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1. Rings

1.1. Rings

Lecture 1 Jan 6

1.1.1. Definition: Group

Recall that a group 𝐺 is a set together with a binary operation ∗ : 𝐺 × 𝐺 → 𝐺 such that
i) ∗ is associative

ii) ∃1 ∈ 𝐺 such that 1 ∗ 𝑎 = 𝑎 ∗ 𝑎 = 𝑎∀𝑎 ∈ 𝐺
iii) ∀𝑎 ∈ 𝐺∃𝑎−1 ∈ 𝐺 such that 𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 1.

1.1.2. Definition: Monoid

A monoid is similar to a group without requiring condition (iii).

1.1.3. Definition: Semigroup

A semigroup does not require conditions (ii) and (iii).

1.1.4. Example

i) ℤ>0 is the set of all nonnegative integers. This is a monoid.
ii) ℤ>0 is the set of positive integers. This is a semigroup.

iii) (ℤ, ×) is not a group, but it is a monoid.

1.1.5. Definition: Ring

A ring is a set 𝑅 together with two binary operations, namely addition (+) and multiplication (⋅) such that
i) (𝑅, +) is an abelian group.

ii) (𝑅, ⋅) is a monoid
iii) Addition and multiplication commute, i.e., ∀𝑎, 𝑏, 𝑐 ∈ 𝑅, we have

𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐 and (𝑏 + 𝑐) ⋅ 𝑎 = 𝑏 ⋅ 𝑎 + 𝑐 ⋅ 𝑎.

If 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎∀𝑎, 𝑏 ∈ 𝑅, then we say in addition that 𝑅 is a commutative ring.

1.1.6. Definition: Additive and Multiplicative Identity

The identity element for addition is called the additive identity and is written as 0, and the identity element for
multiplication is called the multiplicative identity and is written as 1.
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Rings Rings — 1.1

1.1.7. Proposition

The multiplicative identity is unique.

Proof: Suppose 1 and 1′ are distinct multiplicative identities. Then we know 11′ = 1 and 11′ = 1′, so 1 = 1′.

⬜

1.1.8. Example

i) 𝑅 = ℤ
ii) 𝑅 = ℚ, ℝ, ℂ

iii) Let 𝑛 ∈ ℤ+ and 𝑅 = 𝑀𝑛(ℝ), the set of 𝑛 × 𝑛 real matrices. This is a ring with the usual addition and
multiplication of matrices. This is an example of a noncommutative ring since 𝐴𝐵 ≠ 𝐵𝐴 in general.

iv) Let 𝑛 ∈ ℤ+ \ {1} and 𝑅 = ℤ𝑛 = ℤ/𝑛ℤ = ℤ/𝑛. Recall multiplication here is defined by (𝑎 mod 𝑛)(𝑏 mod 𝑛) ≔
𝑎𝑏 mod 𝑛.

We now show this definition makes sense. Suppose 𝑎 mod 𝑛 = 𝑎′ mod 𝑛 and 𝑏 mod 𝑛 = 𝑏′ mod 𝑛. Then we can
write 𝑎 = 𝑎′ + 𝑘𝑛 and 𝑏 = 𝑏′ + ℓ𝑛. So 𝑎𝑏 = (𝑎′ + 𝑘𝑛)(𝑏′ + ℓ𝑛) = 𝑎′𝑏′ + 𝑚𝑛 for some 𝑚 ∈ ℤ.

The first condition is trivially satisfied from group theory. Further, it is easy to see that 1 is a multiplicative
identity and multiplication is associative. Thus it only remains to show that multiplication distributes over
addition, but this follows easily from the fact that this is the case in ℤ. For the same reason, this is in fact a
commutative ring.

1.2. Ring Properties

Lecture 2 Jan 8

1.2.1. Proposition

Let 𝑅 be a ring. Then we have the following.
i) 𝑎 ⋅ 0 = 0 ⋅ 𝑎 = 0∀𝑎 ∈ 𝑅

ii) (−𝑎) ⋅ 𝑏 = 𝑎 ⋅ (−𝑏) = −𝑎𝑏∀𝑎, 𝑏 ∈ 𝑅
iii) (−𝑎)(−𝑏) = 𝑎𝑏∀𝑎, 𝑏 ∈ 𝑅
iv) 𝑎(𝑏 − 𝑐) = 𝑎𝑏 − 𝑎𝑐, (𝑏 − 𝑐)𝑎 = 𝑏𝑎 − 𝑐𝑎∀𝑎, 𝑏, 𝑐 ∈ 𝑅
v) (−1)𝑎 = −𝑎∀𝑎 ∈ 𝑅

vi) (−1)(−1) = 1.

Proof:

i) Notice 𝑎 ⋅ 0 = 𝑎 ⋅ (0 + 0) = 𝑎 ⋅ 0 + 𝑎 ⋅ 0. Now since the group is closed under inverses, we have 𝑎 ⋅ 0 = 0. By a
symmetric argument, 0 ⋅ 𝑎 = 0.

ii) (−𝑎)𝑏 + 𝑎𝑏 = (−𝑎 + 𝑎)𝑏 = 0𝑏 = 0 ⟹ (−𝑎)𝑏 = −𝑎𝑏
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Rings Ring Properties — 1.2

iii) (−𝑎)(−𝑏) − 𝑎𝑏 = (−𝑎)(−𝑏) + (−𝑎)𝑏 = (−𝑎)(−𝑏 + 𝑏) = (−𝑎) ⋅ 0 = 0

iv) Exercise

v) Apply (2) with 𝑏 = 1

vi) Apply (3) with 𝑎 = 𝑏 = 1

⬜

1.2.2. Corollary

Suppose 0 = 1. Then 𝑅 = {0} (this is called a zero ring.)

Proof: Let 𝑎 ∈ 𝑅. Then 𝑎 = 𝑎 ⋅ 1 = 𝑎 ⋅ 0 = 0.

⬜

1.2.3. Lemma

Let 𝑅 be a ring. Suppose 𝑎 ∈ 𝑅 has a multiplicative inverse, meaning ∃𝑎′ ∈ 𝑅 such that 𝑎𝑎′ = 𝑎′𝑎 = 1. Then 𝑎′

is the unique multiplicative inverse of 𝑎.

Proof: Suppose that 𝑏 is another inverse of 𝑎. Then 𝑎′𝑎𝑏 = 𝑎′(𝑎𝑏) = 𝑎′ ⋅ 1 = 𝑎′. Also, 𝑎′𝑎𝑏 = (𝑎′𝑎)𝑏 = 1 ⋅ 𝑏 = 𝑏.
Therefore 𝑎′ = 𝑏.

⬜

1.2.4. Proposition

Let 𝑅× = {𝑎 ∈ 𝑅 : 𝑎 has a multiplicative inverse}. Then 𝑅× is a group under multiplication.

Note this is called the group of units.

Proof: We only need to show that multiplication is defined on 𝑅×. Suppose 𝑎, 𝑏 ∈ 𝑅×. Then (𝑎𝑏)(𝑏−1𝑎−1) =
𝑎(𝑏𝑏−1)𝑎 = 𝑎 ⋅ 1 ⋅ 𝑎−1 = 𝑎 ⋅ 𝑎−1 = 1. Similarly we can show (𝑏𝑎)(𝑎−1𝑏−1) = 1.

⬜

1.2.5. Example

If 𝑅 = 𝑀𝑛(ℝ), then 𝑅𝑥 = GL𝑛(ℝ).
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1.2.6. Example

Let 𝑆 ⊂ ℝ𝑛. Let 𝐶(𝑆) be the set of all real valued continuous functions on 𝑆. Note any 𝑓 ∈ 𝐶(𝑆) is a function 𝑓 :
𝑆 → ℝ is a function which is continuous at every point in 𝑆.

Define the operations

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)
(𝑓𝑔)(𝑥) = 𝑓(𝑥) ⋅ 𝑔(𝑥)

Then 𝐶(𝑆) forms a commutative ring, where the identities are the 0 function and the 1 function.

1.2.7. Example

More generally, let 𝑅 be a ring and 𝑆 any set. Define 𝐹(𝑆, 𝑅) as the set of all functions from 𝑆 to 𝑅. Define

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)
(𝑓𝑔)(𝑥) = 𝑓(𝑥) ⋅ 𝑔(𝑥).

Note to prove this, it’s better to use the sequential definition of continuity. Further, notice that 𝑓(𝑥) = 𝑥 with 𝑓 : ℝ →
ℝ is an example of a function without an inverse.

1.2.8. Example

Let 𝑅 be a ring. Let 𝑀𝑛(𝑅) be the set of all matrices of length 𝑛 over 𝑅. If we take 𝐴 = (𝑎𝑖𝑗) and 𝐵 = (𝑏𝑖𝑗), we
define 𝐴𝐵 = (𝑐𝑖𝑗) with 𝑐𝑖𝑗 = ∑

𝑛
𝑎𝑖𝑛𝑏𝑛𝑗 Therefore it makes sense to talk about matrices over rings. In particular, we

can talk about 𝑀𝑛(ℤ𝑚).

We can also construct a new ring by taking any set 𝑆 and saying 𝑅′ = 𝐹(𝑆, 𝑅).

1.2.9. Example: Difficulties of Ring Theory

Normal algebraic rules don’t necessarily apply for rings. For instance, a nonzero number can have a square of 0 in a
ring. If we take 𝑅 = ℤ4 and 𝑎 = 2, then 𝑎2 = 0. Also, If we take 𝑅 = ℤ6 and 𝑎 = 3 so 𝑎2 = 𝑎 but 𝑎 is neither 0 nor 1.

1.3. Polynomial Rings

Lecture 3 Jan 10
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1.3.1. Definition: Product of Rings

Let 0 ≤ 𝑛 ≤ ∞ be any integer. Let {𝑅𝑖}0≤𝑖≤𝑛 be a collection of rings. We define

𝑅 = ∏
𝑛

𝑖=0
𝑅𝑖 = {{𝑎𝑖} : 𝑎𝑖 ∈ 𝑅𝑖}

with ring operations

(𝑎𝑖) + (𝑏𝑖) = (𝑎𝑖 + 𝑏𝑖)
(𝑎𝑖) ⋅ (𝑏𝑖) = (𝑎𝑖 ⋅ 𝑏𝑖)

Then 𝑅 becomes a ring.

Our multiplicative identity is (1, 1, …, 1) and our additive identity is (0, 0, …, 0).

1.3.2. Definition: Direct Sum of Rings

We can define

𝑅′ = ⊕𝑛
𝑖=0 𝑅𝑖 = {(𝑎𝑖) ∈ 𝑅 : 𝑎𝑖 = 0 for all but finitely many 𝑖}.

Note 𝑅′ ⊆ 𝑅.

Notice that 𝑅′ = 𝑅 if 𝑛 < ∞, but 𝑅′ ≠ 𝑅 if 𝑛 = ∞.

1.3.3. Exercise

Show that when 𝑛 = ∞, 𝑅′ is not a ring because it does not have a multiplicative identity.

Solution

Let 𝑛 = ∞. Suppose by contradiction 1𝑅′  is a multiplicative identity. Then 1𝑅′  must eventually have a 0 entry by
definition - call this entry 𝑖. Then consider 𝑥 ∈ 𝑅′ where 𝑥 = (…, 1, …) where the second 1 is in the 𝑖th position. But
then 𝑥1𝑅′ = (…, 0, …) ≠ (…, 1, …) = 𝑥, so 1𝑅′  cannot be an identity element.
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Rings Polynomial Rings — 1.3

1.3.4. Exercise

Let 𝑅 be a ring. Consider

𝑅′ = ∏
∞

𝑖=0
𝑅𝑖 where 𝑅𝑖 = 𝑅.

The operations are

(𝑎𝑖) + (𝑏𝑖) = (𝑎𝑖 + 𝑏𝑖)
(𝑎𝑖)(𝑏𝑖) ≔ (𝑐𝑖)

Define 𝑐𝑖 = ∑
𝑗+𝑘=𝑖

𝑎𝑗 ⋅ 𝑏𝑘.

To understand this, consider the 𝑗 and 𝑘 axes, so that the lines 𝑗 + 𝑘 = 𝑖 are the ones with slope −1.

Show this is a ring with additive identity 0 = (0, 0, …, 0) and multiplicative identity 1 = (1, 0, …, 0).

Solution

Consider 𝑅′ = ∏
𝑛

𝑖=0
𝑅𝑖 for some 𝑛 ∈ ℕ. Note that for 𝑓 = (𝑎0, …, 𝑎𝑛), 𝑔 = (𝑏0, …, 𝑏𝑛) ∈ 𝑅′ we have 𝑓 + 𝑔 = (𝑎0 +

𝑏0, …, 𝑎𝑛 + 𝑏𝑛) = (𝑏0 + 𝑎0, …, 𝑏𝑛 + 𝑎𝑛) = 𝑔 + 𝑓 , showing closure and commutativity of addition. Further notice
(𝑎0, …, 𝑎𝑛) + (0, …, 0) = (𝑎0, …, 𝑎𝑛) so (0, …, 0) is indeed an identity. Then (−𝑎0, …, −𝑎𝑛) + (𝑎0, …, 𝑎𝑛) = (0, …, 0)
so additive inverses exist.

