∑

𝑟

𝑖=1

𝑛
𝑟 = 𝑛. Thus

|Conj(𝑔𝑖)| = 𝑛
𝑟 ∀𝑖. But we know |Conj(1)| = 1, so 𝑛𝑟 = 1. All conjugacy classes have size 1, so 𝐺 is abelian.

5.3.2. Exercise

Let 𝐺 be a finite group of order 𝑛 = 𝑝𝑘𝑚, where 𝑝 is a prime, 𝑘 > 0 and 𝑝 ∤ 𝑚.

Let 𝑃  be a subgroup of 𝐺 with order 𝑝𝑘 (a 𝑝-Sylow subgroup). Let 𝐻 ≤ 𝑁𝐺(𝑃 ) with |𝐻| = 𝑝𝑎 for some 𝑎 ≥ 0.
Prove 𝐻 ≤ 𝑃 .

Solution

By the Second Isomorphism Theorem,

(𝐻𝑃)/𝑃 ≅ 𝐻/𝐻 ∩ 𝑃.

Note |𝐻/𝐻 ∩ 𝑃| ∣ |𝐻|, so |𝐻/𝐻 ∩ 𝑃| is a power of 𝑝. Thus |𝐻𝑃/𝑃 | is a power of 𝑝. Notice |𝐻𝑃 | = |𝐻𝑃/𝑃 | ⋅ |𝑃 | is
a power of 𝑝.

Also, |𝐻𝑃 | ∣ 𝑝𝑘𝑚, so |𝐻𝑃 | ∣ 𝑝𝑘. Since 𝑃 ≤ 𝐻𝑃  and |𝑃 | = 𝑝𝑘, |𝐻𝑃 | = 𝑝𝑘 and 𝑃 = 𝐻𝑃 . Therefore 𝐻 ≤ 𝑃 .
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Abelian Groups

6.1. Direct Products

6.1.1. Definition: Direct Product

Let 𝐺1, …, 𝐺𝑛 be groups. The direct product 𝐺1 × 𝐺2 × ⋅ ⋅ ⋅ × 𝐺𝑛 is the set of 𝑛-tuples (𝑔1, …, 𝑔𝑛) with 𝑔𝑖 ∈ 𝐺𝑖 for
all 𝑖 ∈ {1, 2, …, 𝑛} and binary operation defined componentwise:

(𝑔1, …, 𝑔𝑛) ⋅ (ℎ1, …, ℎ𝑛) = (𝑔1ℎ1, …, 𝑔𝑛ℎ𝑛).

With this operation 𝐺1 × 𝐺2 × ⋅ ⋅ ⋅ × 𝐺𝑛 is a group.

We remark that this group is abelian if and only if each 𝐺𝑖 is abelian.

6.1.2. Proposition

Let 𝐺1, …, 𝐺𝑛 be groups. Let 𝐺 = 𝐺1 × ⋅ ⋅ ⋅ × 𝐺𝑛.

1. For each 𝑖 ∈ {1, 2, …, 𝑛}, the map

𝜄𝑖 : 𝐺𝑖 ⟶ 𝐺 = 𝐺1 × ⋅ ⋅ ⋅ 𝐺𝑖−1 × 𝐺𝑖 × 𝐺𝑖+1 × ⋅ ⋅ ⋅ × 𝐺𝑛

𝑔𝑖 ⟼ (1, …, 1, 𝑔𝑖, 1, …, 1)

defines an isomorphism between 𝐺𝑖 and the subgroup

{1} × ⋅ ⋅ ⋅ × {1} × 𝐺𝑖 × {1} × ⋅ ⋅ ⋅ × {1} ≤ 𝐺.

Identifying 𝐺𝑖 with this subgroup, 𝐺𝑖 ⊴ 𝐺 and

𝐺/𝐺𝑖 ≅ 𝐺1 × ⋅ ⋅ ⋅ × 𝐺𝑖−1 × 𝐺𝑖+1 × ⋅ ⋅ ⋅ × 𝐺𝑛.

2. For each 𝑖 ∈ {1, 2, …, 𝑛}, the map

𝜋𝑖 : 𝐺1 × ⋅ ⋅ ⋅ × 𝐺𝑛 ⟶ 𝐺𝑖

(𝑔1, …, 𝑔𝑛) ⟼ 𝑔𝑖

is a surjective homomorphism with

ker 𝜋𝑖 = 𝐺1 × ⋅ ⋅ ⋅ × 𝐺𝑖−1 × {1} × 𝐺𝑖+1 × ⋅ ⋅ ⋅ × 𝐺𝑛

≅ 𝐺1 × ⋅ ⋅ ⋅ 𝐺𝑖−1 ⋅ ⋅ ⋅ 𝐺𝑖+1 × ⋅ ⋅ ⋅ × 𝐺𝑛.

