Ring Theory Lecture Notes
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1. Rings

1.1. Rings

Lecture 1 Jan 6

Recall that a group G is a set together with a binary operation * : G x G — G such that
i) * is associative

ii) 31 € G such that 1 xa=a*a =aVa € G

iii) Va € Gda=! € G such that axa ! =a'xa=1.

A monoid is similar to a group without requiring condition (iii).

A semigroup does not require conditions (ii) and (iii).

i) Z. is the set of all nonnegative integers. This is a monoid.

ii) Z. is the set of positive integers. This is a semigroup.

iii) (Z, x) is not a group, but it is a monoid.

A ring is a set R together with two binary operations, namely addition (+) and multiplication (-) such that

i) (R,+) is an abelian group.
ii) (R,-) is a monoid
iii) Addition and multiplication commute, i.e., Va, b, c € R, we have

a-(b+c)=a-b+a-c and (b+c)-a=b-a+c-a.

Ifa-b=">-aVa,b € R, then we say in addition that R is a commutative ring.

The identity element for addition is called the additive identity and is written as 0, and the identity element for
multiplication is called the multiplicative identity and is written as 1.
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RiINGs Rings — 1.1

1.1.7. Proposition

I The multiplicative identity is unique.

Proof: Suppose 1 and 1’ are distinct multiplicative identities. Then we know 11’ = 1and 11" =1',s01 = 1".

U]
) R=17
i) R=Q,R,C

iii) Let n € Z* and R = M,,(R), the set of n X n real matrices. This is a ring with the usual addition and
multiplication of matrices. This is an example of a noncommutative ring since AB # BA in general.

iv) Letn € Z* \ {1} and R = Z,, = Z/nZ = Z/n. Recall multiplication here is defined by (e mod n)(bmodn) :=
abmod n.

We now show this definition makes sense. Suppose a mod n = a’ mod n and bmod n = b’ mod n. Then we can
write a = a’ + knand b = b" + ¢n. So ab = (a’ + kn) (b’ + ¢n) = a’b’ + mn for some m € Z.

The first condition is trivially satisfied from group theory. Further, it is easy to see that 1 is a multiplicative
identity and multiplication is associative. Thus it only remains to show that multiplication distributes over
addition, but this follows easily from the fact that this is the case in Z. For the same reason, this is in fact a

commutative ring.

1.2. Ring Properties

Lecture 2 Jan 8

1.2.1. Proposition

Let R be a ring. Then we have the following.
)a-0=0-a=0vVa € R

ii) (—a)-b=a-(—b) = —abVa,b € R

iii) (—a)(—b) = abVa,b € R

iv) a(b—c¢) = ab—ac,(b—c)a = ba — caVa,b,c € R
v) (-1)a=—aVa € R

vi) (—-1)(—1) =1.

Proof:

i) Noticea-0=a-(0+0) =a-0+ a-0. Now since the group is closed under inverses, we have a - 0 = 0. By a
symmetric argument, 0 - @ = 0.

ii) (—a)b+ab=(—a+a)b=00=0= (—a)b=—ab
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RiINGs RING PROPERTIES — 1.2

iii) (—a)(—b) —ab = (—a)(—b) + (—a)b = (—a)(—=b+b) =(—a)-0=10
iv) Exercise
v) Apply (2) withb =1
vi) Apply B) witha =b=1
O

I Suppose 0 = 1. Then R = {0} (this is called a zero ring.)

Proof:Leta € R.Thena=a-1=a-0=0.

- J

| Let R be a ring. Suppose a € R has a multiplicative inverse, meaning 3a’ € R such that aa’ = a’a = 1. Then a’

is the unique multiplicative inverse of a.

Proof: Suppose that b is another inverse of a. Then a’ab = a’(ab) = a’ -1 =a’. Also, a’ab = (a’a)b=1-b =b.
Therefore a’ = b.

L

Vs
\

1.2.4. Proposition

Let R* = {a € R : a has a multiplicative inverse}. Then R* is a group under multiplication.

Note this is called the group of units.

Proof: We only need to show that multiplication is defined on R*. Suppose a,b € R*. Then (ab)(b"*a™t) =
a(bba=a-1-a! =a-a ! = 1. Similarly we can show (ba)(a"'b71) = 1.

0

If R = M, (R), then R* = GL,,(R).
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RiINGs RING PROPERTIES — 1.2

Let S C R™. Let C(S) be the set of all real valued continuous functions on S. Note any f € C(S) is a function f :
S — R is a function which is continuous at every point in S.

Define the operations
(f +9)(z) = f(z) + g(z)
(f9)(x) = f(x) - g(z)

Then C(S) forms a commutative ring, where the identities are the 0 function and the 1 function.

Vs
\

More generally, let R be a ring and S any set. Define F'(S, R) as the set of all functions from S to R. Define
(f + 9)(2) = f(2) + 9(=)
(f9)(x) = f(=) - g(=).

Note to prove this, it’s better to use the sequential definition of continuity. Further, notice that f(z) = z with f : R —
R is an example of a function without an inverse.

Vs
\

Let R be aring. Let M,, (R) be the set of all matrices of length n over R. If we take A = (aij) and B = (bij), we
define AB = (c; j) with ¢;; = >~ a;,,b,,; Therefore it makes sense to talk about matrices over rings. In particular, we

can talk about M,,(Z,,).

We can also construct a new ring by taking any set S and saying R’ = F(S, R).

Vs
\

Normal algebraic rules don’t necessarily apply for rings. For instance, a nonzero number can have a square of 0 in a
ring. If we take R = Z, and a = 2, then a? = 0. Also, If we take R = Zg and a = 3 so a®> = a but a is neither 0 nor 1.

1.3. Polynomial Rings

Lecture 3 Jan 10
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RINGS PorynomIAL RINGs — 1.3

Let 0 < n < oo be any integer. Let { R, } be a collection of rings. We define

0<i<n

R=TIR={{a}: o € R)
=0

=

with ring operations

Then R becomes a ring.

Our multiplicative identity is (1,1, ..., 1) and our additive identity is (0,0, ..., 0).

Vs
|\

We can define

R =&}, R, ={(a;) € R:a; =0 for all but finitely many 3}.
Note R’ C R.
Notice that R" = R if n < 0o, but R # R if n = oc.

Vs
|\

l Show that when n = co, R’ is not a ring because it does not have a multiplicative identity.

Solution

Let n = 0o. Suppose by contradiction 1, is a multiplicative identity. Then 1, must eventually have a 0 entry by
definition - call this entry 4. Then consider x € R’ where z = (..., 1, ...) where the second 1 is in the ith position. But
then 1, = (...,0,...) # (..., 1,...) = &, so 1 p, cannot be an identity element.

Vs
\
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RiINGs PorLynomiAaL RiNGgs — 1.3

Let R be aring. Consider

R’ = | | R; where R, = R.
i=0

The operations are

Definec;, = >, a;-by.
k=i

To understand this, consider the j and k axes, so that the lines j + k£ = i are the ones with slope 1.

Show this is a ring with additive identity 0 = (0, 0, ..., 0) and multiplicative identity 1 = (1,0, ..., 0).

Solution
Consider R’ = [] R, for some n € N. Note that for f = (ag, ...,a,),9 = (by, ...,b,) € R’ we have f + g = (ay +

=0
by, .-, a, +b,) = (by+ag,...,b, +a,) =g+ f, showing closure and commutativity of addition. Further notice
(agy -y a,) +(0,...,0) = (ag, .., @, ) so (0, ..., 0) is indeed an identity. Then (—ay, ..., —a,,) + (ay, ..., a,,) = (0, ..., 0)
so additive inverses exist.
Now, fg=| >. a; by, ..., > a;-by | sowe have closure under multiplication, and note f - 1= | >° a;-
j+k=0 j+k=n J+k=0
by, 2. aj-by | = (ag,..,a,) = f sothe multiplicative identity works.

jt+k=n
\ J

If we return to the direct sum of rings with our new definition for multiplication, it becomes a ring.

Further, it is nothing but the ring of polynomials over R. Le., if we fix an indeterminate x, we can define
a=ay+az+ - +a,z".

We say that @ R; = R[z] = the polynomial being over R.

In fact, the definition of multiplication we defined is precisely the same as doing normal polynomial multiplication.

The degree of a polynomial is the largest integer n such that a,, # 0.

We can then define a power series by considering R = [[ R, = R|[[z]] = {ay + ayz + - - -}, with the same
multiplication operation.
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RiINGs PorLynomiAaL RiNGgs — 1.3

We can recursively define R[zq, ...,z,] := R[z,...,%,_1] and R[[zq, ..., z,,]] := R[[z1, ..., z,)][[z,]]-

The Ring of Gaussian Integers is called Z[i] = {a + @b : a,b € Z} C C. We can also consider Q[i] = {a + ib :
a,b € Q} C C. Notice that this last ring has multiplicative inverses, and in fact has a square root of -1.

One advantage of ring theory is that we can study roots over rings rather than larger sets, to get other possible roots
of numbers.

Gauss was investigating which integers can be written as a sum of two squares. He created this ring and said that an
integer can be written as a sum of two squares if and only if it is the square of the norm of a Gaussian integer.

Gauss was also interested in figuring out how many integer lattice points are in a circle.

1.4. Subrings

Lecture 4 Jan 13

Let (R, +,-) be aring and let S C R be any subset. Then (S, +, -) is a called a subring if it is a ring under the binary
operations of R.

1.4.2. Proposition

Suppose S C R is closed under subtraction and multiplication. Assume further that 1 € S. Then S is a subring of
R.

Importantly, this is not an only if.