Now, 𝑓𝑔 = ( ∑
𝑗+𝑘=0

𝑎𝑗 ⋅ 𝑏𝑘, …, ∑
𝑗+𝑘=𝑛

𝑎𝑗 ⋅ 𝑏𝑘) so we have closure under multiplication, and note 𝑓 ⋅ 1 = ( ∑
𝑗+𝑘=0

𝑎𝑗 ⋅

𝑏𝑘, …, ∑
𝑗+𝑘=𝑛

𝑎𝑗 ⋅ 𝑏𝑘) = (𝑎0, …, 𝑎𝑛) = 𝑓  so the multiplicative identity works.

1.3.5. Remark

If we return to the direct sum of rings with our new definition for multiplication, it becomes a ring.

Further, it is nothing but the ring of polynomials over 𝑅. I.e., if we fix an indeterminate 𝑥, we can define

𝑎 = 𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ +𝑎𝑛𝑥𝑛.

We say that ⊕ 𝑅𝑖 = 𝑅[𝑥] = the polynomial being over 𝑅.

In fact, the definition of multiplication we defined is precisely the same as doing normal polynomial multiplication.

1.3.6. Definition: Degree of a Polynomial

The degree of a polynomial is the largest integer 𝑛 such that 𝑎𝑛 ≠ 0.

1.3.7. Remark

We can then define a power series by considering 𝑅 = ∏ 𝑅𝑖 = 𝑅[[𝑥]] = {𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅}, with the same
multiplication operation.
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1.3.8. Definition: Polynomials and Power Series in 𝑛 Variables

We can recursively define 𝑅[𝑥1, …, 𝑥𝑛] ≔ 𝑅[𝑥1, …, 𝑥𝑛−1] and 𝑅[[𝑥1, …, 𝑥𝑛]] ≔ 𝑅[[𝑥1, …, 𝑥𝑛]][[𝑥𝑛]].

1.3.9. Example: Ring of Gaussian Integers

The Ring of Gaussian Integers is called ℤ[𝑖] = {𝑎 + 𝑖𝑏 : 𝑎, 𝑏 ∈ ℤ} ⊂ ℂ. We can also consider ℚ[𝑖] = {𝑎 + 𝑖𝑏 :
𝑎, 𝑏 ∈ ℚ} ⊂ ℂ. Notice that this last ring has multiplicative inverses, and in fact has a square root of −1.

One advantage of ring theory is that we can study roots over rings rather than larger sets, to get other possible roots
of numbers.

Gauss was investigating which integers can be written as a sum of two squares. He created this ring and said that an
integer can be written as a sum of two squares if and only if it is the square of the norm of a Gaussian integer.

Gauss was also interested in figuring out how many integer lattice points are in a circle.

1.4. Subrings

Lecture 4 Jan 13

1.4.1. Definition: Subring

Let (𝑅, +, ⋅) be a ring and let 𝑆 ⊆ 𝑅 be any subset. Then (𝑆, +, ⋅) is a called a subring if it is a ring under the binary
operations of 𝑅.

1.4.2. Proposition

Suppose 𝑆 ⊆ 𝑅 is closed under subtraction and multiplication. Assume further that 1 ∈ 𝑆. Then 𝑆 is a subring of
𝑅.

Importantly, this is not an only if.

Proof: In general, 𝑆 is a subring if
i) (𝑆, +) is a subgroup of (𝑅, +)

ii) (𝑆, ⋅) is a submonoid of (𝑅, ⋅)
iii) Multiplication and addition commute in 𝑆

Then
i) Note closure under subtraction is enough to show that (𝑆, +) is a subgroup.

ii) Holds by our assumption that 1 ∈ 𝑆 and 𝑆 is closed under multiplication.
iii) Holds because it holds everything in 𝑅.

⬜

Page 8 of 56



Rings Subrings — 1.4

1.4.3. Example

i) ℤ ↪ ℚ ↪ ℝ ↪ ℂ
ii) Let 𝑅 = ℤ and consider 𝑆 = even integers = ⟨2⟩. Note 1 ∉ 𝑆, but since the previous proposition is not an if and

only if, this alone is not enough to show it’s not a ring. It is in fact not a subring, but this is a Homework question.
Note 𝑆 ⊂ ℤ is closed under subgroup multiplication.

iii) Consider 𝑅 = ℤ/6 and 𝑆 = {0, 2, 4} = ⟨2⟩. 𝑆 is closed under multiplication. Note that 4 ∈ 𝑆 is the identity, since
0 ⋅ 4 ≡ 0, 2 ⋅ 4 ≡ 2, 4 ⋅ 4 ≡ 4 in the ring. This example shows that the unity of a subring may be different from
that of the ring.

iv) Consider 𝑅 = ℤ/6 and 𝑆 = {0, 3}. Note 3 is the unity of 𝑆 and thus 𝑆 is a subring.

1.4.4. Definition: Ring Center

Let 𝑅 be a ring. Note that 𝑍(𝑅), or the center of 𝑅, is defined to be

𝑍(𝑅) = {𝑎 ∈ 𝑅 : 𝑎𝑏 = 𝑏𝑎∀𝑏 ∈ 𝑅}.

1.4.5. Proposition

Let 𝑅 be a ring. Then 𝑍(𝑅) is a subring of 𝑅.

Proof: Apply the subring test. Suppose 𝑎, 𝑏 ∈ 𝑍(𝑅). Then (𝑎 + 𝑏)𝑐 = 𝑎𝑐 + 𝑏𝑐 = 𝑐𝑎 + 𝑐𝑏 = 𝑐(𝑎 + 𝑏)∀𝑐 ∈ 𝑅. Thus we
have closure under addition. Suppose 𝑎 ∈ 𝑍(𝑅). Then (−𝑎)𝑏 = −𝑎𝑏 = −𝑏𝑎 = 𝑏(−𝑎)∀𝑏 ∈ 𝑅 so −𝑎 ∈ 𝑍(𝑅). Thus we
have closure under additive inverses. Clearly 1 ∈ 𝑍(𝑅). Finally, check 𝑎, 𝑏 ∈ 𝑍(𝑅) ⟹ 𝑎𝑏 ∈ 𝑍(𝑅), and then we get
that 𝑅 is a subring.

Moreover, 𝑍(𝑅) is a commutative ring. Thus every ring contains a commutative subring.

⬜

1.4.6. Example: Center of Matrix Ring

Let 𝑅 be a commutative ring. Let 𝑆 = 𝑀𝑛(𝑅) with 𝑛 ≥ 2.

We claim that 𝑍(𝑅) = 𝑅, since the only matrices that commute with all others are diagonal matrices with constant
entries, exactly what 𝑅 is.

Let 𝑘, 𝑖, 𝑗 ≤ 𝑛. Consider the matrix 𝐸𝑖𝑗(1) where (𝑖, 𝑗)th entry is 1 and all entries are zero. Suppose 𝐴 ∈ 𝑍(𝑆). Then
𝐴𝐸𝑖𝑗(1) = 𝐸𝑖𝑗(1)𝐴∀𝑖, 𝑗. Then 𝐴 ∈ 𝑅.

In general, for any ring 𝑅, 𝑍(𝑀𝑛(𝑅)) = 𝑍(𝑅).
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1.5. Integral Domains

1.5.1. Definition: Zero Divisor, Annihilator

Let 𝑎 ∈ 𝑅. Then we say that 𝑎 is a zero divisor if ∃𝑏 ≠ 0 in 𝑅 such that 𝑎𝑏 = 𝑏𝑎 = 0.

In this case, we say that 𝑏 annihilates 𝑎, or that 𝑏 is an annihilator of 𝑎.

1.5.2. Example: Zero Divisors

i) Let 𝑅 = ℤ/6, 𝑎 = 2 and 𝑏 = 3. Then 𝑎𝑏 = 0. Thus 𝑎 and 𝑏 are zero divisors.

ii) Let 𝑅 = ℤ/4 and 𝑎 = 2. Then 𝑎 ⋅ 𝑎 = 0 so 𝑎 is a zero divisor. Suppose 𝑅 is commutative. Then 𝑎 and 𝑏 are zero
divisors. Then 𝑎𝑐 = 𝑐𝑎 = 0 for some 𝑐 ≠ 0. Thus 𝑎𝑏𝑐 = 𝑎𝑐𝑏 = 0 = 𝑐𝑎𝑏.

iii) Let 𝑅 = ℤ/6. Then 𝑎 = 2, 𝑏 = 3, so 𝑎 and 𝑏 are zero divisors. Note 𝑎 + 𝑏 = 5. Is this a zero divisor? We claim that
it cannot be because it is coprime to 6. In general if we let 𝑎 ∈ 𝐴𝑥, then 𝑎𝑏 = 0 so 𝑎−1(𝑎𝑏) = 0 ⇒ 𝑎−1(𝑎𝑏) = 0 ⇒
(𝑎−1𝑎)𝑏 = 0 ⇒ 𝑏 = 0.

This shows that zero divisors are not closed under addition. Thus it has no obvious structure.

1.5.3. Definition: Unit

A unit of a ring is an invertible element for the multiplication of the ring. That is, 𝑢 ∈ 𝑅 is a unit if ∃𝑣 ∈
𝑅 such that 𝑣𝑢 = 𝑢𝑣 = 1𝑅 .

Lecture 5 Jan 15

1.5.4. Definition: Integral Domain

A ring 𝑅 is called an integral domain if it is commutative and has no nonzero zero divisors. In other words, the
product of nonzero elements is nonzero.

1.5.5. Example: Integral Domain

The rings ℤ, ℚ, ℝ, ℂ are all integral domains.

1.5.6. Proposition

Every subring of an integral domain is also an integral domain. Moreover, its unity element coincides with the
unity element of the bigger ring.

Proof: Let 𝑆 ⊆ 𝑅 be a subring. Let 𝑎 ∈ 𝑆 be the identity element of 𝑆. Then for every 𝑏 ≠ 0 in 𝑆, we must have 𝑎𝑏 =
𝑏𝑎 = 𝑏 ⟹ (𝑎 − 1)𝑏 = 0.

Since 𝑏 ≠ 0 and 𝑅 is an integral domain, we must have 𝑎 − 1 = 0, or 𝑎 = 1.

⬜
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1.5.7. Example: Integral Domain — Arbitrary Real Functions

Let 𝑅 = All functions from [0, 1] to ℝ = 𝐹([0, 1], ℝ). Let 𝑓  be a nonzero and noninvertible element of in 𝑅. Define

𝑔(𝑥) = {0 if 𝑓(𝑥) ≠ 0
1 if 𝑓(𝑥) = 0

Note 𝑓𝑔 = 0 with 𝑔 nonzero, so this is not an integral domain.

1.5.8. Example: Integral Domain — Continuous Real Functions

Let 𝑅 = 𝐶([0, 1]) with

𝑓(𝑥) = {
0 if 0 ≤ 𝑥 ≤ 1

2
𝑥 − 1

2 if 1
2 ≤ 𝑥 ≤ 1

and 𝑔(𝑥) = {
1
2 − 𝑥 if 0 ≤ 𝑥 ≤ 1

2
0 if 1

2 ≤ 𝑥 ≤ 1

Note 𝑓𝑔 = 0 but 𝑓  and 𝑔 are nonzero, so this is not an integral domain.

1.5.9. Proposition

Let 𝑅 be a commutative ring. then 𝑅 is an integral domain if and only if for any 𝑎, 𝑏, 𝑐 ∈ 𝑅 with 𝑎 ≠ 0, one has
that 𝑎𝑏 = 𝑎𝑐 ⟹ 𝑏 = 𝑐.

Proof: First suppose 𝑅 is an integral domain, and suppose for 𝑎, 𝑏, 𝑐 ∈ 𝑅 with 𝑎 ≠ 0 we have

𝑎𝑏 = 𝑎𝑐 ⟺ 𝑎(𝑏 − 𝑐) = 0.

Then 𝑏 − 𝑐 is a zero divisor, but since 𝑅 is an integral domain, we must then have 𝑏 − 𝑐 = 0. But this implies 𝑏 = 𝑐.

In the other direction, suppose that for any 𝑎, 𝑏, 𝑐 ∈ 𝑅 with 𝑎 ≠ 0 we have 𝑎𝑏 = 𝑎𝑐 ⟹ 𝑏 = 𝑐. Then if 𝑐 = 0, we have
𝑎𝑏 = 0 ⇒ 𝑏 = 0, implying that every zero divisor is zero. In other words, there are no nonzero divisors, showing 𝑅 is
an integral domain.