(Hence 𝐺/(𝐺1 × ⋅ ⋅ ⋅ × 𝐺𝑖−1 × {1} × 𝐺𝑖+1 × ⋅ ⋅ ⋅ × 𝐺𝑛) ≅ 𝐺𝑖.)

Proof:

⬜
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6.1.3. Proposition

Let 𝐻  and 𝐾 be subgroups of a group 𝐺 and let 𝑓 : 𝐻 × 𝐾 → 𝐺 be the multiplication map, defined by 𝑓(ℎ, 𝑘) =
ℎ𝑘.
1. 𝑓  is injective iff 𝐻 ∩ 𝐾 = {1}
2. 𝑓  is a homomorphism iff elements of 𝐻  commute with elements of 𝐾 , i.e., ℎ𝑘 = 𝑘ℎ for all ℎ ∈ 𝐻, 𝑘 ∈ 𝐾
3. 𝑓  is an isomorphism iff 𝐻 ∩ 𝐾 = {1}, 𝐻𝐾 = 𝐺, and both 𝐻  and 𝐾 are normal subgroups of 𝐺

Proof:

1. Suppose that 𝐻 ∩ 𝐾 ≠ {1}. Then 𝐻 ∩ 𝐾 contains a nonidentity element 𝑥. Then 𝑥−1 ∈ 𝐻  and 𝑓(𝑥−1, 𝑥) = 1 =
𝑓(1, 1), which shows that 𝑓  is not injective.

Now suppose that 𝐻 ∩ 𝐾 = {1}. Let (ℎ1, 𝑘1), (ℎ2, 𝑘2) ∈ 𝐻 × 𝐾 and suppose that 𝑓(ℎ1, 𝑘1) = 𝑓(ℎ2, 𝑘2). Then
ℎ1𝑘1 = ℎ2𝑘2. Left multiplying both sides by ℎ−1

1  and right multiplying by 𝑘−1
2 , we find 𝑘1𝑘−1

2 = ℎ−1
1 ℎ2. This

element is in 𝐻 ∩ 𝐾 , so 𝑘1𝑘−1
2 = 1 = ℎ−1

1 ℎ2, meaning ℎ1 = ℎ2 and 𝑘1 = 𝑘2. Therefore (ℎ1, 𝑘1) = (ℎ2, 𝑘2).

2.

𝑓 is a homomorphism ⟺ 𝑓((ℎ1, 𝑘1)(ℎ2, 𝑘2)) = 𝑓(ℎ1, 𝑘1)𝑓(ℎ2, 𝑘2)∀(ℎ1, 𝑘1), (ℎ2, 𝑘2) ∈ 𝐻 × 𝐾
⟺ 𝑓(ℎ1, ℎ2, 𝑘1, 𝑘2) = 𝑓(ℎ1, 𝑘1)𝑓(ℎ2, 𝑘2)∀ℎ1, ℎ2 ∈ 𝐻, 𝑘1, 𝑘2 ∈ 𝐾
⟺ ℎ1ℎ2𝑘1𝑘2 = ℎ1𝑘1ℎ2𝑘2∀ℎ1, ℎ2 ∈ 𝐻, 𝑘1, 𝑘2 ∈ 𝐾
⟺ ℎ2𝑘1 = 𝑘1ℎ2∀ℎ2 ∈ 𝐻, 𝑘1 ∈ 𝐾.

3. Suppose that 𝐻 ∩ 𝐾 = {1}, 𝐻𝐾 = 𝐺 and both 𝐻  and 𝐾 are normal subgroups of 𝐺. Then 𝑓  is injective by (i),
and it is surjective since its image is clearly 𝐻𝐾 . By (ii), in order to conclude that 𝑓  is an isomorphism, it suffices
to show that ℎ𝑘 = 𝑘ℎ for all ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 . Consider the product (ℎ𝑘ℎ−1)𝑘−1 = ℎ(𝑘ℎ−1𝑘−1). Since 𝐾 is normal,
the left side is in 𝐾 , and since 𝐻  is normal, the right side is in 𝐻 . Since 𝐻 ∩ 𝐾 = {1}, we deduce that
ℎ𝑘ℎ−1𝑘−1 = 1 and therefore ℎ𝑘 = 𝑘ℎ.