Proof: In general, S is a subring if
i) (S,+) is a subgroup of (R, +)
ii) (.9, -) is a submonoid of (R, -)
iii) Multiplication and addition commute in S
Then
i) Note closure under subtraction is enough to show that (S, +) is a subgroup.

ii) Holds by our assumption that 1 € S and S is closed under multiplication.
iii) Holds because it holds everything in R.
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RINGS SUBRINGS — 1.4

) Z5QoR<C

ii) Let R = Z and consider S = even integers = (2). Note 1 ¢ S, but since the previous proposition is not an if and
only if, this alone is not enough to show it’s not a ring. It is in fact not a subring, but this is a Homework question.
Note S C Z is closed under subgroup multiplication.

iii) Consider R = Z/6 and S = {0,2,4} = (2). S is closed under multiplication. Note that 4 € S is the identity, since
0-4=0,2-4=2,4-4 = 4 in the ring. This example shows that the unity of a subring may be different from
that of the ring.

iv) Consider R = 7Z/6 and S = {0, 3}. Note 3 is the unity of S and thus S is a subring.

|\ J

Let R be a ring. Note that Z(R), or the center of R, is defined to be

Z(R)={a € R:ab=bavb € R}.

1.4.5. Proposition

I Let R be a ring. Then Z(R) is a subring of R.

Proof: Apply the subring test. Suppose a,b € Z(R). Then (a + b)c = ac + bc = ca + ¢b = c¢(a + b)Vc € R. Thus we
have closure under addition. Suppose a € Z(R). Then (—a)b = —ab = —ba = b(—a)Vb € R so —a € Z(R). Thus we
have closure under additive inverses. Clearly 1 € Z(R). Finally, check a,b € Z(R) = ab € Z(R), and then we get
that R is a subring.

Moreover, Z(R) is a commutative ring. Thus every ring contains a commutative subring.

[

Let R be a commutative ring. Let S = M, (R) with n > 2.

We claim that Z(R) = R, since the only matrices that commute with all others are diagonal matrices with constant
entries, exactly what R is.

Let k,i, j < n. Consider the matrix E,;(1) where (7, j)th entry is 1 and all entries are zero. Suppose A € Z(S). Then

In general, for any ring R, Z(M,,(R)) = Z(R).
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RINGS SUBRINGS — 1.4

1.5. Integral Domains

Let a € R. Then we say that a is a zero divisor if 3b # 0 in R such that ab = ba = 0.

In this case, we say that b annihilates a, or that b is an annihilator of a.

i) Let R =7/6,a = 2 and b = 3. Then ab = 0. Thus a and b are zero divisors.

ii) Let R =7Z/4 and a = 2. Then a - a = 0 s0 a is a zero divisor. Suppose R is commutative. Then a and b are zero
divisors. Then ac = ca = 0 for some ¢ # 0. Thus abc = achb = 0 = cab.

iii) Let R = Z/6. Then a = 2,b = 3, so a and b are zero divisors. Note a + b = 5. Is this a zero divisor? We claim that
it cannot be because it is coprime to 6. In general if we let a € A%, then ab = 0so a !(ab) =0 = a~'(ab) =0 =
(ata)b=0=b=0.

This shows that zero divisors are not closed under addition. Thus it has no obvious structure.

A unit of a ring is an invertible element for the multiplication of the ring. That is, v € R is a unit if Jv €

R such that vu = uv = 1p.

Lecture 5 Jan 15

Aring R is called an integral domain if it is commutative and has no nonzero zero divisors. In other words, the
product of nonzero elements is nonzero.

The rings Z, Q, R, C are all integral domains.

1.5.6. Proposition

Every subring of an integral domain is also an integral domain. Moreover, its unity element coincides with the
unity element of the bigger ring.

Proof: Let S C R be a subring. Let a € S be the identity element of S. Then for every b # 0 in S, we must have ab =

ba=b= (a—1)b=0.

Since b # 0 and R is an integral domain, we must havea —1 =0, 0r a = 1.
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RiINGs INTEGRAL DoMAINS — 1.5

Let R = All functions from [0, 1] to R = F([0, 1], R). Let f be a nonzero and noninvertible element of in R. Define

0if f(x) #0
“@={1ﬁﬁg=o

Note fg = 0 with g nonzero, so this is not an integral domain.

|\ J

Let R = C(]0, 1]) with
fa) 0if0<z<i a g(2) s—zif0<z<3
= and g(x) =
r—Llifl<z<1™Y Oifl<z<1
Note fg = 0 but f and g are nonzero, so this is not an integral domain.
(S J

1.5.9. Proposition

Let R be a commutative ring. then R is an integral domain if and only if for any a, b, ¢ € R with a # 0, one has
thatab =ac = b=rc.

Proof: First suppose R is an integral domain, and suppose for a, b, c € R with a # 0 we have
ab=ac <= a(b—c)=0.
Then b — c is a zero divisor, but since R is an integral domain, we must then have b — ¢ = 0. But this implies b = c.

In the other direction, suppose that for any a, b, c € R with a # 0 we have ab = ac = b = ¢. Then if ¢ = 0, we have
ab =0 = b = 0, implying that every zero divisor is zero. In other words, there are no nonzero divisors, showing R is
an integral domain.

0

1.6. Division Rings

A ring R is called a division ring if Ya # 0,3b € R such that ab = ba = 1.

A ring R is called a field if it is a division ring and is commutative.
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RiINGs DivisioN RiNGs — 1.6

Observe we get more structure at each step:

Sets | Abelian Groups | Commutative Rings | Fields

One thing we might wonder is whether there are division rings that aren’t fields. The following example illustrates
this.

. J

Take R = R* = H. Then choose a basis {1,i,j,k}. Let R = R - 1 ® Ri & Rj & Rk. We define addition as follows: if
a=a+bit+cj+dkanda=a +bi+c'j+dkthena+a =(a+ad)+b+b)i+(c+c)j+ (d+d)k.

We define
ij=k=—ji
jk=1=—kj
ki=j=—ik
or in table form,

Notice that this ring is clearly not commutative.
Note if @ + bi + ¢j + dk # 0, then

1 a—bi—cj—dk
Ca?+ b2+ +d?

(a + bi + cj + dk)

so this is a division ring,.
|\ J

Note that we can define a ring structure built from R™ where n = 1,2,4, 8, where n = 2 corresponds to C, n = 4
corresponds to quaternions, and n = 8 corresponds to octonions. This is a very hard theorem to prove.

I Z(H) = R.

Solution

Suppose ¢ = a + bi + ¢j + dk € Z(H). Then ¢i = iq and qj = jq.

(Show g = a).
- J
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RiINGs DivisioN RiNGs — 1.6

1.6.7. Proposition

I Let D be a division ring. Then Z(D) is a field.

Proof: Note Z(D) is a ring by Prop 1.4.5 and is commutative, so it is enough to show that a € Z(D) with a # 0
implies a=! € Z(D). Let b € D; we need to show a~'b = ba™!. But this is true iff a(a7'b) = a(ba™'). But this is the
same as saying b = aba~! = baa~! = b.

[

Lecture 6 Jan 17

Note S = {(ag, ..., a,) : a3 + - -+ +ar } C R""!. For example, S* is a circle (in addition, it’s an abelian group).

I S3 is a (nonabelian) group under multiplication of H.

Solution

-
&

l Let R be an integral domain. Then R|[z] is also an integral domain.

Proof: Let f(z) € R[z] and f(z) = ay + ayz + - - - +a,, 2™ where a; € R.If a,, # 0, then deg(f) = n. In this case,
a,, is the leading coefficient of f, i.e., £(f). Note f(x) is called a monic polynomial if £(f) = 1.

Suppose g(z) € R[z] such that f(x)g(z) = 0. Suppose by contradiction that g(x) # 0. We can write g(x) = b, +
bz + -+ +b,, ™ with b,,, # 0 (so deg g = m). Note (ay + a1z + - - - +a,,z")(by + bz + --- +b,,2") = 0 =
a,b,, = 0, a contradiction since R is an integral domain.

O

Vs
|\

l Suppose R is an integral domain. Then R[z1, ..., x,,] is always an integral domain Vn > 1.

Proof: Use induction on n.

Vs
|\
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RiINGs DivisioN RiNGs — 1.6

1.7. Finite Fields

1.7.1. Proposition

I Z/m is an integral domain for m > 2 <= m is a prime.

Proof: Suppose m is a prime. Suppose (a mod m)(bmodm) =0 = abmodm =0<m|ab<m|aorm|b<
amodm = 0 or bmodm = 0.

Conversely, suppose Z/m is an integral domain. It suffices to show that the only divisors of m are 1 and m. Suppose
31 < a < m such that a | m = 31 < b < m such that ab = m. But now abmod m = 0 = (a mod m)(bmod m) =
amodm = 0 or bmod m = 0 = because Z/m is an integral domain. But now m | a or m | b, a contradiction.

O
1.7.2. Proposition

I Let R be a finite ring. Then R is an integral domain <= R is a field.

Proof: We only need to show that a # 0 = a has an inverse. Consider the set S = {a™ : m > 0}. Thus |S| < oo
because |R| < co. Then 31 < m < n such that a™ = a™. So a™(a™™ — 1) = 0. Since R is an integral domain and
a+#0,wemusthavea” ™ =1=aa" ™ l=1=a"" 1 =aL

L

I L,y is a field <= m is a prime.

Proof: Follows easily from above two propositions.

A natural question is to ask whether all finite fields are of the form Z,,.

However, this is not the case, as the following example illustrates.

Consider Z[i] = {a + bi : a,b € Z} and then the ring formed by Z,,,;;; which is Z[i] reduced mod m in each
coordinate.