⬜

1.6. Division Rings

1.6.1. Definition: Division Ring

A ring 𝑅 is called a division ring if ∀𝑎 ≠ 0, ∃𝑏 ∈ 𝑅 such that 𝑎𝑏 = 𝑏𝑎 = 1.

1.6.2. Definition: Field

A ring 𝑅 is called a field if it is a division ring and is commutative.
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1.6.3. Remark

Observe we get more structure at each step:

Sets Abelian Groups Commutative Rings Fields

One thing we might wonder is whether there are division rings that aren’t fields. The following example illustrates
this.

1.6.4. Example: Quaternion Space

Take 𝑅 = ℝ4 = ℍ. Then choose a basis {1, 𝑖, 𝑗, 𝑘}. Let 𝑅 = 𝑅 ⋅ 1 ⊕ ℝ𝑖 ⊕ ℝ𝑗 ⊕ ℝ𝑘. We define addition as follows: if
𝛼 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 and 𝛼 = 𝑎′ + 𝑏′𝑖 + 𝑐′𝑗 + 𝑑′𝑘, then 𝛼 + 𝛼′ = (𝑎 + 𝑎′) + (𝑏 + 𝑏′)𝑖 + (𝑐 + 𝑐′)𝑗 + (𝑑 + 𝑑′)𝑘.

We define

𝑖𝑗 = 𝑘 = −𝑗𝑖
𝑗𝑘 = 𝑖 = −𝑘𝑗
𝑘𝑖 = 𝑗 = −𝑖𝑘

or in table form,

1 𝑖 𝑗 𝑘
1 1 𝑖 𝑗 𝑘
𝑖 𝑖 −1 𝑘 𝑗
𝑗 𝑗 𝑘 −1 −𝑖
𝑘 𝑘 −𝑗 𝑖 −1

Notice that this ring is clearly not commutative.

Note if 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 ≠ 0, then

(𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘)−1 = 𝑎 − 𝑏𝑖 − 𝑐𝑗 − 𝑑𝑘
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2

so this is a division ring.

1.6.5. Remark

Note that we can define a ring structure built from ℝ𝑛 where 𝑛 = 1, 2, 4, 8, where 𝑛 = 2 corresponds to ℂ, 𝑛 = 4
corresponds to quaternions, and 𝑛 = 8 corresponds to octonions. This is a very hard theorem to prove.

1.6.6. Exercise

𝑍(ℍ) = ℝ.

Solution

Suppose 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 ∈ 𝑍(ℍ). Then 𝑞𝑖 = 𝑖𝑞 and 𝑞𝑗 = 𝑗𝑞.

(Show 𝑞 = 𝑎).
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1.6.7. Proposition

Let 𝐷 be a division ring. Then 𝑍(𝐷) is a field.

Proof: Note 𝑍(𝐷) is a ring by Prop 1.4.5 and is commutative, so it is enough to show that 𝑎 ∈ 𝑍(𝐷) with 𝑎 ≠ 0
implies 𝑎−1 ∈ 𝑍(𝐷). Let 𝑏 ∈ 𝐷; we need to show 𝑎−1𝑏 = 𝑏𝑎−1. But this is true iff 𝑎(𝑎−1𝑏) = 𝑎(𝑏𝑎−1). But this is the
same as saying 𝑏 = 𝑎𝑏𝑎−1 = 𝑏𝑎𝑎−1 = 𝑏.

⬜

Lecture 6 Jan 17

1.6.8. Example: Spheres

Note 𝑆 = {(𝑎0, …, 𝑎𝑛) : 𝑎2
0 + ⋅ ⋅ ⋅ +𝑎1

𝑛} ⊂ ℝ𝑛+1. For example, 𝑆1 is a circle (in addition, it’s an abelian group).

1.6.9. Exercise

𝑆3 is a (nonabelian) group under multiplication of ℍ.

Solution

1.6.10. Theorem

Let 𝑅 be an integral domain. Then 𝑅[𝑥] is also an integral domain.

Proof: Let 𝑓(𝑥) ∈ 𝑅[𝑥] and 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ +𝑎𝑛𝑥𝑛 where 𝑎𝑖 ∈ 𝑅. If 𝑎𝑛 ≠ 0, then deg(𝑓) = 𝑛. In this case,
𝑎𝑛 is the leading coefficient of 𝑓 , i.e., ℓ(𝑓). Note 𝑓(𝑥) is called a monic polynomial if ℓ(𝑓) = 1.

Suppose 𝑔(𝑥) ∈ 𝑅[𝑥] such that 𝑓(𝑥)𝑔(𝑥) = 0. Suppose by contradiction that 𝑔(𝑥) ≠ 0. We can write 𝑔(𝑥) = 𝑏0 +
𝑏1𝑥 + ⋅ ⋅ ⋅ +𝑏𝑚𝑥𝑚 with 𝑏𝑚 ≠ 0 (so deg 𝑔 = 𝑚). Note (𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ +𝑎𝑛𝑥𝑛)(𝑏0 + 𝑏1𝑥 + ⋅ ⋅ ⋅ +𝑏𝑚𝑥𝑛) = 0 ⟹
𝑎𝑛𝑏𝑚 = 0, a contradiction since 𝑅 is an integral domain.

⬜

1.6.11. Corollary

Suppose 𝑅 is an integral domain. Then 𝑅[𝑥1, …, 𝑥𝑛] is always an integral domain ∀𝑛 ≥ 1.

Proof: Use induction on 𝑛.

⬜
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1.7. Finite Fields

1.7.1. Proposition

ℤ/𝑚 is an integral domain for 𝑚 ≥ 2 ⟺ 𝑚 is a prime.

Proof: Suppose 𝑚 is a prime. Suppose (𝑎 mod 𝑚)(𝑏 mod 𝑚) = 0 ⇒ 𝑎𝑏 mod 𝑚 ≡ 0 ⇔ 𝑚 ∣ 𝑎𝑏 ⇔ 𝑚 ∣ 𝑎 or 𝑚 ∣ 𝑏 ⇔
𝑎 mod 𝑚 ≡ 0 or 𝑏 mod 𝑚 ≡ 0.

Conversely, suppose ℤ/𝑚 is an integral domain. It suffices to show that the only divisors of 𝑚 are 1 and 𝑚. Suppose
∃1 < 𝑎 < 𝑚 such that 𝑎 ∣ 𝑚 ⇒ ∃1 < 𝑏 < 𝑚 such that 𝑎𝑏 = 𝑚. But now 𝑎𝑏 mod 𝑚 ≡ 0 ≡ (𝑎 mod 𝑚)(𝑏 mod 𝑚) ⇒
𝑎 mod 𝑚 ≡ 0 or 𝑏 mod 𝑚 ≡ 0 ≡ because ℤ/𝑚 is an integral domain. But now 𝑚 ∣ 𝑎 or 𝑚 ∣ 𝑏, a contradiction.

⬜

1.7.2. Proposition

Let 𝑅 be a finite ring. Then 𝑅 is an integral domain ⟺ 𝑅 is a field.

Proof: We only need to show that 𝑎 ≠ 0 ⇒ 𝑎 has an inverse. Consider the set 𝑆 = {𝑎𝑚 : 𝑚 ≥ 0}. Thus |𝑆| < ∞
because |𝑅| < ∞. Then ∃1 ≤ 𝑚 < 𝑛 such that 𝑎𝑚 = 𝑎𝑛. So 𝑎𝑚(𝑎𝑛−𝑚 − 1) = 0. Since 𝑅 is an integral domain and
𝑎 ≠ 0, we must have 𝑎𝑛−𝑚 = 1 ⇒ 𝑎𝑎𝑛−𝑚−1 = 1 ⇒ 𝑎𝑛−𝑚−1 = 𝑎−1.

⬜

1.7.3. Corollary

ℤ𝑚 is a field ⟺ 𝑚 is a prime.

Proof: Follows easily from above two propositions.

⬜

1.7.4. Remark

A natural question is to ask whether all finite fields are of the form ℤ𝑝.

However, this is not the case, as the following example illustrates.

1.7.5. Example

Consider ℤ[𝑖] = {𝑎 + 𝑏𝑖 : 𝑎, 𝑏 ∈ ℤ} and then the ring formed by ℤ𝑚[𝑖] which is ℤ[𝑖] reduced mod 𝑚 in each
coordinate.

For example, ℤ3[𝑖] = {0, 1, 2, 𝑖, 1 + 𝑖, 2 + 𝑖, 2𝑖, 1 + 2𝑖, 2 + 2𝑖}. Note this has cardinality 9 which is not prime.
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1.7.6. Exercise

ℤ3[𝑖] is an integral domain.

Solution

1.7.7. Remark

There’s something special about 3 here — a general prime 𝑝 does not work.

In fact, it must be a Gaussian prime, that is a prime congruent to 3 mod 4.

1.7.8. Example

Consider ℤ. Note that intuitively, ℚ should be the smallest field containing ℤ, since it’s just the addition of inverses.
We can generalize this in the following theorem.
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1.7.9. Theorem

There exists a smallest field containing 𝑅. That is, ∃ a field 𝐹  such that 𝑅 is a subring of 𝐹(𝑅). Moreover, if 𝑅 is a
subring of a field 𝐾 , then 𝐾 contains 𝐹(𝑅) such that 𝑅 ↪ 𝐹(𝑅) and 𝑅 ↪ 𝐾 and 𝐹(𝑅) ↪ 𝐾 .

𝑓

𝜋
𝑓

𝐺 im(𝑓)

𝐺/ ker(𝑓)

Proof: Let 𝑆 = {(𝑎, 𝑟) : 𝑎, 𝑟 ∈ 𝑅, 𝑟 ≠ 0} ↪ 𝑅 × 𝑅.

Define the equivalence relation (𝑎, 𝑟) ∼ (𝑏, 𝑠) if and only if 𝑎𝑠 = 𝑏𝑟 in 𝑅. Suppose (𝑎, 𝑟) ∼ (𝑏, 𝑠) ∼ (𝑐, 𝑡). Thus 𝑎𝑠 =
𝑏𝑟 and 𝑏𝑡 = 𝑐𝑠 and thus transitivity follows from

𝑎𝑡𝑠 = 𝑎𝑠𝑡 = 𝑏𝑟𝑡
𝑐𝑟𝑠 = 𝑐𝑠𝑟 = 𝑏𝑡𝑟 = 𝑏𝑟𝑡

We define 𝐹(𝑅) = 𝑆/ ∼. Define
• (𝑎, 𝑟) ⋅ (𝑏, 𝑠) = (𝑎𝑏, 𝑟𝑠) and
• (𝑎, 𝑟) + (𝑏, 𝑠) = (𝑎𝑠 + 𝑏𝑟, 𝑟𝑠).

Then we claim
i) 𝐹(𝑅) is a ring with these operations

ii) 𝑅 is a subring of 𝐹(𝑅)

Note the additive identity is (0, 1) and the multiplicative identity is (1, 1). If 𝑎 ≠ 0, then (𝑎, 𝑎) ∼ (1, 1). Consider this
as an element of 𝐹(𝑅) by (𝑎, 1).

Note we think of the relation as (𝑎, 𝑟) ∼ 𝑎
𝑟 .

⬜

Lecture 7 Jan 22

1.7.10. Notation

𝐹(𝑅) is called the field of fractions of 𝑅, or the quotient field of 𝑅.

1.7.11. Example

i) 𝐹(ℤ) = ℚ.
ii) Let 𝐷 be an integer which is not a perfect square in ℚ. Then ℤ(

√
𝐷) = {𝑎 + 𝑏

√
𝐷 ∈ ℂ : 𝑎, 𝑏 ∈ ℤ}. Then

ℤ(
√

𝐷) is a subring of ℂ.
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1.7.12. Exercise

Take 𝑅 = ℤ(
√

𝐷).

Then 𝐹(𝑅) = ℚ(
√

𝐷) = {𝑎 + 𝑏
√

𝐷 : 𝑎, 𝑏 ∈ ℚ}.

Solution

1.8. Characteristic

1.8.1. Definition: Characteristic

Let 𝑅 be a ring. The characteristic of 𝑅 is the smallest positive integer 𝑛 such that 𝑛𝑎 = 0∀𝑎 ∈ 𝑅. Note that this is
repeated addition. If no such 𝑛 exists, then we say that the characteristic of 𝑅 is zero. We write this by char(𝑅) = 𝑛.

1.8.2. Proposition

char(𝑅) = 0 if and only if the order of 1 is ∞.

Proof: Suppose char(𝑅) = 0. If the order of 1 is 𝑛 < ∞, then 𝑛𝑥 = (𝑛 ⋅ 𝑥) = 0∀𝑥 ∈ 𝑅, a contradiction. Conversely,
suppose the order of 1 is ∞ and char(𝑅) = 𝑛 > 0. Then 𝑛 ⋅ 1 = 0, a contradiction.