Conversely, suppose 𝑓  is an isomorphism. Note that 𝐻 = 𝑓(𝐻 × {1}) and 𝐾 = 𝑓({1} × 𝐾). Since 𝑓  is an
isomorphism, it suffices to show that
• (𝐻 × {1}) ∩ ({1} × 𝐾) = {(1, 1)}
• (𝐻 × {1})({1} × 𝐾) = 𝐻 × 𝐾
• 𝐻 × {1} ⊴ 𝐻 × 𝐾 and {1} × 𝐾 ⊴ 𝐻 × 𝐾

The first two conditions are clear, whereas the third one follows from Proposition 6.1.2(i).

⬜
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6.1.4. Proposition

Let 𝐺 be a group. Let 𝐻1, …, 𝐻𝑛 be normal subgroups of 𝐺 such that

• 𝐻1𝐻2 ⋅ ⋅ ⋅ 𝐻𝑛 = 𝐺,
• for all 𝑖 ∈ {1, 2, …, 𝑛},

𝐻𝑖 ∩ (𝐻1 ⋅ ⋅ ⋅ 𝐻𝑖−1𝐻𝑖+1 ⋅ ⋅ ⋅ 𝐻𝑛) = {1}.

Then 𝐺 ≅ 𝐻1 × 𝐻2 ⋅ ⋅ ⋅ × 𝐻𝑛.

Proof:

⬜

6.1.5. Proposition

Let 𝑚, 𝑛 ∈ ℤ>0. Then ℤ/𝑚𝑛ℤ ≅ ℤ/𝑚ℤ × ℤ/𝑛ℤ if and only if (𝑚, 𝑛) = 1.

Proof: Let 𝑙 = lcm(𝑚, 𝑛). Let ([𝑎]𝑚, [𝑏]𝑚) ∈ ℤ/𝑚ℤ × ℤ/𝑛ℤ. Then (using additive notation)

𝑙([𝑎]𝑚, [𝑏]𝑛) = ([𝑙𝑎]𝑚, [𝑙𝑏]𝑛) = ([0]𝑚, [0]𝑛).

Therefore, the order of every element in ℤ/𝑚ℤ × ℤ/𝑛ℤ divides 𝑙.

Suppose that (𝑚, 𝑛) > 1. Since 𝑙 = 𝑚𝑛/(𝑚, 𝑛), it follows that 𝑙 < 𝑚𝑛. Since the element [1]𝑚𝑛 ∈ ℤ/𝑚𝑛ℤ has order
𝑚𝑛, whereas every element in ℤ/𝑚ℤ × ℤ/𝑛ℤ has order a divisor of 𝑙, we deduce that ℤ/𝑚𝑛ℤ ≇ ℤ/𝑚ℤ × ℤ/𝑛ℤ.

Now suppose that (𝑚, 𝑛) = 1. In this case, one can show easily (exercise) that the map

ℤ/𝑚𝑛ℤ ⟶ ℤ/𝑚ℤ × ℤ/𝑛ℤ
[𝑎]𝑚𝑛 ⟼ ([𝑎]𝑚, [𝑎]𝑛)

is a well defined isomorphism.

⬜

6.1.6. Corollary

Let 𝑛 ∈ ℤ>0. If 𝑛 = 𝑝𝑎1
1 ⋅ ⋅ ⋅ 𝑝𝑎𝑘𝑟 , where 𝑝1, …, 𝑝𝑘 are distinct primes, then

ℤ/𝑛ℤ ≅ ℤ/𝑝𝑎1ℤ × ℤ/𝑝𝑎2ℤ × ⋅ ⋅ ⋅ × ℤ/𝑝𝑎𝑘ℤ.

Proof: The result follows easily from the proposition by induction on 𝑘.

⬜
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6.2. Fundamental Theorem of Finitely Generated Abelian
Groups

6.2.1. Theorem: Fundamental Theorem of Finitely Generated Abelian Groups

Let 𝐺 be a finitely generated abelian group.
1. There exist unique integers 𝑟 ≥ 0 and 𝑛1, …, 𝑛𝑠 ≥ 2, with 𝑛𝑖+1 ∣ 𝑛𝑖 for all 1 ≤ 𝑖 ≤ 𝑠 − 1 such that

𝐺 ≅ ℤ𝑟 × ℤ/𝑛1ℤ × ⋅ ⋅ ⋅ ℤ/𝑛𝑠ℤ.