For example, Z4[i] = {0,1,2,4,1 + 4,2 4+ ¢,2i,1 + 2i,2 + 2i}. Note this has cardinality 9 which is not prime.
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RINGS FiNITE FIELDS — 1.7

l Z4]t] is an integral domain.

Solution

There’s something special about 3 here — a general prime p does not work.

In fact, it must be a Gaussian prime, that is a prime congruent to 3 mod 4.

Consider Z. Note that intuitively, Q should be the smallest field containing Z, since it’s just the addition of inverses.
We can generalize this in the following theorem.
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RiINGs FiNITE FIELDS — 1.7

There exists a smallest field containing R. That is, 3 a field F such that R is a subring of F'(R). Moreover, if R is a
subring of a field K, then K contains F'(R) such that R < F(R) and R < K and F(R) < K.

f
G im(f)

f

™

G/ ker(f)

Proof: Let S = {(a,r) : a,r € R,r # 0} > R x R.

Define the equivalence relation (a,r) ~ (b, s) if and only if as = br in R. Suppose (a,r) ~ (b,s) ~ (c,t). Thus as =
br and bt = cs and thus transitivity follows from

ats = ast = brt

crs = csr = btr = brt
We define F/(R) = S/ ~. Define
+ (a,r) - (b,s) = (ab,rs) and
« (a,7)+ (b,s) = (as + br,rs).
Then we claim
i) F(R) is a ring with these operations
ii) R is a subring of F'(R)
Note the additive identity is (0, 1) and the multiplicative identity is (1,1). If a # 0, then (a,a) ~ (1, 1). Consider this
as an element of F'(R) by (a, 1).

Note we think of the relation as (a,r) ~ 2.

Lecture 7 Jan 22

F(R) is called the field of fractions of R, or the quotient field of R.

i) F(Z)=Q.
ii) Let D be an integer which is not a perfect square in Q. Then Z(\/ﬁ) = {a +b/DeC:a,be Z}. Then
Z(\/ﬁ) is a subring of C.
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RiINGs FiNITE FIELDS — 1.7

Take R = Z(v/D).
Then F(R) = Q(\/B) = {a+b\/5 ca,b e Q}.

Solution

1.8. Characteristic

Let R be a ring. The characteristic of R is the smallest positive integer n such that na = 0Va € R. Note that this is
repeated addition. If no such n exists, then we say that the characteristic of R is zero. We write this by char(R) = n.

1.8.2. Proposition

I char(R) = 0 if and only if the order of 1 is co.

Proof: Suppose char(R) = 0. If the order of 1 is n < oo, then nz = (n - z) = 0Vx € R, a contradiction. Conversely,
suppose the order of 1 is co and char(R) =n > 0. Thenn - 1 = 0, a contradiction.

[

1.8.3. Proposition

I If char(R) > 0, then char(R) = order of 1.

Proof: If char(R) = n > 0, then n - 1 = 0. On the other hand, if 30 < m < n such that m -1 = 0, then mz = (m -
1)z = 0, which implies ord(1) = n.

[

i) R = Z then char(R) = 0.
ii) R = Zg then char(R) =6
iii) R=Q
iv) R = Z/p where p is prime. Then char(Zp) =p.
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RiINGs CHARACTERISTIC — 1.8

1.8.5. Proposition

I Let R be an integral domain. Then either char(R) = 0 or char(R) is prime.

Proof: If ord(1) = oo, then we know char R = 0. Thus suppose ord(1) = n > 0. By contradiction, suppose n is not
prime.

Thus we can write n = m;my where 1 < my,my < n.Thusn-1=0.So (m; - 1)(my-1) =n-1 = 0. So either
my -1 =0orm,-1=0, contradiction.

L]
1.8.6. Proposition

I Let R be an integral domain and let R’ be a subring of R. Then char(R’) = char(R).

Proof: If char(R) = 0, then ord(1) = co in R. But 1 € R’ is the identity element of R’ then ord(1) = oo in R’. If
ord(1) =¢ > 0in R, then ord(1) = ¢ in R’ as well.

O

The above proposition is false if R is not an integral domain. For example, take R = Zg with R” = {0, 3}. Then
char(R) = 6 and char(R’) = 2.

Let F' be a field. Let V' be an abelian group. Then V is called an F-vector space if 3 a map

pw:FxV =V
u(a,v) — av

such that

i) a(v+w)=av+awVa e Fo,w eV
ii) (a+bjv=av+bvVveV,a,beF
iii) a(bv) = (ab)vVa,b e F,o eV
iv) l-vo=0vwWveV

-

Whenever we write a finite field like ]Fp we mean Zp.
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Take R = F[z]. Then R is an F, vector space. Take o € F, with f(z) € R and o f(z) is usual multiplication in R.

A major problem is that p - n = 0, which was never the case before, so we need to specially deal with this case.

Lecture 8 Jan 24

1.8.11. Proposition

For every ring R there exists a unique group homomorphism
®r
Z — R
n—mn-1

If R is an integral domain, then we can check
i) kerpp = {gf)p )

Thus every ring of characteristic zero contains Z canonically.
* gy is an integral domain if char p contains F,, as a subring

If R =TF,[r] and F' = F(R) = {M | g(x) # 0} we get an infinite ring of characteristic p.

9(z)
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2. Ideals

2.1. Ideals

Let R be aring. An ideal I in R is a subgroup of R under addition such that Va € I,b € R we have ab, ba € I.

Observe that we can visualize this as R with some abelian subgroup inside I, such that if we take any element outside
of it and mulitply an element within / we are back in /.

Consider a field K and the vector spaces over itself; the only possibilities of subspaces are the trivial ones. However, if
we consider a field, this is not true.

We say that I is a proper ideal if I # {1}.

For Z, the ideals are exactly all its subgroups. This is because each element of (m) times an integer must still be

divisible by m.

i) R = Z[z]. Consider S = 2Z < R Note this is only a subgroup of Z. It’s not a subring because it doesn’t contain 1
(which it must because it’s an integral domain).

ii) R=Q,S =Z%Z,7Z < R. S is a subring but not an ideal.
iii) R =7, S = 2Z. S is not a subring but is an ideal.

|\ J

Let R be a commutative ring and a € R. Define (a) = {ba : b € R}. Notice this is clearly closed under addition and if
ba € R and ¢ € R, then ¢(ba) = (cb)a € (a) so it’s closed under multiplication, showing (a) is an ideal.

In other words, it’s an ideal generated by a single element.

Such an ideal is called a principal ideal.

s
(.
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In general, let a, ..., a,, € R. Define (ay, ...,a,) = {aya; + - -+ +a,a, : ay,...,a, € R}. Then (aq,...,a,) is an
ideal. (This is the same idea as the span of a subspace in a vector space)

Solution

Ifa,a; + -+ - +a,a, € (ag,...,a,), then for b € R we have b(ayaq + - - +a,a,) = a;(bjaq) + - - +a,(b.a,) €
(aq, ..., a,), so this indeed an ideal.
\ J

We say that a commutative ring R is a principal ideal ring (PIR) if every ideal of R is principal. We say that if R is a
principal ideal domain (PID) if R is a PIR and an integral domain.

i) R=ZisaPID

ii) R = Zg. Since every ideal of Z is a subgroup and hence cyclic, it follows that Zj is a PIR, but not a PID.

In general, for any Z,,, the ideals are exactly the subgroups.

Lecture 9 Jan 27

l Let R be an integral domain and f(X), g(X) € R[X]. Then deg(f - g) = deg(f) - deg(g).

Proof: Let m = deg(f),n = deg(g) such that
fX)=ay+-+a,X™, g(X)=0by++b,X"
Therefore
f(X) - 9(X) = agby + -+ + ap, b, X"

and note that a,,b,, # 0 since R is an integral domain, therefore deg(f - g) = deg(f) - deg(g).
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2.1.11. Proposition

I Z|z] is not a principal ideal ring.

Proof: Let I = (2, z); we claim that this is not principal.

Suppose by contradiction I = (f(z)). Then

f(z) = zhy(z) + 2hy(z) (1)

(since it has to be in the ideal). But then
T = hy(z)f(z) (2)
= hy(z) f(z) ©))

by the defining property of an ideal.

We must have f(z) € {41, 42} by our lemma. Suppose (ignoring the sign) that f(z) = 2. Then (2) gives a
contradiction because the coefficients must then be even. On the other hand if f(x) = 1 we also have a contradiction
because the right hand side has an even constant and the left hand side has an odd constant.

O

I If R is a commutative ring such that R[z] is a PID, then R is a field.

Proof: Since R[z] is a PID, it is an integral domain, which shows R is an integral domain. Let @ # 0 be a nonzero
element of R. Look at I = (a,z) C R[x]. Since R|x] is a PID, we can write I = (f(z)). Thus

f(z) = zh(z) + ag(z)
z = hy(z)f(z)
a = hy(z)f(z)
By the lemma, we must have f(z) = a € R such that a8 = a for some § € R. By equation 2, z = ah,(z) = 1 =

aa’ for some o’ € R. Thus equation 1 = o = zh(x) + ag(x). Then if we set x = 0 we get & = ag(0) € R. Thus
1=a(a'g(0)) = a€ R".

O

The converse is also true, but the proof is more difficult.
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i) If R = Z[z] and I = (x) means I contains all polynomials with zero constant term.

ii) I = {polynomials with constant even terms} is an ideal. This is generated by I = (2, z)
iii) R = C([0,1]). Take I = {differentiable functions} - this is not an ideal.
iv) R = C[R].

I = {all continuous functions on R whose graph passes through the origin} is an ideal.
(S J

We can create a new ring based on a group.