⬜

1.8.3. Proposition

If char(𝑅) > 0, then char(𝑅) = order of 1.

Proof: If char(𝑅) = 𝑛 > 0, then 𝑛 ⋅ 1 = 0. On the other hand, if ∃0 < 𝑚 < 𝑛 such that 𝑚 ⋅ 1 = 0, then 𝑚𝑥 = (𝑚 ⋅
1)𝑥 = 0, which implies ord(1) = 𝑛.

⬜

1.8.4. Example: Characteristic

i) 𝑅 = ℤ then char(𝑅) = 0.
ii) 𝑅 = ℤ6 then char(𝑅) = 6

iii) 𝑅 = ℚ
iv) 𝑅 = ℤ/𝑝 where 𝑝 is prime. Then char(ℤ𝑝) = 𝑝.
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1.8.5. Proposition

Let 𝑅 be an integral domain. Then either char(𝑅) = 0 or char(𝑅) is prime.

Proof: If ord(1) = ∞, then we know char 𝑅 = 0. Thus suppose ord(1) = 𝑛 > 0. By contradiction, suppose 𝑛 is not
prime.

Thus we can write 𝑛 = 𝑚1𝑚2 where 1 < 𝑚1, 𝑚2 < 𝑛. Thus 𝑛 ⋅ 1 = 0. So (𝑚1 ⋅ 1)(𝑚2 ⋅ 1) = 𝑛 ⋅ 1 = 0. So either
𝑚1 ⋅ 1 = 0 or 𝑚2 ⋅ 1 = 0, contradiction.

⬜

1.8.6. Proposition

Let 𝑅 be an integral domain and let 𝑅′ be a subring of 𝑅. Then char(𝑅′) = char(𝑅).

Proof: If char(𝑅) = 0, then ord(1) = ∞ in 𝑅. But 1 ∈ 𝑅′ is the identity element of 𝑅′ then ord(1) = ∞ in 𝑅′. If
ord(1) = 𝑡 > 0 in 𝑅, then ord(1) = 𝑡 in 𝑅′ as well.

⬜

1.8.7. Remark

The above proposition is false if 𝑅 is not an integral domain. For example, take 𝑅 = ℤ6 with 𝑅′ = {0, 3}. Then
char(𝑅) = 6 and char(𝑅′) = 2.

1.8.8. Definition: F-vector space

Let 𝐹  be a field. Let 𝑉  be an abelian group. Then 𝑉  is called an 𝐹 -vector space if ∃ a map

𝜇 : 𝐹 × 𝑉 → 𝑉
𝜇(𝑎, 𝑣) ⟼ 𝑎𝑣

such that
i) 𝑎(𝑣 + 𝑤) = 𝑎𝑣 + 𝑎𝑤∀𝑎 ∈ 𝐹, 𝑣, 𝑤 ∈ 𝑉

ii) (𝑎 + 𝑏)𝑣 = 𝑎𝑣 + 𝑏𝑣∀𝑣 ∈ 𝑉 , 𝑎, 𝑏 ∈ 𝐹
iii) 𝑎(𝑏𝑣) = (𝑎𝑏)𝑣∀𝑎, 𝑏 ∈ 𝐹 , 𝑣 ∈ 𝑉
iv) 1 ⋅ 𝑣 = 𝑣∀𝑣 ∈ 𝑉

1.8.9. Notation

Whenever we write a finite field like 𝔽𝑝 we mean ℤ𝑝.
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1.8.10. Example

Take 𝑅 = 𝔽𝑝[𝑥]. Then 𝑅 is an 𝔽𝑝 vector space. Take 𝛼 ∈ 𝔽𝑝 with 𝑓(𝑥) ∈ ℝ and 𝛼𝑓(𝑥) is usual multiplication in 𝑅.

A major problem is that 𝑝 ⋅ 𝑛 = 0, which was never the case before, so we need to specially deal with this case.

Lecture 8 Jan 24

1.8.11. Proposition

For every ring 𝑅 there exists a unique group homomorphism

ℤ →
𝜑𝑅

𝑅
𝑛 ⟼ 𝑛 ⋅ 1

If 𝑅 is an integral domain, then we can check
i) ker 𝜑𝑅 = {⟨𝑝⟩

0

Thus every ring of characteristic zero contains ℤ canonically.
• 𝑔𝑓  is an integral domain if char 𝑝 contains 𝔽𝑝 as a subring

1.8.12. Example

If 𝑅 = 𝔽𝑝[𝑥] and 𝐹 = 𝐹(𝑅) = {𝑓(𝑥)
𝑔(𝑥) | 𝑔(𝑥) ≠ 0} we get an infinite ring of characteristic 𝑝.
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2. Ideals

2.1. Ideals

2.1.1. Definition: Ideal

Let 𝑅 be a ring. An ideal 𝐼  in 𝑅 is a subgroup of 𝑅 under addition such that ∀𝑎 ∈ 𝐼, 𝑏 ∈ 𝑅 we have 𝑎𝑏, 𝑏𝑎 ∈ 𝐼 .

Observe that we can visualize this as 𝑅 with some abelian subgroup inside 𝐼 , such that if we take any element outside
of it and mulitply an element within 𝐼  we are back in 𝐼 .

2.1.2. Remark

Consider a field 𝐾 and the vector spaces over itself; the only possibilities of subspaces are the trivial ones. However, if
we consider a field, this is not true.

2.1.3. Definition

We say that 𝐼  is a proper ideal if 𝐼 ≠ {1}.

2.1.4. Example

For ℤ, the ideals are exactly all its subgroups. This is because each element of ⟨𝑚⟩ times an integer must still be
divisible by 𝑚.

2.1.5. Example

i) 𝑅 = ℤ[𝑥]. Consider 𝑆 = 2ℤ ↪ 𝑅 Note this is only a subgroup of ℤ. It’s not a subring because it doesn’t contain 1
(which it must because it’s an integral domain).

ii) 𝑅 = ℚ, 𝑆 = ℤ, ℤ ↪ 𝑅. 𝑆 is a subring but not an ideal.

iii) 𝑅 = ℤ, 𝑆 = 2ℤ. 𝑆 is not a subring but is an ideal.

2.1.6. Definition: Principal Ideal

Let 𝑅 be a commutative ring and 𝑎 ∈ 𝑅. Define (𝑎) = {𝑏𝑎 : 𝑏 ∈ 𝑅}. Notice this is clearly closed under addition and if
𝑏𝑎 ∈ 𝑅 and 𝑐 ∈ 𝑅, then 𝑐(𝑏𝑎) = (𝑐𝑏)𝑎 ∈ (𝑎) so it’s closed under multiplication, showing (𝑎) is an ideal.

In other words, it’s an ideal generated by a single element.

Such an ideal is called a principal ideal.
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2.1.7. Exercise

In general, let 𝑎1, …, 𝑎𝑟 ∈ 𝑅. Define (𝑎1, …, 𝑎𝑟) = {𝛼1𝑎1 + ⋅ ⋅ ⋅ +𝛼𝑟𝑎𝑟 : 𝛼1, …, 𝛼𝑟 ∈ 𝑅}. Then (𝑎1, …, 𝑎𝑟) is an
ideal. (This is the same idea as the span of a subspace in a vector space)

Solution

If 𝛼1𝑎1 + ⋅ ⋅ ⋅ +𝛼𝑟𝑎𝑟 ∈ (𝑎1, …, 𝑎𝑟), then for 𝑏 ∈ 𝑅 we have 𝑏(𝛼1𝑎1 + ⋅ ⋅ ⋅ +𝛼𝑟𝑎𝑟) = 𝛼1(𝑏1𝑎1) + ⋅ ⋅ ⋅ +𝛼𝑟(𝑏𝑟𝑎𝑟) ∈
(𝑎1, …, 𝑎𝑟), so this indeed an ideal.

2.1.8. Definition: Principal Ideal Ring

We say that a commutative ring 𝑅 is a principal ideal ring (PIR) if every ideal of 𝑅 is principal. We say that if 𝑅 is a
principal ideal domain (PID) if 𝑅 is a PIR and an integral domain.

2.1.9. Example

i) 𝑅 = ℤ is a PID
ii) 𝑅 = ℤ6. Since every ideal of ℤ6 is a subgroup and hence cyclic, it follows that ℤ6 is a PIR, but not a PID.

In general, for any ℤ𝑛, the ideals are exactly the subgroups.

Lecture 9 Jan 27

2.1.10. Lemma

Let 𝑅 be an integral domain and 𝑓(𝑋), 𝑔(𝑋) ∈ 𝑅[𝑋]. Then deg(𝑓 ⋅ 𝑔) = deg(𝑓) ⋅ deg(𝑔).

Proof: Let 𝑚 = deg(𝑓), 𝑛 = deg(𝑔) such that

𝑓(𝑋) = 𝑎0 + ⋯ + 𝑎𝑚𝑋𝑚, 𝑔(𝑋) = 𝑏0 + ⋯ + 𝑏𝑛𝑋𝑛.

Therefore

𝑓(𝑋) ⋅ 𝑔(𝑋) = 𝑎0𝑏0 + ⋯ + 𝑎𝑚𝑏𝑛𝑋𝑚+𝑛

and note that 𝑎𝑚𝑏𝑛 ≠ 0 since 𝑅 is an integral domain, therefore deg(𝑓 ⋅ 𝑔) = deg(𝑓) ⋅ deg(𝑔).

⬜
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2.1.11. Proposition

ℤ[𝑥] is not a principal ideal ring.

Proof: Let 𝐼 = (2, 𝑥); we claim that this is not principal.

Suppose by contradiction 𝐼 = (𝑓(𝑥)). Then

𝑓(𝑥) = 𝑥ℎ1(𝑥) + 2ℎ2(𝑥) (1)

(since it has to be in the ideal). But then

𝑥 = ℎ3(𝑥)𝑓(𝑥) (2)
2 = ℎ4(𝑥)𝑓(𝑥) (3)

by the defining property of an ideal.

We must have 𝑓(𝑥) ∈ {±1, ±2} by our lemma. Suppose (ignoring the sign) that 𝑓(𝑥) = 2. Then (2) gives a
contradiction because the coefficients must then be even. On the other hand if 𝑓(𝑥) = 1 we also have a contradiction
because the right hand side has an even constant and the left hand side has an odd constant.

⬜

2.1.12. Theorem

If 𝑅 is a commutative ring such that 𝑅[𝑥] is a PID, then 𝑅 is a field.

Proof: Since 𝑅[𝑥] is a PID, it is an integral domain, which shows 𝑅 is an integral domain. Let 𝑎 ≠ 0 be a nonzero
element of 𝑅. Look at 𝐼 = (𝑎, 𝑥) ⊂ 𝑅[𝑥]. Since 𝑅[𝑥] is a PID, we can write 𝐼 = (𝑓(𝑥)). Thus

𝑓(𝑥) = 𝑥ℎ(𝑥) + 𝑎𝑔(𝑥)
𝑥 = ℎ1(𝑥)𝑓(𝑥)
𝑎 = ℎ2(𝑥)𝑓(𝑥)

By the lemma, we must have 𝑓(𝑥) = 𝛼 ∈ 𝑅 such that 𝛼𝛽 = 𝑎 for some 𝛽 ∈ 𝑅. By equation 2, 𝑥 = 𝛼ℎ1(𝑥) ⇒ 1 =
𝛼𝛼′ for some 𝛼′ ∈ 𝑅. Thus equation 1 ⟹ 𝛼 = 𝑥ℎ(𝑥) + 𝑎𝑔(𝑥). Then if we set 𝑥 = 0 we get 𝛼 = 𝑎𝑔(0) ∈ 𝑅. Thus
1 = 𝑎(𝛼−1𝑔(0)) ⇒ 𝑎 ∈ 𝑅×.

⬜

2.1.13. Remark

The converse is also true, but the proof is more difficult.
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2.1.14. Example: Ideals

i) If 𝑅 = ℤ[𝑥] and 𝐼 = (𝑥) means 𝐼  contains all polynomials with zero constant term.
ii) 𝐼 = {polynomials with constant even terms} is an ideal. This is generated by 𝐼 = (2, 𝑥)

iii) 𝑅 = 𝐶([0, 1]). Take 𝐼 = {differentiable functions} - this is not an ideal.
iv) 𝑅 = 𝐶[ℝ].

𝐼 = {all continuous functions on ℝ whose graph passes through the origin} is an ideal.

2.1.15. Definition: Group Ring

We can create a new ring based on a group.

Let 𝐺 be a monoid. Let 𝐾 be a field. Then 𝐾[𝐺] is the 𝑘 vector space with basis 𝐺. Then define

(∑
𝑔∈𝐺

𝑎𝑔𝑔) + (∑
𝑔∈𝐺

𝑏𝑔𝑔) = ∑
𝑔∈𝐺

(𝑎𝑔 + 𝑏𝑔)𝑔

(∑
𝑔∈𝐺

𝑎𝑔𝑔) ⋅ (∑
ℎ∈𝐺

𝑏ℎℎ) = ∑ ∑(𝑎𝑔𝑏ℎ)(𝑔 ⋅ ℎ)

where we note 𝑎𝑔𝑏ℎ is the field multiplication operation and 𝑔 ⋅ ℎ is the monoid operation.