The integer 𝑟 is called the free rank of 𝐺, the integers 𝑛1, …, 𝑛𝑠 are called the invariant factors of 𝐺, and the
isomorphism above is called the invariant factor decomposition of 𝐺.

2. With 𝑟 as in (i), there exist integers 𝑞1, …, 𝑞𝑡 which are powers of (not necessarily distinct) primes such that

𝐺 ≅ ℤ𝑟 × ℤ/𝑞1ℤ × ⋅ ⋅ ⋅ × ℤ/𝑞𝑠ℤ.

The powers of the primes 𝑞1, …, 𝑞𝑡 are unique up to order. They are called the elementary divisors of 𝐺 and the
isomorphism above is called the elementary divisor decomposition of 𝐺.

Proof: A more general version of this theorem is shown in 111B, so we omit the proof here.

⬜

6.2.2. Remark

Two finitely generated abelian groups are isomorphic if and only if they have the same free rank and the same
invariant factors if and only if they have the same free rank and same elementary divisors. Therefore, the
isomorphism class of a finitely generated abelian group is determined by the free rank and the invariant factors, and
also by the free rank and the elementary divisors.

Note a finitely generated abelian group is finite if and only if its free rank is zero. In this case the order of the group is
equal to the product of its invariant factors, and also to the product of its elementary divisors.

6.2.3. Definition: Torsion Subgroup and Free Abelian Group

Let 𝐺 be a finitely generated abelian group with invariant factor decomposition

𝐺 ≅ ℤ𝑟 × ℤ/𝑛1ℤ × ⋅ ⋅ ⋅ × ℤ/𝑛𝑠ℤ.

The subgroup of 𝐺 corresponding via this isomorphism to

ℤ/𝑛1ℤ × ⋅ ⋅ ⋅ × ℤ/𝑛𝑠ℤ

is called the torsion subgroup of 𝐺. If the torsion subgroup of 𝐺 is trivial, we say that 𝐺 is a free abelian group of
rank 𝑟.
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6.2.4. Remark

Let 𝐺 be a finitely generated abelian group. The torsion subgroup of 𝐺 is uniquely characterized as

𝐺tors = {𝑥 ∈ 𝐺 : 𝑛𝑥 = 0 for some 𝑛 ∈ ℤ>0}.

6.2.5. Example

1. Let 𝐺 = ℤ/9ℤ and 𝐻 = ℤ/3ℤ × ℤ/3ℤ. They are both written in their invariant factor decomposition, which in
this case is also their elementary divisor decomposition. Therefore 𝐺 ≇ 𝐻 .

2. Let 𝐺 = ℤ/12ℤ × ℤ/18ℤ. Note that ℤ/12ℤ ≅ ℤ/4ℤ × ℤ/3ℤ and ℤ/18ℤ ≅ ℤ/2ℤ × ℤ/9ℤ. Therefore, the
elementary divisor decomposition of 𝐺 is given by

𝐺 ≅ ℤ/4ℤ × ℤ/2ℤ × ℤ/9ℤ × ℤ/3ℤ.

To obtain the invariant factor decomposition of 𝐺, note that

𝐺 ≅ (ℤ/4ℤ × ℤ/9ℤ) × (ℤ/2ℤ × ℤ/3ℤ) ≅ ℤ/36ℤ × ℤ/6ℤ.

3. Let 𝐺 be a group of finite order 𝑛. Let 𝑛 = 𝑝𝑎1
1 ⋅ ⋅ ⋅ 𝑝𝑎𝑘

𝑘  be the prime factorization of 𝑛, where 𝑝1, …, 𝑝𝑘 are distinct
primes. Then, the elementary divisor decomposition of 𝐺 is of the form

𝐺 ≅ (ℤ/𝑝𝑏11
1 ℤ × ⋅ ⋅ ⋅ × ℤ/𝑝

𝑏1𝑡𝑡1
1 ) × ⋅ ⋅ ⋅ × (ℤ/𝑝𝑏𝑘1

𝑘 ℤ × ⋅ ⋅ ⋅ × ℤ/𝑝
𝑏𝑘𝑡𝑘
𝑘 ℤ)

with

𝑏11 + ⋅ ⋅ ⋅ +𝑏1𝑡1
= 𝑎1,
⋮

𝑏𝑘1 + ⋅ ⋅ ⋅ +𝑏𝑘𝑡𝑘
= 𝑎𝑘.