Let G be a monoid. Let K be a field. Then K [G] is the k vector space with basis G. Then define

(Zes) + (Z9) - e+

(g;:;) ' (,;:C;) = Zg;(agbh)(g )

where we note a b, is the field multiplication operation and g - h is the monoid operation.
.

(.

k=Q, G =2y, Q[Z] = Qla].

Lecture 10 (Jesse transcribed) Jan 29

Let R be aring and a € R, then a is nilpotent if a” = 0 for some n > 0. nil(R) is the set of all nilpotent elements in
R called the nil-radical of R.
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Let R be a commutative ring and a, b € R then

(a+b)" = Z(?)aibn_i.

n
=0
Proof: By induction note that the n = 1 case is trivial. Then note that

(a+b)" =(a+0b)(a+bd)"

=(a+b) i(?)aibn_i

1=0

2.1.19. Proposition

I Assume R is a commutative ring, then nil(R) is an ideal.

Proof: Let a, b € nil(R) such that a” = 0 = b™ for some n, m > 0. Then note that (a + b)"**™ = 0 by the binomial
theorem, implying that a + b € nil(R). If a™ = 0 and b € R then (ab)™ = a™b™ = 0 such that ab € nil(R).

Therefore nil(R) is an ideal of R.

Take R = M,(R) and a = (8 (1)) b= ((1) 8) € nil(R). However note that (a + b)? = I ¢ nil(R).
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Let R be aring and I an ideal. Then R/I is a ring under the multiplication

(amod I)(bmod I) = abmod I.

Proof: Note it is sufficient to only show that the multiplication is well-defined since multiplication and addition are
both induced from R. Now let amod I = a’ mod I,bmod I = b’ mod I such that a = a’ + o, b = b’ + (3 for some
«, B € I. Then note that
abmod I = (a’ + o) (b" + ) mod I
= (o't +ab’ +ad' B+ af)mod I
=a’b’mod I
since ab” + o’ + a8 € I (because [ is an ideal). Thus R/I is a ring.

i) Let R = Z,I = mZ then we have that R/I = Z,,.
ii) Let S = R[X],I = (I) then we have S/I = R since I is the set of all polynomials with zero constant terms.

2.1.23. Proposition

Let R be aring and I, J be two ideals, then:
i) I+J:={a+bla€cl,be J}isanideal;
ii) 1J :={ayay + -+ ay,a, | o, € I,a; € J} is an ideal.

Proof: Leta € Rand f € I + J then 5 = a + b for some a € I,b € J such that af = aa + ab € I + J since aa €
I,ab e J. Nowleta € Rand 8 € 1J such that § = aya; + a0, for o; € I, a; € J. Then note that a8 =
aaqay + aay,a, € I since awq,; € I. Therefore, I + J and IJ are ideals of R.

O]

If I, J are ideals of R, then IJ C I,J C I + J.

Let S = {ay,...,a,, ...} be a possibly infinite set and let R be a commutative ring. Then

I = {alal +"'+anan ‘ ai € R,ai € S}

is an ideal generated by S. Note that .S does not need to be finite, but the sum must be finite. We write I =
(@1 5-eesp o) = (S).
&
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Let R = Z and I = (All Primes) then we have that I = Z.

2.2. Ring Homomorphisms

Let f : R — S be a map between two rings. Then f is a ring homomorphism if

fla+b) = fla)+ f(b), [f(ab) = f(a)f(b)

for any a,b € R.

2.2.2. Proposition

Let f : R — S be a ring homomorphism then

i) f(a") = f(a)™;

ii) nf(a) = f(na);

i) f(0) =0;

iv) ker(f) is anideal in R.

Proof: Note that (1), (2), and (3) are results of group theory. Now to show (4) let a € ker(f),b € R then f(ab) =
f(a)f(b) = 0 since f(a) = 0. This implies ab € ker(f), meaning that ker(f) is an ideal in R.

O
Lecture 11 Jan 31
2.2.3. Proposition
I If f: R — S is aring homomorphism, then f(R) is a subring of S.
Proof:
« f(a)- f(b) = f(ab) € f(R) if f(a), f(b) € f(R)
» f(1)- fla) = f(1-a) = f(a) = f(1) is the unity of f(R)
O
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2.2.4. Proposition

Suppose that if f : R — S is a ring homomorphism such that f is an isomorphism (bijection) of sets. Then = :
S — R is also a ring homomorphism. In this case, we can say that f is an isomorphism of rings and we say that R
and S are isomorphic as rings. We write this R ~ S.

Proof: We need to show that
) f(a+d)=f"(a)+ ()
ii) f~'(ab) = f(a) - f71(b)

i) Notice
fHa+b)=f"(a)+ ()
= f(fHa+b)=F(f(a)+ f1(D))
=a+b=f(fa)+ fF(F10))
< a+b
But f(f*(a+0)) =a+b=f(f(a) + F(f7' ()
ii) Notice

fHab) = f7H(a) - £7H(b)
< f(f7H(ab)) = f(f(a) - F7(b))

A ring homomorphism may not take unity to unity. For example consider S = Zg and R = {0, 3} < S where we are
considering the inclusion map. But 3 is the unity element of R and not the unity element of S.

2.2.6. Proposition

| Suppose f : R — S is a ring homomorphism which is nonzero. Assume that S is an integral domain. Then f(1) =
1.

Proof: We claim f(1) # 0. To see this, suppose f(1) = 0. Then f(a) = f(1-a) = f(1) - f(a) =0Va € R.So f =0,

a contradiction.

Now f(1) = f(1-1) = F(1)£(1) = f(1) — F(1)F(L) = FL)(L — (1)) = 0,50 1 — f(1) = 0 <> f(1) = L since § is

an integral domain.

O
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2.2.7. Proposition

I Let f : R — S be a ring homomorphism and let J C S be an ideal. Then f~1(J) is an ideal in R.

Proof: Leta € f~1(J) and b € R. Then f(ab) = f(a) - f(b) € J since f(a) € J and f(b) € S. Then f(ba) =
f(b)f(a) € J as well. Thus ab, ba € f~1(J).

[

The image of an ideal under a ring homomorphism may not be an ideal. We can for example take R = Z and S = Q
and f : Z < Q, the inclusion map. Take I = mZ where m # 0, which is an ideal in Z but not in Q.

Let I C R be an ideal. Then the canonical map

R

ar—a(modl)=a+1

is a ring homomorphism.

To see this, note ¢(ab) = abmod I = (amod I)(bmod I) = ¢(a)p(b).

|\ J

2.2.10. Proposition

& 5 an ideal under the canonical map ¢ : R — %

I Let I C R be an ideal and let I C J be an inclusion of ideals (i.e., J is an ideal with I a subset of it). Then ¢(J) C
T

Proof: Take a € ¢(J) and b € £. Then 30’ € J and b’ € J such that ¢(a’) = a and ¢(b’) = b. But then ¢(a'b’) =
$(a')p(b") = ab € ¢(J).

L
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Let f : R — S be a ring homomorphism with kernel I. Then 3! injective ring homomorphism f : % —
S such that is commutative (? op=f )

Proof: Factorization of f as f = f o ¢ is shown in group theory, so we only need to show that f is a ring
homomorphism. Thus

f((amod I(bmod I)) = f(abmod I) := f(ab) = f(a)f(b) = f(amod I)f(bmodI).

-
&

Lecture 12 Feb 3

Let f : A — B be a ring homomorphism and let I C A be an ideal such that I C ker(f). Then 3! ring
homomorphism f : % — B such that

Proof: By the previous theorem, f factors uniquely through f” : ﬁkf) — B, so this is a commutative diagram:

where f = f o c.

Vs
\

Consider the map

2{i

¢ 7 —

n+—n (modi—2)

Define the inclusion maps ¢ : Z — Z[i] and ¢’ : Z — Zs. Then define ¢ : Zs — (iiiz]) by dot =¢ou

Observe ¢(2) = isincei —2=0=i2=4=5=0.

Note ¢(5) =5 = —(i — 2)(2 + i) = 0. (We can also argue i — 2 = 0 = i? = 4 = 5 = ().

Since ¢(2) = 4, we get that ¢(a + 2b) = a + biVa,b € Z = p(a + 2b) = a + biVa, b € Z. Thus P is surjective.

Recall that the kernel of a ring homomorphism is an ideal. Now since Zjy is a field, its only possible ideals are 0 and
Zs. Further, ¢ # 0, so the kernel must be Z. Thus ¢ is injective as well.

Zli] ~
Thus Z_—g & Ze.

Vs
\
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Let R =Z[i] and I = (i — 2) thenlett: Z — Z[i] and ¢’ : Z — Z be inclusions and let ¢ : Z[i] — (iZ_[g) be the
canonical map a — amod(i — 2). Then define ¢ : Z; — (iZT[g) such that @ o t” = ¢ o ¢. Then note that $(2) = i since
i — 2 = 0 therefore (a + 2b) = a + bi such that ¥ is surjective. Then note that since p(5) =5 = (i —2)(1 +2) =0
and Zj is a field we must have that ker(¢) € {(0), Z5 } and therefore ker() = (0) and ¥ is injective. Therefore @ is a

ring isomorphism as it is trivially a ring homomorphism.

(S J
Take R = Z[x]. Let I be all polynomials with even constant term. Note that I = (z, 2).

AEY
(z,2)

Define ¢ : Z — (i[z]) by ¢(n) = n (mod z, 2). This gives a ring homomorphism (by the lemma). Note ¢ : Z, —
is surjective because every polynomial f(z) has the form f(z) = zg(z) + C where C is a constant. Thus f(z) =

C (modz) so f(z) = C (mod I) = (z,2).