2.1.16. Example

𝑘 = ℚ, 𝐺 = ℤ≥0, ℚ[ℤ≥0] = ℚ[𝑥].

Lecture 10 (Jesse transcribed) Jan 29

2.1.17. Definition: Nil-Radical of 𝑅

Let 𝑅 be a ring and 𝑎 ∈ 𝑅, then 𝑎 is nilpotent if 𝑎𝑛 = 0 for some 𝑛 > 0. nil(𝑅) is the set of all nilpotent elements in
𝑅 called the nil-radical of 𝑅.
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2.1.18. Lemma: Binomial Theorem

Let 𝑅 be a commutative ring and 𝑎, 𝑏 ∈ 𝑅 then

(𝑎 + 𝑏)𝑛 = ∑
𝑛

𝑖=0
(𝑛

𝑖
)𝑎𝑖𝑏𝑛−𝑖.

Proof: By induction note that the 𝑛 = 1 case is trivial. Then note that

(𝑎 + 𝑏)𝑛+1 = (𝑎 + 𝑏)(𝑎 + 𝑏)𝑛

= (𝑎 + 𝑏) ∑
𝑛

𝑖=0
(𝑛

𝑖
)𝑎𝑖𝑏𝑛−𝑖

= ∑
𝑛

𝑖=0
(𝑛

𝑖
)𝑎𝑖+1𝑏𝑛−𝑖 + ∑

𝑛

𝑖=0
(𝑛

𝑖
)𝑎𝑖𝑏𝑛−𝑖+1

= ∑
𝑛

𝑗=1
( 𝑛

𝑗 − 1
)𝑎𝑗𝑏𝑛−𝑗+1 + ∑

𝑛

𝑖=0
(𝑛

𝑖
)𝑎𝑖𝑏𝑛−𝑖+1

= ∑
𝑛+1

𝑖=0
(𝑛 + 1

𝑖
)𝑎𝑖𝑏𝑛+1−𝑖.

⬜

2.1.19. Proposition

Assume 𝑅 is a commutative ring, then nil(𝑅) is an ideal.

Proof: Let 𝑎, 𝑏 ∈ nil(𝑅) such that 𝑎𝑛 = 0 = 𝑏𝑚 for some 𝑛, 𝑚 > 0. Then note that (𝑎 + 𝑏)𝑚+𝑛 = 0 by the binomial
theorem, implying that 𝑎 + 𝑏 ∈ nil(𝑅). If 𝑎𝑚 = 0 and 𝑏 ∈ 𝑅 then (𝑎𝑏)𝑚 = 𝑎𝑚𝑏𝑚 = 0 such that 𝑎𝑏 ∈ nil(𝑅).
Therefore nil(𝑅) is an ideal of 𝑅.

⬜

2.1.20. Example: nil(𝑅) is not an ideal generally

Take 𝑅 = 𝑀2(ℝ) and 𝑎 = (0
0

1
0), 𝑏 = (0

1
0
0) ∈ nil(𝑅). However note that (𝑎 + 𝑏)2 = 𝐼 ∉ nil(𝑅).

Page 24 of 56



Ideals Ideals — 2.1

2.1.21. Theorem: Fraction Ring

Let 𝑅 be a ring and 𝐼  an ideal. Then 𝑅/𝐼  is a ring under the multiplication

(𝑎 mod 𝐼)(𝑏 mod 𝐼) = 𝑎𝑏 mod 𝐼.

Proof: Note it is sufficient to only show that the multiplication is well-defined since multiplication and addition are
both induced from 𝑅. Now let 𝑎 mod 𝐼 = 𝑎′ mod 𝐼, 𝑏 mod 𝐼 = 𝑏′ mod 𝐼  such that 𝑎 = 𝑎′ + 𝛼, 𝑏 = 𝑏′ + 𝛽 for some
𝛼, 𝛽 ∈ 𝐼 . Then note that

𝑎𝑏 mod 𝐼 = (𝑎′ + 𝛼)(𝑏′ + 𝛽) mod 𝐼
= (𝑎′𝑏′ + 𝛼𝑏′ + 𝑎′𝛽 + 𝛼𝛽) mod 𝐼
= 𝑎′𝑏′ mod 𝐼

since 𝛼𝑏′ + 𝑎′𝛽 + 𝛼𝛽 ∈ 𝐼  (because 𝐼  is an ideal). Thus 𝑅/𝐼  is a ring.

⬜

2.1.22. Example: Fraction Ring

i) Let 𝑅 = ℤ, 𝐼 = 𝑚ℤ then we have that 𝑅/𝐼 = ℤ𝑚.
ii) Let 𝑆 = 𝑅[𝑋], 𝐼 = ⟨𝐼⟩ then we have 𝑆/𝐼 = 𝑅 since 𝐼  is the set of all polynomials with zero constant terms.

2.1.23. Proposition

Let 𝑅 be a ring and 𝐼, 𝐽  be two ideals, then:
i) 𝐼 + 𝐽 ≔ {𝑎 + 𝑏|𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽} is an ideal;

ii) 𝐼𝐽 ≔ {𝛼1𝑎1 + ⋯ + 𝛼𝑛𝑎𝑛 | 𝛼𝑖 ∈ 𝐼, 𝑎𝑖 ∈ 𝐽} is an ideal.

Proof: Let 𝛼 ∈ 𝑅 and 𝛽 ∈ 𝐼 + 𝐽  then 𝛽 = 𝑎 + 𝑏 for some 𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽  such that 𝛼𝛽 = 𝛼𝑎 + 𝛼𝑏 ∈ 𝐼 + 𝐽  since 𝛼𝑎 ∈
𝐼, 𝛼𝑏 ∈ 𝐽 . Now let 𝛼 ∈ 𝑅 and 𝛽 ∈ 𝐼𝐽  such that 𝛽 = 𝛼1𝑎1 + ⋯𝛼𝑛𝑎𝑛 for 𝛼𝑖 ∈ 𝐼, 𝑎𝑖 ∈ 𝐽 . Then note that 𝛼𝛽 =
𝛼𝛼1𝑎1 + ⋯𝛼𝛼𝑛𝑎𝑛 ∈ 𝐼  since 𝛼𝛼𝑖 ∈ 𝐼 . Therefore, 𝐼 + 𝐽  and 𝐼𝐽  are ideals of 𝑅.

⬜

2.1.24. Remark

If 𝐼, 𝐽  are ideals of 𝑅, then 𝐼𝐽 ⊆ 𝐼, 𝐽 ⊆ 𝐼 + 𝐽 .

2.1.25. Definition: Ideal Generated by Set

Let 𝑆 = {𝑎1, …, 𝑎𝑛, …} be a possibly infinite set and let 𝑅 be a commutative ring. Then

𝐼 = {𝛼1𝑎1 + ⋯ + 𝛼𝑛𝑎𝑛 | 𝛼𝑖 ∈ 𝑅, 𝑎𝑖 ∈ 𝑆}

is an ideal generated by 𝑆. Note that 𝑆 does not need to be finite, but the sum must be finite. We write 𝐼 =
⟨𝑎1,…,𝑎𝑛,…⟩ = ⟨𝑆⟩.
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2.1.26. Example: Ideal Generated by Infinite Set

Let 𝑅 = ℤ and 𝐼 = ⟨All Primes⟩ then we have that 𝐼 = ℤ.

2.2. Ring Homomorphisms

2.2.1. Definition: Ring Homomorphism

Let 𝑓 : 𝑅 → 𝑆 be a map between two rings. Then 𝑓  is a ring homomorphism if

𝑓(𝑎 + 𝑏) = 𝑓(𝑎) + 𝑓(𝑏), 𝑓(𝑎𝑏) = 𝑓(𝑎)𝑓(𝑏)

for any 𝑎, 𝑏 ∈ 𝑅.

2.2.2. Proposition

Let 𝑓 : 𝑅 → 𝑆 be a ring homomorphism then
i) 𝑓(𝑎𝑛) = 𝑓(𝑎)𝑛;

ii) 𝑛𝑓(𝑎) = 𝑓(𝑛𝑎);
iii) 𝑓(0) = 0;
iv) ker(𝑓) is an ideal in 𝑅.

Proof: Note that (1), (2), and (3) are results of group theory. Now to show (4) let 𝑎 ∈ ker(𝑓), 𝑏 ∈ 𝑅 then 𝑓(𝑎𝑏) =
𝑓(𝑎)𝑓(𝑏) = 0 since 𝑓(𝑎) = 0. This implies 𝑎𝑏 ∈ ker(𝑓), meaning that ker(𝑓) is an ideal in 𝑅.

⬜

Lecture 11 Jan 31

2.2.3. Proposition

If 𝑓 : 𝑅 → 𝑆 is a ring homomorphism, then 𝑓(𝑅) is a subring of 𝑆.

Proof:
• 𝑓(𝑎) ⋅ 𝑓(𝑏) = 𝑓(𝑎𝑏) ∈ 𝑓(𝑅) if 𝑓(𝑎), 𝑓(𝑏) ∈ 𝑓(𝑅)
• 𝑓(1) ⋅ 𝑓(𝑎) = 𝑓(1 ⋅ 𝑎) = 𝑓(𝑎) ⇒ 𝑓(1) is the unity of 𝑓(𝑅)

⬜
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2.2.4. Proposition

Suppose that if 𝑓 : 𝑅 → 𝑆 is a ring homomorphism such that 𝑓  is an isomorphism (bijection) of sets. Then 𝑓−1 :
𝑆 → 𝑅 is also a ring homomorphism. In this case, we can say that 𝑓  is an isomorphism of rings and we say that 𝑅
and 𝑆 are isomorphic as rings. We write this 𝑅 ≈ 𝑆.

Proof: We need to show that

i) 𝑓−1(𝑎 + 𝑏) = 𝑓−1(𝑎) + 𝑓−1(𝑏)

ii) 𝑓−1(𝑎𝑏) = 𝑓−1(𝑎) ⋅ 𝑓−1(𝑏)

i) Notice

𝑓−1(𝑎 + 𝑏) = 𝑓−1(𝑎) + 𝑓−1(𝑏)

⟺ 𝑓(𝑓−1(𝑎 + 𝑏)) = 𝑓(𝑓−1(𝑎) + 𝑓−1(𝑏))

⟺ 𝑎 + 𝑏 = 𝑓(𝑓−1(𝑎)) + 𝑓(𝑓−1(𝑏))
⟺ 𝑎 + 𝑏

But 𝑓(𝑓−1(𝑎 + 𝑏)) = 𝑎 + 𝑏 = 𝑓(𝑓−1(𝑎) + 𝑓(𝑓−1(𝑏))).

ii) Notice

𝑓−1(𝑎𝑏) = 𝑓−1(𝑎) ⋅ 𝑓−1(𝑏)

⟺ 𝑓(𝑓−1(𝑎𝑏)) = 𝑓(𝑓−1(𝑎) ⋅ 𝑓−1(𝑏))

⬜

2.2.5. Remark

A ring homomorphism may not take unity to unity. For example consider 𝑆 = ℤ6 and 𝑅 = {0, 3} ↪ 𝑆 where we are
considering the inclusion map. But 3 is the unity element of 𝑅 and not the unity element of 𝑆.

2.2.6. Proposition

Suppose 𝑓 : 𝑅 → 𝑆 is a ring homomorphism which is nonzero. Assume that 𝑆 is an integral domain. Then 𝑓(1) =
1.

Proof: We claim 𝑓(1) ≠ 0. To see this, suppose 𝑓(1) = 0. Then 𝑓(𝑎) = 𝑓(1 ⋅ 𝑎) = 𝑓(1) ⋅ 𝑓(𝑎) = 0∀𝑎 ∈ 𝑅. So 𝑓 = 0,
a contradiction.

Now 𝑓(1) = 𝑓(1 ⋅ 1) = 𝑓(1)𝑓(1) ⇒ 𝑓(1) − 𝑓(1)𝑓(1) = 𝑓(1)(1 − 𝑓(1)) = 0, so 1 − 𝑓(1) = 0 ⟺ 𝑓(1) = 1 since 𝑆 is
an integral domain.

⬜
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2.2.7. Proposition

Let 𝑓 : 𝑅 → 𝑆 be a ring homomorphism and let 𝐽 ⊂ 𝑆 be an ideal. Then 𝑓−1(𝐽) is an ideal in 𝑅.