Therefore, there is a one-to-one correspondence between the set of isomorphism classes of finite abelian groups of
order 𝑛 and the set

{partitions of 𝑎1} × ⋅ ⋅ ⋅ × {partitions of 𝑎𝑘}.
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6.3. Exercises

6.3.1. Exercise

Let 𝐺 be a finite abelian group with invariant factors 𝑛1, 𝑛2, …, 𝑛𝑠. Prove that 𝐺 contains an element of order 𝑚 if
and only if 𝑚 ∣ 𝑛.

Solution

Take the isomorphism

𝐺 ≅ ℤ/𝑛1ℤ × ℤ/𝑛2ℤ × ⋅ ⋅ ⋅ × ℤ/𝑛𝑠ℤ

where 𝑛𝑖+1 ∣ 𝑛𝑖 for 𝑖 = 1, …, 𝑠 − 1. Let 𝑥 ∈ ℤ/𝑛1ℤ × ⋅ ⋅ ⋅ ℤ/𝑛𝑠ℤ. Then 𝑥 = ([𝑎1]𝑛1
, …, [𝑎𝑠]𝑛𝑠

) and

𝑛1𝑥 = ([𝑛1𝑎1]𝑛1
, …, [𝑛1𝑎𝑠]𝑛𝑠

= ([0]𝑛1
, …, [0]𝑛𝑠

))

so ord(𝑥) ∣ 𝑛1. Then if ∃𝑥 ∈ 𝐺 with ord(𝑥) = 𝑚, then 𝑚 ∣ 𝑛1. If 𝑚 ∣ 𝑛1, take

([𝑛1
𝑚

]
𝑛1

, [0]𝑛2
, …, [0]𝑛𝑠

)

has order 𝑚.
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6.3.2. Exercise

Let 𝐺 = (𝑥1) × (𝑥2) × ⋅ ⋅ ⋅ × (𝑥𝑘) where ord(𝑥𝑖) = 𝑝𝑎𝑖 for some 𝑎𝑖 > 0. Define

𝜑 : 𝐺 ⟶ 𝐺
𝑎 ⟼ 𝑎𝑝

1. Show that 𝜑 is a homomorphism.
2. Find ker 𝜑 and im 𝜑.

Solution

1. Since 𝐺 is abelian, 𝜑(𝑎𝑏) = (𝑎𝑏)𝑝 = 𝑎𝑝𝑏𝑝 = 𝜑(𝑎)𝜑(𝑏).
2. We have ker 𝜑 = (𝑥𝑝𝑎1−1

1 ) × ⋅ ⋅ ⋅ × (𝑥𝑝𝑎𝑘−1

𝑘 ). Also im 𝜑 = (𝑥𝑝
1) × ⋅ ⋅ ⋅ × (𝑥𝑝

𝑘). Thus ker 𝜑 ≅ ℤ/𝑝ℤ × ⋅ ⋅ ⋅ × ℤ/𝑝ℤ⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘 times

.

Thus

((𝑥1) × ⋅ ⋅ ⋅ × (𝑥𝑘))/((𝑥𝑝
1) × ⋅ ⋅ ⋅ × (𝑥𝑝

𝑘)) ≅ (𝑥1)/(𝑥𝑝
1) × (𝑥2)/(𝑥𝑝

2) × ⋅ ⋅ ⋅ × (𝑥𝑘)/(𝑥𝑝
𝑘).

So if we define

𝜓 : ℤ ⟶ (𝑥𝑖)/(𝑥𝑝
𝑖 )

𝑎 ⟼ 𝑥𝑎
𝑖 (𝑥𝑝

1)

with

ker 𝜓 = {𝑎 ∈ ℤ : 𝑥𝑎
𝑖 ∈ (𝑥𝑝

𝑖 )}

= {𝑎 ∈ ℤ : 𝑥𝑎
𝑖 = 𝑥𝑘𝑝

𝑖 for some 𝑘 ∈ ℤ}

= {𝑎 ∈ ℤ : 𝑎 ≡ 𝑘𝑝 (mod 𝑝𝑎𝑖
𝑖 ) for some 𝑘 ∈ ℤ}

= 𝑝ℤ

Then by the First Isomorphism Theorem,

ℤ/𝑝ℤ ≅ (𝑥𝑖)/(𝑥𝑝
𝑖 ).
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