So ¢ is injective because Z, is a field. So ¢ is an isomorphism.

2.3. Prime Ideals and Maximal Ideals

Let R be a commutative ring and I C R a proper ideal. Then I is called a prime ideal if Va,b € R,ab € I =
aorbel

Let R be a commutative ring and I C R be a proper ideal. Then [ is called a maximal ideal if for every ideal J C
R such that I C J, we must have either J = [ or J = R.
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2.3.3. Proposition

Let R be a commutative ring and I C R be an ideal. Then
i) I is prime < % is an integral domain
ii) I is maximal < % is a field

Proof:

i) Suppose I is a prime ideal. We need to show that is an integral domain. Let @, b € % uch that ab =0 =
ab(modl)=0<abel<aclorbel < (a (modI)) =0or (b(modl)) =

Suppose £ is an integral domain. Let a,b € R such that ab € I. Then ab (mod I) = 0 so (amod I)(bmod I) =

int domain

< a(modl)=0orb(modl)=0<aclorbel.
ii) Suppose I is a maximal ideal. We need to show % is a field. Leta € % be nonzero. Let a € R such that amod I =
a. Thus a ¢ I. Consider J = I + (a). Since a ¢ I,I C J.But [ is maximal so J = R, so 1 = a + ba for some a €
I,b € R.But this means 1 = o (mod I') + (bmod I')(amod I'), but this implies @ € (%)X.

Suppose that % is a field. Suppose 3 an ideal J C R such that I C J C R, so Jmod I # 0. But % is a field, so

% = % but this implies J = R (because we proved that the image of an ideal under a surjective map with certain

conditions is also a ideal.)

L

If R = Z and I = mZ, then I is a prime ideal if and only if m is prime. We can see that in general, prime ideals are
generalizations of prime numbers.

Let R be a commutative ring. The element a € R is called a prime element if (a) is a prime ideal.

I I is a maximal ideal implies I is a prime ideal.

Proof: I maximal ideal < = R field = = 1ntegral domain <> I prime ideal.

Note the converse is not true, for example take R = Z and I = (0).

Lecture 13 Feb 5
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2.3.7. Proposition

Iaisaprimeelement@(a|bc=>a|bora|c)

Proof: a is a prime element if and only if

a|bc

< aa = be for some a € R

< be € (a)

< be(a)orcée (a)

< aa = b or aff = c for some a, 5 € R

Salboralc

Why don’t we have a notion of maximal numbers, like the way we have a notion of prime numbers? The reason is
that in Z, these notions are the same, which we will show later.

Consider R[z] with I = (22 + 1).

Define ¢ by ¢(a + bi) = a + bx. Take for granted that ¢ is a ring homomorphism.
We claim that for all f(z) € R[z], Ja,b € R such that f(z) = ¢(a + bi).

We proceed by induction on the degree of the polynomial. Let f(z) € R[z|. Our base case is if deg(f) < 1, then
f(z) =a+bxr = f(x) = ¢(a+ bi) where a,b € R.

If deg f > 1, write f(z) = ag + a2 + 2%g(z), where g(x) € R[z]. Then modulo 7,
f(z)mod I = (ay + a;x) — g(x) mod I.

Since deg(g) < deg(f),Ja € C such that g(z) mod I = ¢(c).So f(xz) modI = ¢(a + bi) — ¢p(a) = P(a + bi — ).
Thus ¢ is surjective. Since C is a field, the kernel can only be {0} or C, and it’s not trivial, so the kernel must be {0}.
Thus ¢ is surjective and thus an isomorphism, which means @ is a field. But this occurs if and only if / is maximal

by Proposition 2.3.3.
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Let R be any commutative ring and let @ € R. Define ¢, : R[z] = R by ¢,(f(z)) = f(a). We define f(a) for a €
Rby f(a) = ay + aya+ - - - +a,a™. Check that ¢, is a ring homomorphism.

Solution

Let f(z) = ag + ayx + - -+ +a,z™ and g(z) = by + byz + - - - +b, 2™, where some of the leading coefficients may be
zero. Now ¢, (f + g) = ¢,((ag + by) + (ay + b))z + --- +(a, + b, )2x") = trivial.

.

(.

Let ¢ : R[xz] — R be defined by ¢(x) = a. Also ¢ : % — R is defined by ¢(a) = aVa € R = ¢ is surjective.
Suppose ¢(f(z)) = 0= f(a) = 0. Show that x — a divides f(x).

Solution

-~
|

I Show R is an integral domain < (z — a) is a prime ideal in R[z]Va € R.

Solution

Let R be an integral domain. Then let f(x), g(z) € R[z] such that fg € (x —a).So fg = 0modI =
(fmod I')(gmod I') and since R is an integral domain, f = 0mod I or g = Omod I.

In the other direction, let (z — a) be a prime ideal in R[z]. Let f, g € R[z] with fg € (x — a). Then fgmod I =0 =
(fmod I')(gmod I) and since (z — a) is a prime ideal, at least of one of f = O0mod I or g = 0mod [ is true.

Let R be a commutative ring. Then 3! ring homomorphism ¢ : Z — R defined by ¢(n) = n.

If char(R) = 0, then ker ¢ = (0), so ¢ is a ring. But then Z is a subring of R. If char(R) = n > 0, then ker ¢ = nZ.
So Z/n is a subring of R.

In particular, every integral domain canonically contains either Z or Z,, as a subring.

l Every integral domain if char p > 0 is an F,, vector space.
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l Every field contains either Q or F, as a subfield.

Proof: If a field contains Z, it canonically contains Q as a subfield, because Q is a field of fractions of Z.
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3. Polynomial Reducibility

3.1. Reducibility

Q and I, are called the prime fields. Q is of characteristic 0 and F), is of characteristic p. Note Q is far easier to deal

with.

An element @ in a commutative ring R is called irreducible ifa ¢ R* and a = bc = b € R* or ¢ € R*. In other
words, it is not invertible and not the product of two noninvertible elements.

If R = Z, note the group of units is R* = {1, —1}.

Thus a is irreducible if and only if @ is prime.

Lecture 14 Feb 10

3.1.4. Proposition

I Let R be an integral domain and let a € R be a prime element. Then a is irreducible.

Prop 1.5.9
Proof: Suppose a = be, so either a | bor a | ¢ by Prop 2.3.7. If a | b, then b = aa = b = bca = =ca=a=

acc = a(l —ac) =0 = 1— ac = 0 because R is an integral domain. Then ac =1 = ¢ € R*.

If a | ¢, then the same argument shows b € R*.

Let R be a commutative ring. Suppose a € R\ R* and a is not irreducible in R, thatis,a = bc = b ¢ R* and ¢ ¢
R*. Then we say that a is reducible. Note this means that an element of a ring is either a unit, reducible, or

irreducible.
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Let R = %. Let a’(X,Y") be the image of a under the surjective map

C[X,Y]— R

T+ zmod(X? —Y?3)

We claim that a’ is irreducible.

By contradiction, suppose a’ were reducible. Then we could write a’(X,Y) = f(X,Y)g(X,Y) mod(X? — Y3)
where f(X,Y)mod I and g(X,Y) mod I are not units. But this is the same as saying o’ (X,Y) = f(X,Y)g(X,Y) +
h(X,Y)(X?—Y3) € C[X,Y]. Butthena'(X,Y) = f(X,0)g(X,0) + h(X,0)X? € C[X]. But then since f and g

are not units
Now we show that z is not prime in R.

R  C[X,Y]  C[Y]

() (X*=Y3,2) (V)

In this ring, Y is a nonzero nilpotent element, so % cannot be an integral domain. Thus X is not prime in R by

Proposition 2.3.3.

3.1.7. Proposition

I Let R be a PID. Then an ideal I is prime <> it is a maximal ideal.

Proof: Let I be a nonzero prime ideal. If I = (a) then a # 0. Suppose (a) C (b) = a = be. But now since a is prime

and b ¢ (a), we must have ¢ € (a). Thusc =aa = a=bc =baa = a(l —ba) =0=>ba=1=be R* = (b) =
R.

[

3.1.8. Proposition

Let K be a field and R = K|[z]. Notice there’s a canonical map between R \ {0} and Z. 4, which is just mapping a

polynomial to its degree.

f(z) € R is irreducible <> it can’t be written as a product of polynomials of lower (but positive) degrees.

Proof: If f is irreducible, then clearly we can’t write it as a product of lower degree polynomials. Conversely, suppose
f is not a product of polynomials of lower degree. Suppose f = gh. This implies deg(f) = deg(g) + deg(h). If
deg(f) = deg(g), then h must be a constant. If deg(f) = deg(h), then g must be constant.

L
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Consider Z[z] and f(z) = 222 4+ 4 = 2(z? + 2). Then f is reducible.

Now consider Q[z] and still consider f(x) = 2(z% + 2). This time f is irreducible by the previous proposition, since
we can’t break the quadratic term into two linear terms.

3.1.10. Proposition

I Let R = K|[z] where K is a field. If f(z) has a zero in K, then either f(z) is linear or f(z) is reducible.

Proof: Look at the ring homomorphism ¢ : R[z] — K given by ¢(f(x)) = f(a). We saw that this defines a ring

isomorphism ¢ : K] _, K where a € K such that fla)=0= f(z) =0mod(z —a) = (x —a) | f(z) =
f(z) is reducible.

O

Lecture 15 Feb 12

3.1.11. Proposition

I Suppose deg(f) € {2,3}. Then f is reducible if and only if f has a zero.

Proof: Suppose f is reducible. This implies f = gh, but now at least one of g and h are linear. But every linear
polynomial has a zero in the field = f has a zero.