Proof: Let 𝑎 ∈ 𝑓−1(𝐽) and 𝑏 ∈ 𝑅. Then 𝑓(𝑎𝑏) = 𝑓(𝑎) ⋅ 𝑓(𝑏) ∈ 𝐽  since 𝑓(𝑎) ∈ 𝐽  and 𝑓(𝑏) ∈ 𝑆. Then 𝑓(𝑏𝑎) =
𝑓(𝑏)𝑓(𝑎) ∈ 𝐽  as well. Thus 𝑎𝑏, 𝑏𝑎 ∈ 𝑓−1(𝐽).

⬜

2.2.8. Remark

The image of an ideal under a ring homomorphism may not be an ideal. We can for example take 𝑅 = ℤ and 𝑆 = ℚ
and 𝑓 : ℤ ↪ ℚ, the inclusion map. Take 𝐼 = 𝑚ℤ where 𝑚 ≠ 0, which is an ideal in ℤ but not in ℚ.

2.2.9. Example

Let 𝐼 ⊂ 𝑅 be an ideal. Then the canonical map

𝜙 : 𝑅 ⟶ 𝑅
𝐼

𝑎 ⟼ 𝑎 (mod 𝐼) = 𝑎 + 𝐼

is a ring homomorphism.

To see this, note 𝜙(𝑎𝑏) = 𝑎𝑏 mod 𝐼 = (𝑎 mod 𝐼)(𝑏 mod 𝐼) = 𝜙(𝑎)𝜙(𝑏).

2.2.10. Proposition

Let 𝐼 ⊂ 𝑅 be an ideal and let 𝐼 ⊂ 𝐽  be an inclusion of ideals (i.e., 𝐽  is an ideal with 𝐼  a subset of it). Then 𝜙(𝐽) ⊂
𝑅
𝐼  is an ideal under the canonical map 𝜙 : 𝑅 → 𝑅

𝐼 .

Proof: Take 𝑎 ∈ 𝜙(𝐽) and 𝑏 ∈ 𝑅
𝐼 . Then ∃𝑎′ ∈ 𝐽 and 𝑏′ ∈ 𝐽 such that 𝜙(𝑎′) = 𝑎 and 𝜙(𝑏′) = 𝑏. But then 𝜙(𝑎′𝑏′) =

𝜙(𝑎′)𝜙(𝑏′) = 𝑎𝑏 ∈ 𝜙(𝐽).

⬜
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2.2.11. Theorem: First Isomorphism Theorem for Rings

Let 𝑓 : 𝑅 → 𝑆 be a ring homomorphism with kernel 𝐼 . Then ∃! injective ring homomorphism 𝑓 : 𝑅
𝐼 →

𝑆 such that is commutative (𝑓 ∘ 𝜙 = 𝑓).

Proof: Factorization of 𝑓  as 𝑓 = 𝑓 ∘ 𝜙 is shown in group theory, so we only need to show that 𝑓  is a ring
homomorphism. Thus

𝑓((𝑎 mod 𝐼)(𝑏 mod 𝐼)) = 𝑓(𝑎𝑏 mod 𝐼) ≔ 𝑓(𝑎𝑏) = 𝑓(𝑎)𝑓(𝑏) = 𝑓(𝑎 mod 𝐼)𝑓(𝑏 mod 𝐼).

⬜

Lecture 12 Feb 3

2.2.12. Lemma

Let 𝑓 : 𝐴 → 𝐵 be a ring homomorphism and let 𝐼 ⊂ 𝐴 be an ideal such that 𝐼 ⊂ ker(𝑓). Then ∃! ring
homomorphism 𝑓 : 𝐴

𝐼 → 𝐵 such that

Proof: By the previous theorem, 𝑓  factors uniquely through 𝑓 ′ : 𝐴
ker(𝑓) → 𝐵, so this is a commutative diagram:

where 𝑓 = 𝑓 ′ ∘ 𝛼.

⬜

2.2.13. Example: First Isomorphism Theorem for Rings

Consider the map

𝜙 : ℤ ⟶ ℤ[𝑖]
𝑖 − 2

𝑛 ⟼ 𝑛 (mod 𝑖 − 2)

Define the inclusion maps 𝜄 : ℤ → ℤ[𝑖] and 𝜄′ : ℤ → ℤ5. Then define 𝜙 : ℤ5 → ℤ[𝑖]
(𝑖−2)  by 𝜙 ∘ 𝜄′ = 𝜙 ∘ 𝜄.

Observe 𝜙(2) = 𝑖 since 𝑖 − 2 = 0 ⇒ 𝑖2 = 4 ⇒ 5 = 0.

Note 𝜙(5) = 5 = −(𝑖 − 2)(2 + 𝑖) ≡ 0. (We can also argue 𝑖 − 2 = 0 ⟹ 𝑖2 = 4 ⇒ 5 = 0).

Since 𝜙(2) = 𝑖, we get that 𝜙(𝑎 + 2𝑏) = 𝑎 + 𝑏𝑖∀𝑎, 𝑏 ∈ ℤ ⟹ 𝜑(𝑎 + 2𝑏) = 𝑎 + 𝑏𝑖∀𝑎, 𝑏 ∈ ℤ. Thus 𝜑 is surjective.

Recall that the kernel of a ring homomorphism is an ideal. Now since ℤ5 is a field, its only possible ideals are 0 and
ℤ5. Further, 𝜙 ≠ 0, so the kernel must be ℤ5. Thus 𝜙 is injective as well.

Thus ℤ[𝑖]
𝑖−2 ≅ ℤ5.
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2.2.14. Example

Let 𝑅 = ℤ[𝑖] and 𝐼 = ⟨𝑖 − 2⟩ then let 𝜄 : ℤ → ℤ[𝑖] and 𝜄′ : ℤ → ℤ5 be inclusions and let 𝜑 : ℤ[𝑖] → ℤ[𝑖]
⟨𝑖−2⟩  be the

canonical map 𝑎 ↦ 𝑎 mod⟨𝑖 − 2⟩. Then define 𝜑 : ℤ5 → ℤ[𝑖]
⟨𝑖−2⟩  such that 𝜑 ∘ 𝜄′ = 𝜑 ∘ 𝜄. Then note that 𝜑(2) = 𝑖 since

𝑖 − 2 = 0 therefore 𝜑(𝑎 + 2𝑏) = 𝑎 + 𝑏𝑖 such that 𝜑 is surjective. Then note that since 𝜑(5) = 5 = (𝑖 − 2)(𝑖 + 2) = 0
and ℤ5 is a field we must have that ker(𝜑) ∈ {⟨0⟩, ℤ5} and therefore ker(𝜑) = ⟨0⟩ and 𝜑 is injective. Therefore 𝜑 is a
ring isomorphism as it is trivially a ring homomorphism.

2.2.15. Example

Take 𝑅 = ℤ[𝑥]. Let 𝐼  be all polynomials with even constant term. Note that 𝐼 = (𝑥, 2).

Define 𝜙 : ℤ → ℤ[𝑥]
(𝑥,2)  by 𝜑(𝑛) = 𝑛 (mod 𝑥, 2). This gives a ring homomorphism (by the lemma). Note 𝜙 : ℤ2 ⟶ ℤ[𝑥]

(𝑥,2)
is surjective because every polynomial 𝑓(𝑥) has the form 𝑓(𝑥) = 𝑥𝑔(𝑥) + 𝐶 where 𝐶 is a constant. Thus 𝑓(𝑥) =
𝐶 (mod 𝑥) so 𝑓(𝑥) = 𝐶 (mod 𝐼) = (𝑥, 2).

So 𝜙 is injective because ℤ2 is a field. So 𝜙 is an isomorphism.

2.3. Prime Ideals and Maximal Ideals

2.3.1. Definition: Prime Ideal

Let 𝑅 be a commutative ring and 𝐼 ⊂ 𝑅 a proper ideal. Then 𝐼  is called a prime ideal if ∀𝑎, 𝑏 ∈ 𝑅, 𝑎𝑏 ∈ 𝐼 ⇒
𝑎 or 𝑏 ∈ 𝐼 .

2.3.2. Definition: Maximal Ideal

Let 𝑅 be a commutative ring and 𝐼 ⊆ 𝑅 be a proper ideal. Then 𝐼  is called a maximal ideal if for every ideal 𝐽 ⊂
𝑅 such that 𝐼 ⊆ 𝐽 , we must have either 𝐽 = 𝐼  or 𝐽 = 𝑅.
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2.3.3. Proposition

Let 𝑅 be a commutative ring and 𝐼 ⊂ 𝑅 be an ideal. Then
i) 𝐼  is prime ⇔ 𝑅

𝐼  is an integral domain
ii) 𝐼  is maximal ⇔ 𝑅

𝐼  is a field

Proof:

i) Suppose 𝐼  is a prime ideal. We need to show that 𝑅𝐼  is an integral domain. Let 𝑎, 𝑏 ∈ 𝑅
𝐼 such that 𝑎𝑏 = 0 ⇒

𝑎𝑏 (mod 𝐼) = 0 ⇔ 𝑎𝑏 ∈ 𝐼 ⇔ 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼 ⇔ (𝑎 (mod 𝐼)) = 0 or (𝑏 (mod 𝐼)) = 0.

Suppose 𝑅𝐼  is an integral domain. Let 𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑏 ∈ 𝐼 . Then 𝑎𝑏 (mod 𝐼) = 0 so (𝑎 mod 𝐼)(𝑏 mod 𝐼) =
0 ⇔

int domain
𝑎 (mod 𝐼) = 0 or 𝑏 (mod 𝐼) = 0 ⇔ 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼 .

ii) Suppose 𝐼  is a maximal ideal. We need to show 𝑅𝐼  is a field. Let 𝑎 ∈ 𝑅
𝐼  be nonzero. Let 𝑎 ∈ 𝑅 such that 𝑎 mod 𝐼 =

𝑎. Thus 𝑎 ∉ 𝐼 . Consider 𝐽 = 𝐼 + (𝑎). Since 𝑎 ∉ 𝐼, 𝐼 ⊊ 𝐽 . But 𝐼  is maximal so 𝐽 = 𝑅, so 1 = 𝛼 + 𝑏𝑎 for some 𝛼 ∈
𝐼, 𝑏 ∈ 𝑅. But this means 1 = 𝛼 (mod 𝐼) + (𝑏 mod 𝐼)(𝑎 mod 𝐼), but this implies 𝑎 ∈ (𝑅

𝐼 )×.

Suppose that 𝑅𝐼  is a field. Suppose ∃ an ideal 𝐽 ⊂ 𝑅 such that 𝐼 ⊊ 𝐽 ⊂ 𝑅, so 𝐽 mod 𝐼 ≠ 0. But 𝑅𝐼  is a field, so
𝐽
𝐼 = 𝑅

𝐼 , but this implies 𝐽 = 𝑅 (because we proved that the image of an ideal under a surjective map with certain
conditions is also a ideal.)

⬜

2.3.4. Example

If 𝑅 = ℤ and 𝐼 = 𝑚ℤ, then 𝐼  is a prime ideal if and only if 𝑚 is prime. We can see that in general, prime ideals are
generalizations of prime numbers.

2.3.5. Definition: Prime Element

Let 𝑅 be a commutative ring. The element 𝑎 ∈ 𝑅 is called a prime element if (𝑎) is a prime ideal.

2.3.6. Corollary

𝐼  is a maximal ideal implies 𝐼  is a prime ideal.

Proof: 𝐼  maximal ideal ⇔ 𝑅
𝐼  field ⇒ 𝑅

𝐼  integral domain ⇔ 𝐼 prime ideal.

Note the converse is not true, for example take 𝑅 = ℤ and 𝐼 = (0).

⬜

Lecture 13 Feb 5
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2.3.7. Proposition

𝑎 is a prime element ⇔ (𝑎 ∣ 𝑏𝑐 ⇒ 𝑎 ∣ 𝑏 or 𝑎 ∣ 𝑐)

Proof: 𝑎 is a prime element if and only if

𝑎 ∣ 𝑏𝑐
⇔ 𝑎𝛼 = 𝑏𝑐 for some 𝛼 ∈ 𝑅
⇔ 𝑏𝑐 ∈ (𝑎)
⇔ 𝑏 ∈ (𝑎) or 𝑐 ∈ (𝑎)
⇔ 𝑎𝛼 = 𝑏 or 𝑎𝛽 = 𝑐 for some 𝛼, 𝛽 ∈ 𝑅
⇔ 𝑎 ∣ 𝑏 or 𝑎 ∣ 𝑐

⬜

2.3.8. Remark

Why don’t we have a notion of maximal numbers, like the way we have a notion of prime numbers? The reason is
that in ℤ, these notions are the same, which we will show later.

2.3.9. Example: Quotient Polynomial Ring

Consider ℝ[𝑥] with 𝐼 = (𝑥2 + 1).

Define 𝜙 by 𝜙(𝑎 + 𝑏𝑖) = 𝑎 + 𝑏𝑥. Take for granted that 𝜙 is a ring homomorphism.

We claim that for all 𝑓(𝑥) ∈ ℝ[𝑥], ∃𝑎, 𝑏 ∈ ℝ such that 𝑓(𝑥) = 𝜙(𝑎 + 𝑏𝑖).

We proceed by induction on the degree of the polynomial. Let 𝑓(𝑥) ∈ ℝ[𝑥]. Our base case is if deg(𝑓) ≤ 1, then
𝑓(𝑥) = 𝑎 + 𝑏𝑥 ⇒ 𝑓(𝑥) = 𝜙(𝑎 + 𝑏𝑖) where 𝑎, 𝑏 ∈ ℝ.

If deg 𝑓 > 1, write 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑥2𝑔(𝑥), where 𝑔(𝑥) ∈ ℝ[𝑥]. Then modulo 𝐼 ,

𝑓(𝑥) mod 𝐼 = (𝑎0 + 𝑎1𝑥) − 𝑔(𝑥) mod 𝐼.

Since deg(𝑔) < deg(𝑓), ∃𝛼 ∈ ℂ such that 𝑔(𝑥) mod 𝐼 = 𝜙(𝛼). So 𝑓(𝑥) mod 𝐼 = 𝜙(𝑎 + 𝑏𝑖) − 𝜙(𝛼) = 𝜙(𝑎 + 𝑏𝑖 − 𝛼).
Thus 𝜙 is surjective. Since ℂ is a field, the kernel can only be {0} or ℂ, and it’s not trivial, so the kernel must be {0}.
Thus 𝜙 is surjective and thus an isomorphism, which means ℝ[𝑥]

𝐼  is a field. But this occurs if and only if 𝐼  is maximal
by Proposition 2.3.3.
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2.3.10. Exercise

Let 𝑅 be any commutative ring and let 𝑎 ∈ 𝑅. Define 𝜙𝑎 : 𝑅[𝑥] → 𝑅 by 𝜙𝑎(𝑓(𝑥)) = 𝑓(𝑎). We define 𝑓(𝑎) for 𝑎 ∈
𝑅 by 𝑓(𝑎) = 𝑎0 + 𝑎1𝑎 + ⋅ ⋅ ⋅ +𝑎𝑛𝑎𝑛. Check that 𝜙𝑎 is a ring homomorphism.

Solution

Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ +𝑎𝑛𝑥𝑛 and 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + ⋅ ⋅ ⋅ +𝑏𝑛𝑥𝑛, where some of the leading coefficients may be
zero. Now 𝜙𝑎(𝑓 + 𝑔) = 𝜙𝑎((𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + ⋅ ⋅ ⋅ +(𝑎𝑛 + 𝑏𝑛)𝑥𝑛) = trivial.

2.3.11. Exercise

Let 𝜙 : 𝑅[𝑥] → 𝑅 be defined by 𝜙(𝑥) = 𝑎. Also 𝜙 : 𝑅[𝑥]
𝑥−𝑎 → 𝑅 is defined by 𝜙(𝛼) = 𝛼∀𝛼 ∈ 𝑅 ⇒ 𝜙 is surjective.

Suppose 𝜙(𝑓(𝑥)) = 0 ⇒ 𝑓(𝑎) = 0. Show that 𝑥 − 𝑎 divides 𝑓(𝑥).

Solution

2.3.12. Exercise

Show 𝑅 is an integral domain ⇔ (𝑥 − 𝑎) is a prime ideal in 𝑅[𝑥]∀𝑎 ∈ 𝑅.

Solution

Let 𝑅 be an integral domain. Then let 𝑓(𝑥), 𝑔(𝑥) ∈ 𝑅[𝑥] such that 𝑓𝑔 ∈ (𝑥 − 𝑎). So 𝑓𝑔 = 0 mod 𝐼 =
(𝑓 mod 𝐼)(𝑔 mod 𝐼) and since 𝑅 is an integral domain, 𝑓 = 0 mod 𝐼  or 𝑔 = 0 mod 𝐼 .

In the other direction, let (𝑥 − 𝑎) be a prime ideal in 𝑅[𝑥]. Let 𝑓, 𝑔 ∈ 𝑅[𝑥] with 𝑓𝑔 ∈ (𝑥 − 𝑎). Then 𝑓𝑔 mod 𝐼 = 0 =
(𝑓 mod 𝐼)(𝑔 mod 𝐼) and since (𝑥 − 𝑎) is a prime ideal, at least of one of 𝑓 = 0 mod 𝐼  or 𝑔 = 0 mod 𝐼  is true.

2.3.13. Example

Let 𝑅 be a commutative ring. Then ∃! ring homomorphism 𝜙 : ℤ → 𝑅 defined by 𝜙(𝑛) = 𝑛.

If char(𝑅) = 0, then ker 𝜙 = (0), so 𝜙 is a ring. But then ℤ is a subring of 𝑅. If char(𝑅) = 𝑛 > 0, then ker 𝜙 = 𝑛ℤ.
So ℤ/𝑛 is a subring of 𝑅.

In particular, every integral domain canonically contains either ℤ or ℤ𝑝 as a subring.

2.3.14. Corollary

Every integral domain if char 𝑝 > 0 is an 𝔽𝑝 vector space.
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2.3.15. Corollary

Every field contains either ℚ or 𝔽𝑝 as a subfield.

Proof: If a field contains ℤ, it canonically contains ℚ as a subfield, because ℚ is a field of fractions of ℤ.

⬜
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3. Polynomial Reducibility

3.1. Reducibility

3.1.1. Remark

ℚ and 𝔽𝑝 are called the prime fields. ℚ is of characteristic 0 and 𝔽𝑝 is of characteristic 𝑝. Note ℚ is far easier to deal
with.

3.1.2. Definition: Irreducible

An element 𝑎 in a commutative ring 𝑅 is called irreducible if 𝑎 ∉ 𝑅× and 𝑎 = 𝑏𝑐 ⇒ 𝑏 ∈ 𝑅× or 𝑐 ∈ 𝑅×. In other
words, it is not invertible and not the product of two noninvertible elements.

3.1.3. Example

If 𝑅 = ℤ, note the group of units is 𝑅× = {1, −1}.

Thus 𝑎 is irreducible if and only if 𝑎 is prime.

Lecture 14 Feb 10

3.1.4. Proposition

Let 𝑅 be an integral domain and let 𝑎 ∈ 𝑅 be a prime element. Then 𝑎 is irreducible.

Proof: Suppose 𝑎 = 𝑏𝑐, so either 𝑎 ∣ 𝑏 or 𝑎 ∣ 𝑐 by Prop 2.3.7. If 𝑎 ∣ 𝑏, then 𝑏 = 𝑎𝛼 ⇒ 𝑏 = 𝑏𝑐𝛼 ⟹
Prop 1.5.9

1 = 𝑐𝛼 ⇒ 𝑎 =
𝑎𝛼𝑐 ⇒ 𝑎(1 − 𝛼𝑐) = 0 ⇒ 1 − 𝛼𝑐 = 0 because 𝑅 is an integral domain. Then 𝛼𝑐 = 1 ⇒ 𝑐 ∈ 𝑅×.

If 𝑎 ∣ 𝑐, then the same argument shows 𝑏 ∈ 𝑅×.

⬜

3.1.5. Definition: Reducible

Let 𝑅 be a commutative ring. Suppose 𝑎 ∈ 𝑅 \ 𝑅× and 𝑎 is not irreducible in 𝑅, that is, 𝑎 = 𝑏𝑐 ⇒ 𝑏 ∉ 𝑅× and 𝑐 ∉
𝑅×. Then we say that 𝑎 is reducible. Note this means that an element of a ring is either a unit, reducible, or
irreducible.
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3.1.6. Example: In general, irreducible ⇏ prime

Let 𝑅 = ℂ[𝑋,𝑌 ]
(𝑋2−𝑌 3) . Let 𝑎′(𝑋, 𝑌 ) be the image of 𝑎 under the surjective map

ℂ[𝑋, 𝑌 ] ⟶ 𝑅

𝑥 ⟼ 𝑥 mod(𝑋2 − 𝑌 3)

We claim that 𝑎′ is irreducible.

By contradiction, suppose 𝑎′ were reducible. Then we could write 𝑎′(𝑋, 𝑌 ) = 𝑓(𝑋, 𝑌 )𝑔(𝑋, 𝑌 ) mod(𝑋2 − 𝑌 3)
where 𝑓(𝑋, 𝑌 ) mod 𝐼  and 𝑔(𝑋, 𝑌 ) mod 𝐼  are not units. But this is the same as saying 𝑎′(𝑋, 𝑌 ) = 𝑓(𝑋, 𝑌 )𝑔(𝑋, 𝑌 ) +
ℎ(𝑋, 𝑌 )(𝑋2 − 𝑌 3) ∈ ℂ[𝑋, 𝑌 ]. But then 𝑎′(𝑋, 𝑌 ) = 𝑓(𝑋, 0)𝑔(𝑋, 0) + ℎ(𝑋, 0)𝑋2 ∈ ℂ[𝑋]. But then since 𝑓  and 𝑔
are not units

Now we show that 𝑥 is not prime in 𝑅.

𝑅
(𝑥)

= ℂ[𝑋, 𝑌 ]
(𝑋2 − 𝑌 3, 𝑥)

= ℂ[𝑌 ]
(𝑌 3)

.

In this ring, 𝑌  is a nonzero nilpotent element, so 𝑅
(𝑥)  cannot be an integral domain. Thus 𝑋 is not prime in 𝑅 by

Proposition 2.3.3.

3.1.7. Proposition

Let 𝑅 be a PID. Then an ideal 𝐼  is prime ⇔ it is a maximal ideal.

Proof: Let 𝐼  be a nonzero prime ideal. If 𝐼 = (𝑎) then 𝑎 ≠ 0. Suppose (𝑎) ⊊ (𝑏) ⇒ 𝑎 = 𝑏𝑐. But now since 𝑎 is prime
and 𝑏 ∉ (𝑎), we must have 𝑐 ∈ (𝑎). Thus 𝑐 = 𝑎𝛼 ⇒ 𝑎 = 𝑏𝑐 = 𝑏𝑎𝛼 ⇒ 𝑎(1 − 𝑏𝛼) = 0 ⇒ 𝑏𝛼 = 1 ⇒ 𝑏 ∈ 𝑅× ⇒ (𝑏) =
𝑅.

⬜

3.1.8. Proposition

Let 𝐾 be a field and 𝑅 = 𝐾[𝑥]. Notice there’s a canonical map between 𝑅 \ {0} and ℤ≥0, which is just mapping a
polynomial to its degree.

𝑓(𝑥) ∈ 𝑅 is irreducible ⇔ it can’t be written as a product of polynomials of lower (but positive) degrees.

Proof: If 𝑓  is irreducible, then clearly we can’t write it as a product of lower degree polynomials. Conversely, suppose
𝑓  is not a product of polynomials of lower degree. Suppose 𝑓 = 𝑔ℎ. This implies deg(𝑓) = deg(𝑔) + deg(ℎ). If
deg(𝑓) = deg(𝑔), then ℎ must be a constant. If deg(𝑓) = deg(ℎ), then 𝑔 must be constant.

⬜
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3.1.9. Example

Consider ℤ[𝑥] and 𝑓(𝑥) = 2𝑥2 + 4 = 2(𝑥2 + 2). Then 𝑓  is reducible.

Now consider ℚ[𝑥] and still consider 𝑓(𝑥) = 2(𝑥2 + 2). This time 𝑓  is irreducible by the previous proposition, since
we can’t break the quadratic term into two linear terms.

3.1.10. Proposition

Let 𝑅 = 𝐾[𝑥] where 𝐾 is a field. If 𝑓(𝑥) has a zero in 𝐾 , then either 𝑓(𝑥) is linear or 𝑓(𝑥) is reducible.

Proof: Look at the ring homomorphism 𝜙 : 𝑅[𝑥] → 𝐾 given by 𝜙(𝑓(𝑥)) = 𝑓(𝑎). We saw that this defines a ring
isomorphism 𝜙 : 𝐾[𝑥]

𝑥−𝑎 →
∼

𝐾 where 𝑎 ∈ 𝐾 such that 𝑓(𝑎) = 0 ⇒ 𝑓(𝑥) ≡ 0 mod(𝑥 − 𝑎) ⇒ (𝑥 − 𝑎) ∣ 𝑓(𝑥) ⇒
𝑓(𝑥) is reducible.

⬜

Lecture 15 Feb 12

3.1.11. Proposition

Suppose deg(𝑓) ∈ {2, 3}. Then 𝑓  is reducible if and only if 𝑓  has a zero.

Proof: Suppose 𝑓  is reducible. This implies 𝑓 = 𝑔ℎ, but now at least one of 𝑔 and ℎ are linear. But every linear
polynomial has a zero in the field ⇒ 𝑓  has a zero.