O]

i) Take R = Z,[z] and take f(z) = 1 + x2. Notice f(0) = 1, f(1) = 2, f(2) = 2, so f never vanishes. Thus f is
irreducible.

This is actually the same result as this exercise, just from a different persepective.

ii) Take R = Zg[z]. Let f(z) = 1 + 2% Notice f(0) = 1, f(1) = 2, f(2) = 5 = 0 so f(z) is reducible. We can

reinterpret this as well: notice ﬁ[ﬂ = Zsli].

iii) Take R = Q[z] and f(z) = z* + 22% + 1. We can observe f(z) = (22 + 1)2 so it is reducible, despite f not
having any zeros in Q. This shows the limitations of the previous proposition.

PAGE 37 OF 56



PoLyNoOMIAL REDUCIBILITY ReEDUCIBILITY — 3.1

3.2. Polynomial Zeros

Let R = K|[z] where K is a field. Let f(x), g(xz) € R[X] such that g(z) # 0. Then 3! polynomials
q(z),r(x) such that f(z) = q(x)g(z) + r(z) where r(z) = 0 or deg(r) < deg(g).

Proof: Proceed by induction on deg( f).

i) If deg(f) < deg(g), then take ¢ = 0 and r = f.

ii) If deg(f) > deg(g), write f(x) = ay + a; + - - - +a,, 2™ and write g(z) = by + byz + - - - +b,,, ™. Define
fi(x) = f(z) — b,la,z" ™g(x). Then deg(f,) < n so 3 polynomials ¢, (x) and 7, (z) such that f,(z) =
¢ (x)g(z) + 7 (z). Thus

f(@) = bl a,z" " g(2) + @1 (2)g(2) + 1 (2) = (bl 0, 2™ ™ + q1(2))g(z) + 11 ().
Then we can take ¢(z) = b,,la,, 2" ™ + ¢, (x) and 7(z) = r, ().

To show uniqueness, suppose f(z) = q(z)g(z) + r(z) = ¢'(z)g(z) + '(z) = (q¢(x) — ¢’ (z))g(x)
r’(x). By comparing the degrees on both sides, we must have q(z) — ¢ () =0and r(x ) =r'(z) =

oll

Let R = Zs|x] and f(z) = 3z* + 23 + 222 + 1 and g(x) = 2% + 42 + 1. We can divide f(z) by g(z) using
polynomial division while accounting for being in Z, and we should get 3z + 4x + 3 with remainder 4z — 2. Thus
overall 3z* + 23 + 222 + 1 = (322 + 4z + 3)(2? + 4z + 1) + (4= + 3).

I Suppose f(z) € K[z] anda € K. Then f(a) =0 < (z —a) | f(x).

Proof: Note the <= direction is trivial. In the reverse direction, f(z) = q(z)(z —a) + {(z) = &(z) = a € R. So

f(@)=q(@)(z—a)+a=0=fla) =a= f(z) = q(z)(z—a) = (z—a) | f(2).
O

¢ J

I If f(z) € K[z] and a € K then f(a) is the remainder for division of f(x) by (z — a).

Proof: Since f(z) = q(z)(z — a) + r(z) we have f(a) = r(z) € R.

~
\\
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Let f(z) € K[x] with a € K. Suppose f(a) = 0. Then the multiplicity of a as a zero of f(z) is the largest integer
such that (z — a)™ | f(x).

3.2.6. Proposition

I Let K be a field. If deg(f) = n A f # 0 in K[z], then f has at most n zeros counting multiplicity.

Proof: Suppose f(a) = 0. Then f = g(z)(x — a) by Corollary 2.5.3. By induction, g has at most n — 1 zeros. And
zeros of f C {zeros of f} U {a}.

O

Lecture 16 Feb 14

If K = Cand f(z) = 2" — 1 then write w = cos(2%) +isin(28) € C. So w™ = cos((2m - n)n) + isin(2Z2) =1 =

(wz)n = (w")" =1= f(w') =0 for 0 < i < n — 1. By the theorem, roots of f are {w’:0<i<n—1}>7Z,.
THese are called the nth roots of unity, and w is called a primitive root of unity.

3.3. Primitives

We now spend some time considering the following commutative diagram:

Let f(z) = ay + a1 + - - - +a,z"™ € Z[z]. Let

cont(f) = content of f = gcd(|agl,...,|a,|) € Zs,

We say that f is primitive if cont(f) = 1. In general, f = cont(f)f’ where f’ is primitive.

l The product of primitive polynomials is primitive.

Proof: Let h = fg where f and g are primitive. Suppose h is not primitive. Then Jp a prime such that p | h.

We will write f = fmodp. Thenh = 0 = fg=0=> f = 0 or g = 0 so either p | cont(f) or p | cont(g). =><=
U]
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3.3.4. Proposition

Let f(x) € Z[z] be a nonconstant polynomial. Suppose f is primitive. Suppose f is reducible over Q. Then f is
reducible over Z.

Proof: Suppose f(z) = g(z)h(z) where g(z), h(z) € Q[z]. By clearing the denominators of the coefficients of g and
h, we get that ag(z), bh(z) € Z[z] for some a,b € Z.,. Then we get abf(z) = ag(x)bh(z) = c¢;9’(z)cyh’ (x) where
g’, b are primitive. Thus abf(z) = (¢,¢5)g" (z)h' ().

We claim that cont(abf) = ab (shown by below exercise). Thus cont(abf) = cont(c;cyg’ (2)h'(z)) = ab = ¢;c,.
Thus f(z) = ¢’(x)h’'(z) = f is reducible over Z.

L

I Let ag, ..., a,, € Z where gcd(ay, ...,a,,) = 1. Then if b € Z we have ged(bay, ..., ba,,) = b.

Solution

-

Take f(z) = 62 + = — 2. Note by the Quadratic Formula, the roots are given by

L_—lEVIT2 46

-

Thus f(z) = 6(z — 1) (z + 2), so f(x) is reducible over Z by the previous proposition.

|\ J

Consider f(z) = 22? + 2 = 2(x? 4 1). This is reducible over Z and irreducible over Q (since 2 is a unit in Q but not
in Z).

3.3.8. Proposition

I Suppose that f(x) € Z[z] is a monic polynomial. If f is irreducible over Q, then it is irreducible over Z.

Proof: Suppose f(x) = g(z)h(x). Then this gives a factorization of f over Q as well.
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l If K is a field, then K[z] is a PID. (Converse of Theorem 2.1.12.)

Proof: Let I C K|[z] be an ideal. If I = (0), we have nothing to prove. Thus we can assume I # 0. Let g(z) € I be a
polynomial of smallest degree in I. Now take any f(x) € I. We have f(z) = q(z)g(z) + r(z) where r(z) = 0 and
deg(r) < deg(g). If r(z) # 0, then we get a contradiction because r(z) € I and deg(r) < deg(g).

[

Vs
|\

3.4. Reducibility with Z

Lecture 17 (Jesse transcribed) Feb 19

Suppose f(X) € Z[X] is a polynomial of positive degree and p is prime such that deg(f) = deg (?) Then if f is
irreducible over Z,, we have that f is irreducible over Z.

Proof: f(X) = af’(X) where f’ is primitive. Seeking a contradiction let f(X) be reducible over Q. We have that f
is irreducible over Z,, if and only if £ is irreducible over Z,, since a € Z,, . So without loss of generality let f be
primitive. Since f is reducible over Q we must have f is reducible over Z. So f = gh where deg(g), deg(h) < deg(f).
f = deg(g) deg(h) so f is reducible over Z,, which is a contradiction. Therefore f must be irreducible over Z.

O

Vs
(S

Let f(X) = (2X + 1)(X + 1) € Z[X]. f is clearly reducible in Z but f = X + 1 € Z,[X].
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3.4.3. Proposition

I f(X) = X* 4 1 is reducible over Z, for any p.

Proof: First let p = 2 then (X* + 1) = (X? + 1)2 € Z,[X]. Now let p # 2 and consider the following:
(Case 1) Assume there exists some a € Z,, such that a’? = 2 then
(X2 +aX +1)(X2—aX +1) = (X2+1)° — (aX)?
=X44+2X +1— (aX)?
=X*+1.
(Case 2) Now let there exists some a € Z,, such that a? = —2 then
(X2 +aX —1)(X2—aX —1) = (X2 —1)° — (aX)?
=X*-2X+1—(aX)?
=X4+1.
(Case 3) Finally assume there exists a € Z,, such that a’? = —1 then
(X2 +a)(X?—a)=X*—a?=X*+1.

Thus it is sufficient to show that for any p # 2 there exists some a € Z,, such that a® € {—1,42}.

l Let p be any prime then there exists some a € Z,, such that a? e {—1,+2}.

Proof:If p = 2 then 1 = —1 s0 1> = (—1)? = +1. Now let p # 2 and consider the map 6 : ZX — Z) where
f(a) = a? defines a group homomorphism. Note that

ker(f) ={a €Z, | a = +1}

such that | ker()| = 2. Let H = Im(0) then [Z) : H| = 2. Suppose —1,2 ¢ H then we have that (—1)H = 2H
so (—1)2H = (—2)H = H. Thus we have that —2 € H.

0

. J

Thus it follows that f(X) is reducible over Z,.

Let f(X) = ay + - + a,X™ € Z[X]. f(X) is an Eisenstein polynomial if there exists some prime p such that p } a,,,
p | a; for i < n, and p? } a,. If the conditions are satisfied we say that f is p-Eisenstein.
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Let f(X) = X3+ 5X2% + 15X + 5 is 5-Eisenstein.

3.4.7. Proposition

I f(X) = X* + 1 is irreducible over Z.

Proof: f(X) = X* + 1 is irreducible if f(X + 1) is irreducible. We have
FIX+1)=X*+4X3+6X%2+4X +2

which is p-Eisenstein and therefore is irreducible in Q by previous theorem. Since f is a monic polynomial this
implies f is irreducible over Z.

[

Let f(X) = 21X3 — 3X? + 2X + 8 € Z[X]. Then note that deg(f mod 2), deg(f mod 3) # deg(f). However
consider f = f mod 5 since

f(X)=X3+2X2+2X+3

such that deg (?) = deg(f). Then note f(X) # 0 for any X € Zg such that f is irreducible in Z implying that f is

irreducible over Z.
\_ J

Lecture 18 Feb 21
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I Eisenstein polynomials are irreducible over Q.

Proof: Let f(z) = ay + a;z + - - - +a,x". Suppose that f is reducible over Q by Proposition 2.6.8. Then f is
reducible over Z, and we can write f = cf’ where ¢ = cont(f) and f’ is primitive. Thus f” is reducible over Z by

Proposition 2.6.4.

Now we can write f(x) = g(z)h(x) where 1 < deg(g),deg(h) < n.Let f(z) = ay + a;x + - - -= a,z" and write
g(x) =by + bz + -+ +b.a" and h(z) = ¢y + ¢y + - - - +c,2°. Thus we have ay, = byc, and a,, = b,.c,.

n .
Let f(z) = > a,x" be an Eisenstein polynomial. Let ¢ = cont(f). Write f(z) = cg(x), where g(x) is a

=0
primitive polynomial. Then g(z) is also Eisenstein.

Proof: Write g(z) = by + byx + - - - +b,,2™. Then a; = cb,Vi. Noticep {=p } b, andp { c. If p | a; = cb, =
p | b;Ye < n. Finally, if p? | be = p? | ay = cby =><=.

[

.

i) Since p | ay but p? } a,, it must divide either b, or ¢, but not both.
ii) We also have p } a,, = b,c,, sop t b, and p } c,. Thus there exists a positive integer ¢ such that p | b,.
iii) Look at
ap = bco+ (by_y¢ + -+ +b1¢y 1 +bocy) = bycy + .
Thenp | asince p | b;Vi < t,butp | a, sincet <r <mnsop |bycy butptb, andp 4 ¢y. Contradiction.

L

J

Consider the Eisenstein polynomial z* + 42 + 622 + 4z + 2/ This is irreducible over Z because it’s Eisenstein, so

it’s reducible mod p for all p.
Note the above theorem is to have an additional criterion for irreducibility in addition to Theorem 2.6.10, for example.

We might think that this is a very special case unlikely to come up, but we can easily construct Eisenstein
polynomials, which shows important examples. For example, consider the following corollary:.

I There exists an irreducible polynomial over Z of every degree: f(z) = 2™ + p.
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3.4.13. Proposition

I Let p be a prime. Consider ¢, () = 1+ 2 + - - - +2?P~! € Z[z]. We claim ¢, () is irreducible over Z.

Proof: Notice ¢, (z) = £=L. Note this isn’t necessarily defined in Z[z], so we instead work in the field of fractions of

Z|z], the smallest ring where polynomial division is defined. Then we proceed as follows:

p —1 p
@rip-1_o+ ()44 l)er1-1
r+1-—-1 T

Bp(z+1) =

=Pt + paP? 4 —l-(g)w +p € Z[z].

This is an Eisenstein polynomial so it is irreducible.

L

These polynomials are called cyclotomic polynoimals.

Consider f(z) = 23 — 3z — 1.

3.4.16. Proposition: Rational Root Test

Let f(x) = ay +a;x + -+ +a,_ 12" ' + z™ € Z[x]. Suppose that f(m) # 0Vm such that m | a,. Then f has
no zeros in Q.

Proof: Suppose by contradiction 3¢ = % such that f(g) = 0. We can assume (r,s) = 1and s > 1.

Then f(q) =0 ag+ay %+ --- +an_1(§)n_1 +(£)" =0.Thus " +a, ;7" Ls+ - +a,rs" ! +a,s" = 0.So
" =—(a, 7"t + - 4a;rs" 2 + ags"!)s. Since (r,s) = 1, we have s = 1. Then f(r) = 0= 1" + a,_;r" ' +
codartag=0=r(r""1+a, ;7" 2+ - +a;) = —ay. So 7 | ay, a contradiction.

0
3.4.17. Proposition

I Let R be a PID and let f € R be irreducible. Then (f) is a maximal ideal.

Proof: Suppose 3J C R is an ideal such that (f) C J = (g),so g | f. So either J = R or J = (f) because f is
irreducible.

L

Lecture 19 Feb 24
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Proof:

3.5. Field Extensions

K’ is a field extension of K if K C K'.If deg(%) = dimy (K") is finite, then it is called a finite field extension.
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f(z) € K[x] is irreducible <= ;{(Ef)] is a finite field extension of K of degree deg( f). Furthermore, if f is

irreducible, then K’ is the smallest field extension of K which contains a root of f(X).

Proof: It is clear from the previous proposition that f(x) is irreducible <= K’ = (&m)]) is a field (because K[X] is a

k[z] ’ k[z] , fa
PID). Look at k — K|[z], k — Ty = K, klz] —» ) =&,

Recall that we saw that a field could be a vector space over itself. We can consider K’ as a vector space over K
and find a basis, as the following shows.

3.5.4. Proposition
Suppose f(x) is irreducible. Consider k — % = k’. We claim that {1,7,...,2" '} is a K-basis of K’ if
deg(f) = n (note T = z mod f(x)).

Proof: If g(z) € K|[z], then g(z) = q(z) f(z) + r(x) where deg(r(z)) < n. Thus g(z) mod f(z) =

r(x)mod f(z). But r(x) = ag + a;x + - - - +a,_ ;"1 => S generates K’ as a K vector space. On the other
hand, a,, + a, T+ -+ +a, ;" ' = 0in K. This implies ag + a;z + - - - +a,,_;2" ! = h(z)f(z) € K[z].
Thus a; = 0Vi = S is linearly independent.

(]
Since f(Z) = 0in K’, we see that T € K’ is a root of f(z). Suppose L is a field extension of K in which f has a root,

say a € L. Consider ¢ : K[z] — L defined by ¢(z) = a (and ¢ is the identity on K). Since f(a) = ¢(f) = 0, this
map uniquely factors as k & L and k < K’ and K’ < L. So this is the smallest field in which it has a root.

O

The above shows why we care about irreducible polynomials. It is the condition we need to get a root, and many
topics in math eventually boil down to doing that.

Consider Z,[z] and f(z) = 22 + z + 1. Observe this polynomial is irreducible by the Root Test. Consider 22 o] — g7

f(=)
is a field extension of Z, of degree 2, so |K'| = 4.

Consider Zy[z] and f(x) = 23 + z + 1. Observe it’s again irreducible by the Root Test. Then K’ = Lol i5 4 field

 fl@)
extension of Z, of degree 3. So |K'| = 23 = 8.
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Consider Zy[z] and f(x) = 22 + 1 € Zg[z]. Then K’ = f([:j)] is a field extension of Z of degree 2, so |K'| = 3%2 = 9.

A natural question to ask is whether there exists a field of every prime power. It turns out there is, but constructing
one is difficult and outside the scope of this class.
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4. Important Classes of Rings

4.1. Euclidean Domains

Recall the ring of Gaussian integers Z[i], and how it had two copies of Z. Recall Z was a PID, but what can we say

about Z[i]?

Let R be an integral domain. We say that R is a Euclidean domain (ED) if 3 anorm N : R — Z (a function such
that N (0) = 0) such that Va,b € R with b # 0, 3¢, € R such that a = ¢b +r withr =0V N(r) < N(b).

l The norm is multiplicative.

Solution

i) Every field is a Euclidean domain with respect to the trivial norm. If a,b € K and b # 0, a = (b~ 'a)b.
ii) R =Zand N(a) = |a|, so Z is an ED.
iii) K is afield and R = K[z]. If N(f(z)) = deg(f(x)), then R is a Euclidean domain by the division algorithm.

People wondered whether a PID was also a Euclidean domain, but the following counterexample shows this is false.
2?2+ 1z +5 € Z[z]

Lecture 20 Feb 26
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I Z|i] is an ED.

Proof: Z[i] C C and observe N(a + bi) = |a + bi|> = a® + b%. So N(a) = 0 < o = 0. If we take o = a + bi and
B =c+di# 0, we get

L _oetbi_ (atbi(c—di) ac+bd be—ad
op c+di ) ~ N(B) + N(ﬁ) =r+ si € Q[i].

Note we had to step out of Z[i] to get this to work.

Now by rounding, choose p and ¢ such that |r — p| < % and |s — q| < % Then

afl =1+ si =(r—p+p)+(s—q+q
=[p+qil+(r—p)+(s—9)i
= a=P+q)f+[(r—p)+(s—qils
= a=t8+t
where t = p+ giand t’ = [(r — p) + (s — ¢)i] 8. Now observe ¢, o, 5 € Z[i], which implies t’ € Z[3].

It remains to show N (t) < N(5). Observe N(t') = N(B)N((r —p) + (s — q)i). But N((r —p) + (s — q)i) =
(r=p?+(s—9? <j+i=3=N@) < <NQ)

EII

[

We just saw that Z[i] is a Euclidean domain. Now what about Z[2i] = {a + 2bi : a,b € Z}?

It seems simple, but this is difficult question, since how can we know we can’t find a norm? We must develop the
theory further first.

I Every Euclidean domain is a PID. (The converse is false due to Example above).

Proof: Let I C R be an ideal. If I = (0), there is nothing to prove. If I # (0), there is an element a € I (a # 0) of
smallest norm.

Let b € I. Then we can find ¢, 7 € R such that b = ga + r with 7 = 0 or N(r) < N(a). If r = 0 we are done, and
otherwise 7 € I and N(r) < N(a), contradiction. Thusa | b = I = (a).

L]
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l Z|2i] is generated by the ideal I = (2, 2), and is thus not an integral domain.

Solution

4.2. Unique Factorization Domains

If a = ub with u € R*, then a and b are associates.

Let R be an integral domain. We say that R is a Unique Factorization Domain if every nonzero element a which is
not a unit has the following two properties:

i) a can be written as a finite product of irreducible elements, i.e., a = p; - - - p,, where p,’s are irreducible.

ii) This factorization of a is unique in the sense that if a = ¢q; - - - g,,, with g¢;’s irreducible, then m = n and up to

renumbering, g, is an associate of p;.
& J

i) Every field is a UFD (since every nonzero element is a unit, making it vacuously true).
ii) R=2
iii) What about R = K[X]? We will come back to this.
iv) R = Z[i] is an example.

iv) R = Z|[2i] is not an example.

To see this, observe that 4 = 2 - 2 = (2i)(—2i). We will show these elements are irreducible. Suppose (a +
2bi)(a" +2b"0) =2 = (aa” —4bb") + 2(ab’ + a’b)i = 2,50 aa’ —4bb" =2 = 2| aa’, soeither2 |aor2 | a’.
First suppose 2 | a <> a = 2¢. Then we get (2¢ + 2bi)(a’ +2b"i) =2 = 2(c + bi)(a’ +2b"i) =2 = (¢ +
bi)(a’ +2b'3) = 1 = a’ + 2b'i € R*.

Similarly, if 2 | a’, then a’ + 2bi € R*, so 2 is irreducible.

Vs
\
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4.2.4. Proposition

I 2 € 7Z[2i] is not a prime.

Proof:

g Zpi_ T _ 2l
=271 @+ @)

(where we just modded by 2 on both sides, and then observed 4 = 0 now).

This is not an integral domain since x - * = 0, which shows 2 is not a prime by Proposition 2.3.3.

Lecture 21 Feb 28

4.2.5. Proposition

Let R be a UFD. Let a € R be an irreducible element. Then a is a prime element. (Observe we have already proven
this for a PID in 3.4.18)

Proof: Suppose a | be. Write b =p, --- p,, and ¢ = q; - - - g,,: products of irreducible elements. Since a | be, write

bc = aa, so we can write & = ry - - - ry, where each r; is irreducible. Thus bc = (11 -+~ r)a = (p; - p,)(q1 - Gp)-
By uniqueness of factorization of bc into irreducibles, we get that a = up; or a = vq; for some u,v € R*. So p; =
u~'a and since p; | b we have a | b. Similarly, if the latter holds, then a | c.

0

I Z|2i] is not a UFD.

Proof: This ring has irreducible elements which are not primes.

Let R be an integral domain. Let a4, ..., a,, € R. We say that d = gcd(aq, ..., a,,) if
i) d|a;Vi
ii) Vee R,c|a; = c|d
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4.2.8. Proposition

I Let R be a UFD and let a, b € R be nonzero elements. Then ged(a, b) exists.

Proof: Choose irreducible elements p;, ...,p,, € R such that a = pj* --- pS» and b = p{l - p, fIn where a;, f; >
0.

Let g; = min(e;, f;) and write d = p{* - -- p9» € R. We claim that d = gcd(a, b). First, observe d | a and d | b. Now

: h . o h h
suppose ¢ | a,b. Write ¢ = ¢;"* - - - ¢ as a unique factorization, so that ¢ --- ¢"m | p{* --- pSr and ¢} --- ¢" |
. h h . - S A a .
p{l -+ pfr.This means ¢} | py* --- p and ¢, | p{ ' ... pln Since g, is irreducible, it is prime by our previous

proposition. Thus ¢; must be p, (after renumbering). So q? | p{* and qfl | p{l so ¢ | pi*. Similarly, qlh | pfVi, so

h h g
c=q" gy Pt pin =

L

4.2.9. Proposition

Letay,...,a, € R (anintegral domain). Let d € (aq, ..., a,,). Then d = ged(ay, ..., a,) <= (d) = (aq, ..., a,).

(Note if the ged is not in the ideal, it doesn’t work.)

Proof: Suppose that d = ged(ay, ..., a,, ). Thend | a,Vi < q, € (d)Vi.So (aq,...,a,) C (d) C (a4, ...,a,,). Thus
(d) = (ay, ..., a,) so this is principal.

Conversely, suppose that (d) = (aq, ..., a,,). Then a; € (d), so d | a;Vi.Let ¢ € R such that c | a;V1, so a; € (c)Vi.
Thus (aq, -..,a,) C (¢), but now (d) C (¢), so ¢ | d. So d = ged(ay, ..., a,,).

O

Consider R = Z[X] and take a = p,b = = where p is prime. We claim ged(p, X)) = 1. To see this, consider (pix) =

% = Z,,. Since Z,, is a field note that (p, X) is maximal, and we have shown previously that (p, X) is not principal.

Observe (p, X) C (ged(p, X)) and since (p, X) is maximal and not principal, we must have (ged(p, X)) = R. Thus
ged(p, X) must be a unit, which we can take to be 1 (but since all units are associates any should work).

Lecture 22 Mar 3

An ascending chain of ideals (*) is a sequence of ideals I; C I, C---Ce& R. We say that (*) is stationary if IN >
0 such that I; = I;Vi,j > N).

Rings where every ascending chain of ideals is stationary are called Noetherian.
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4.2.13. Proposition

I Let R be a commutative ring where every ideal is finitely generated. Then R is a Noetherian ring.

Proof: Let
LCLCILC-

be an ascending chain of ideals. Let I := UZ , Iis we claim this is an ideal.

Note that if a, b € I there must exist some k£ > 0 such that a,b € I, implying that a + b € I;, C I. Similarly, for a €
I and b € R there exists some j >> 0 such that a € Ij and therefore ab € Ij C I. Therefore, I is an ideal and I =

(A1 y-eesay.).

This implies there exists some n >> 0 such that a; € I, for any 4. Therefore I C I, but I, C I suchthat I =1I,,.
Therefore Ij =1, forall j > n.

O

I Let R be a PID. Then any ascending chain of ideals in R is stationary.

Proof: By the previous proposition, R is trivially a Noetherian ring, and therefore any ascending chain of ideals is
stationary.

[

& J

R = CJ[0,1]. Define 3 = [0, +] forn > 1.1e.I, = {f € R: f |; =0} isanidealin R. Then I, C I, C I; C---

Take any n > 1. Define

: 1

1 . 1

Thus fe I, ;)\ I,.
(S
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I Every PID R is a UFD.

Proof: Let us first show that every nonzero nonunit element a € R has a factorization. Suppose a is irreducible. Then
there’s nothing to prove, so suppose it’s reducible. Then we can write a = a,a, where neither a; nor a, is a unit. If
a, and a, are irreducible, we are done. Otherwise, suppose a; is reducible. Then a; = a;; a4, where neither is a unit.
It remains to show that this process terminates.

Notice if it didn’t stop, we get a chain of ideals

(a) C (a1) C(ayy) C---

l If a = a,a, such that neither a; nor a, is a unit then (a;) C (a).

Proof: Suppose to the contrary that a; € (a). Then we can write a; = ab for some b € R. So a = a,a, =
abay = a — abay = 0 = a(l —bay) = 0= bay, =1 = a, € R*. Contradiction.

Observe this works in any integral domain, not necessarily a PID.

L

. J

Now we show factorization is unique. Suppose a =py -+ p, =¢q; -+ ¢, = Py | ¢; - - - g, Since p; is irreducible and
hence prime, p; | g; for prime i. (Recall in a PID, irreducible implies prime).

Now we can assume without loss of generality i = 1 = p; | ;. Since ¢, is irreducible, we must have that ¢; =
uyp; for some u; € R*. By induction on 7 and s, we must have r — 1 = s — 1 and g is an associate of p; for j > 2.
But then r = s and Vi, ¢; = u;p, for some u, € R*.

[

&

J

I Let K be a field. Then K[X] is a UFD.

Proof: We have shown that K[X] is a PID.

-

\
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l Z[i] is a UFD.

Proof: We showed that Z[i] is an ED. We also showed that ED = PID.

|\ J

Is Z[X] a UFD? We cannot yet answer this question, but this outlines our next goal.

We devise a trick to do this. Let R be a UFD. Let F' be the field of fractions of R. This means R[X] < F[X]. Now
since we know F[X] is a UFD, we observe that we might be able to use the map to go into F[X], then come back to
R[X].

Let R be an integral domain. Let a4, ...,a,, € R\ {0}. Then an element d € R is called an lem of a4, ..., a,. if
i) a; | d¥i
ii) a; | cVifor somece R =d | ¢

l Letay,...,a, € R. Thenlcm of ay, ..., a, exists if and only if N]_; (a;) is principal.

Proof: Suppose N_; (a;) = (d). Thena; | dVi.Ifa; | cVi=ce€N(a;) = d]|c.

Conversely, suppose d = lem(ay, ..., a,.). Then a; | dVi = (d) C N (a;). Also, if c € N (a;) = a; | Vi = d | Vi =
c € (d).

Thus (d) = N (a;).

[

| J

l In a UFD, intersection of finitely many principal ideals is principal.

Proof:
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