⬜

3.1.12. Example

i) Take 𝑅 = ℤ3[𝑥] and take 𝑓(𝑥) = 1 + 𝑥2. Notice 𝑓(0) = 1, 𝑓(1) = 2, 𝑓(2) = 2, so 𝑓  never vanishes. Thus 𝑓  is
irreducible.

This is actually the same result as this exercise, just from a different persepective.

ii) Take 𝑅 = ℤ5[𝑥]. Let 𝑓(𝑥) = 1 + 𝑥2. Notice 𝑓(0) = 1, 𝑓(1) = 2, 𝑓(2) = 5 = 0 so 𝑓(𝑥) is reducible. We can
reinterpret this as well: notice ℤ5[𝑥]

1+𝑥2 = ℤ5[𝑖].

iii) Take 𝑅 = ℚ[𝑥] and 𝑓(𝑥) = 𝑥4 + 2𝑥2 + 1. We can observe 𝑓(𝑥) = (𝑥2 + 1)2 so it is reducible, despite 𝑓  not
having any zeros in ℚ. This shows the limitations of the previous proposition.
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3.2. Polynomial Zeros

3.2.1. Theorem

Let 𝑅 = 𝐾[𝑥] where 𝐾 is a field. Let 𝑓(𝑥), 𝑔(𝑥) ∈ 𝑅[𝑋] such that 𝑔(𝑥) ≠ 0. Then ∃! polynomials
𝑞(𝑥), 𝑟(𝑥) such that 𝑓(𝑥) = 𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥) where 𝑟(𝑥) = 0 or deg(𝑟) < deg(𝑔).

Proof: Proceed by induction on deg(𝑓).
i) If deg(𝑓) < deg(𝑔), then take 𝑞 = 0 and 𝑟 = 𝑓 .

ii) If deg(𝑓) ≥ deg(𝑔), write 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ +𝑎𝑛𝑥𝑛 and write 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + ⋅ ⋅ ⋅ +𝑏𝑚𝑥𝑚. Define
𝑓1(𝑥) = 𝑓(𝑥) − 𝑏−1

𝑚 𝑎𝑛𝑥𝑛−𝑚𝑔(𝑥). Then deg(𝑓1) < 𝑛 so ∃ polynomials 𝑞1(𝑥) and 𝑟1(𝑥) such that 𝑓1(𝑥) =
𝑞1(𝑥)𝑔(𝑥) + 𝑟1(𝑥). Thus

𝑓(𝑥) = 𝑏−1
𝑚 𝑎𝑛𝑥𝑛−𝑚𝑔(𝑥) + 𝑞1(𝑥)𝑔(𝑥) + 𝑟1(𝑥) = (𝑏−1

𝑚 𝑎𝑛𝑥𝑛−𝑚 + 𝑞1(𝑥))𝑔(𝑥) + 𝑟1(𝑥).

Then we can take 𝑞(𝑥) = 𝑏−1
𝑚 𝑎𝑚𝑥𝑛−𝑚 + 𝑞1(𝑥) and 𝑟(𝑥) = 𝑟1(𝑥).

To show uniqueness, suppose 𝑓(𝑥) = 𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥) = 𝑞′(𝑥)𝑔(𝑥) + 𝑟′(𝑥) ⇒ (𝑞(𝑥) − 𝑞′(𝑥))𝑔(𝑥) = 𝑟(𝑥) −
𝑟′(𝑥). By comparing the degrees on both sides, we must have 𝑞(𝑥) − 𝑞′(𝑥) = 0 and 𝑟(𝑥) = 𝑟′(𝑥) = 0.

⬜

3.2.2. Example

Let 𝑅 = ℤ5[𝑥] and 𝑓(𝑥) = 3𝑥4 + 𝑥3 + 2𝑥2 + 1 and 𝑔(𝑥) = 𝑥2 + 4𝑥 + 1. We can divide 𝑓(𝑥) by 𝑔(𝑥) using
polynomial division while accounting for being in ℤ5, and we should get 3𝑥2 + 4𝑥 + 3 with remainder 4𝑥 − 2. Thus
overall 3𝑥4 + 𝑥3 + 2𝑥2 + 1 = (3𝑥2 + 4𝑥 + 3)(𝑥2 + 4𝑥 + 1) + (4𝑥 + 3).

3.2.3. Corollary

Suppose 𝑓(𝑥) ∈ 𝐾[𝑥] and 𝑎 ∈ 𝐾 . Then 𝑓(𝑎) = 0 ⟺ (𝑥 − 𝑎) ∣ 𝑓(𝑥).

Proof: Note the ⟸ direction is trivial. In the reverse direction, 𝑓(𝑥) = 𝑞(𝑥)(𝑥 − 𝑎) + 𝜉(𝑥) ⇒ 𝜉(𝑥) = 𝛼 ∈ 𝑅. So
𝑓(𝑥) = 𝑞(𝑥)(𝑥 − 𝑎) + 𝛼 ⇒ 0 = 𝑓(𝑎) = 𝛼 ⇒ 𝑓(𝑥) = 𝑞(𝑥)(𝑥 − 𝑎) ⇒ (𝑥 − 𝑎) ∣ 𝑓(𝑥).

⬜

3.2.4. Corollary

If 𝑓(𝑥) ∈ 𝐾[𝑥] and 𝑎 ∈ 𝐾 then 𝑓(𝑎) is the remainder for division of 𝑓(𝑥) by (𝑥 − 𝑎).

Proof: Since 𝑓(𝑥) = 𝑞(𝑥)(𝑥 − 𝑎) + 𝑟(𝑥) we have 𝑓(𝑎) = 𝑟(𝑥) ∈ 𝑅.

⬜
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3.2.5. Definition: Multiplicity

Let 𝑓(𝑥) ∈ 𝐾[𝑥] with 𝑎 ∈ 𝐾 . Suppose 𝑓(𝑎) = 0. Then the multiplicity of 𝑎 as a zero of 𝑓(𝑥) is the largest integer
such that (𝑥 − 𝑎)𝑛 ∣ 𝑓(𝑥).

3.2.6. Proposition

Let 𝐾 be a field. If deg(𝑓) = 𝑛 ∧ 𝑓 ≠ 0 in 𝐾[𝑥], then 𝑓  has at most 𝑛 zeros counting multiplicity.

Proof: Suppose 𝑓(𝑎) = 0. Then 𝑓 = 𝑔(𝑥)(𝑥 − 𝑎) by Corollary 2.5.3. By induction, 𝑔 has at most 𝑛 − 1 zeros. And
zeros of 𝑓 ⊆ {zeros of 𝑓} ∪ {𝑎}.

⬜

Lecture 16 Feb 14

3.2.7. Example

If 𝐾 = ℂ and 𝑓(𝑥) = 𝑥𝑛 − 1 then write 𝜔 = cos(2𝜋
𝑛 ) + 𝑖 sin(2𝜋

𝑛 ) ∈ ℂ. So 𝜔𝑛 = cos((2𝜋 ⋅ 𝑛)𝑛) + 𝑖 sin(2𝜋⋅𝑛
𝑛 ) = 1 ⟹

(𝜔𝑖)𝑛 = (𝜔𝑛)𝑖 = 1 ⟹ 𝑓(𝜔𝑖) = 0 for 0 ≤ 𝑖 ≤ 𝑛 − 1. By the theorem, roots of 𝑓  are {𝜔𝑖 : 0 ≤ 𝑖 ≤ 𝑛 − 1} ≅ ℤ𝑛.
THese are called the 𝑛th roots of unity, and 𝜔 is called a primitive root of unity.

3.3. Primitives

3.3.1. Remark

We now spend some time considering the following commutative diagram:

3.3.2. Definition: Primitive

Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ +𝑎𝑛𝑥𝑛 ∈ ℤ[𝑥]. Let

cont(𝑓) = content of 𝑓 = gcd(|𝑎0|, …, |𝑎𝑛|) ∈ ℤ≥1

We say that 𝑓  is primitive if cont(𝑓) = 1. In general, 𝑓 = cont(𝑓)𝑓 ′ where 𝑓 ′ is primitive.

3.3.3. Lemma: Gauss’s Lemma

The product of primitive polynomials is primitive.

Proof: Let ℎ = 𝑓𝑔 where 𝑓  and 𝑔 are primitive. Suppose ℎ is not primitive. Then ∃𝑝 a prime such that 𝑝 ∣ ℎ.

We will write 𝑓 = 𝑓 mod 𝑝. Then ℎ = 0 ⟹ 𝑓𝑔 = 0 ⟹ 𝑓 = 0 or 𝑔 = 0 so either 𝑝 ∣ cont(𝑓) or 𝑝 ∣ cont(𝑔). ⟹⟸

⬜
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3.3.4. Proposition

Let 𝑓(𝑥) ∈ ℤ[𝑥] be a nonconstant polynomial. Suppose 𝑓  is primitive. Suppose 𝑓  is reducible over ℚ. Then 𝑓  is
reducible over ℤ.

Proof: Suppose 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) where 𝑔(𝑥), ℎ(𝑥) ∈ ℚ[𝑥]. By clearing the denominators of the coefficients of 𝑔 and
ℎ, we get that 𝑎𝑔(𝑥), 𝑏ℎ(𝑥) ∈ ℤ[𝑥] for some 𝑎, 𝑏 ∈ ℤ>0. Then we get 𝑎𝑏𝑓(𝑥) = 𝑎𝑔(𝑥)𝑏ℎ(𝑥) = 𝑐1𝑔′(𝑥)𝑐2ℎ′(𝑥) where
𝑔′, ℎ′ are primitive. Thus 𝑎𝑏𝑓(𝑥) = (𝑐1𝑐2)𝑔′(𝑥)ℎ′(𝑥).

We claim that cont(𝑎𝑏𝑓) = 𝑎𝑏 (shown by below exercise). Thus cont(𝑎𝑏𝑓) = cont(𝑐1𝑐2𝑔′(𝑥)ℎ′(𝑥)) ⟹ 𝑎𝑏 = 𝑐1𝑐2.
Thus 𝑓(𝑥) = 𝑔′(𝑥)ℎ′(𝑥) ⟹ 𝑓 is reducible over ℤ.

⬜

3.3.5. Exercise

Let 𝑎0, …, 𝑎𝑛 ∈ ℤ where gcd(𝑎0, …, 𝑎𝑛) = 1. Then if 𝑏 ∈ ℤ we have gcd(𝑏𝑎0, …, 𝑏𝑎𝑛) = 𝑏.

Solution

3.3.6. Example

Take 𝑓(𝑥) = 6𝑥2 + 𝑥 − 2. Note by the Quadratic Formula, the roots are given by

𝛼 = −1 ±
√

1 + 2 ⋅ 4 ⋅ 6
12

= −1 ± 7
12

= 1
2
, −2

3
.

Thus 𝑓(𝑥) = 6(𝑥 − 1
2)(𝑥 + 2

3), so 𝑓(𝑥) is reducible over ℤ by the previous proposition.

3.3.7. Example

Consider 𝑓(𝑥) = 2𝑥2 + 2 = 2(𝑥2 + 1). This is reducible over ℤ and irreducible over ℚ (since 2 is a unit in ℚ but not
in ℤ).

3.3.8. Proposition

Suppose that 𝑓(𝑥) ∈ ℤ[𝑥] is a monic polynomial. If 𝑓  is irreducible over ℚ, then it is irreducible over ℤ.

Proof: Suppose 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥). Then this gives a factorization of 𝑓  over ℚ as well.

⬜
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3.3.9. Theorem

If 𝐾 is a field, then 𝐾[𝑥] is a PID. (Converse of Theorem 2.1.12.)

Proof: Let 𝐼 ⊆ 𝐾[𝑥] be an ideal. If 𝐼 = (0), we have nothing to prove. Thus we can assume 𝐼 ≠ 0. Let 𝑔(𝑥) ∈ 𝐼  be a
polynomial of smallest degree in 𝐼 . Now take any 𝑓(𝑥) ∈ 𝐼 . We have 𝑓(𝑥) = 𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥) where 𝑟(𝑥) = 0 and
deg(𝑟) < deg(𝑔). If 𝑟(𝑥) ≠ 0, then we get a contradiction because 𝑟(𝑥) ∈ 𝐼  and deg(𝑟) < deg(𝑔).

⬜

3.4. Reducibility with ℤ𝑝

Lecture 17 (Jesse transcribed) Feb 19

3.4.1. Theorem

Suppose 𝑓(𝑋) ∈ ℤ[𝑋] is a polynomial of positive degree and 𝑝 is prime such that deg(𝑓) = deg(𝑓). Then if 𝑓  is
irreducible over ℤ𝑝 we have that 𝑓  is irreducible over ℤ.

Proof: 𝑓(𝑋) = 𝑎𝑓 ′(𝑋) where 𝑓 ′ is primitive. Seeking a contradiction let 𝑓(𝑋) be reducible over ℚ. We have that 𝑓
is irreducible over ℤ𝑝 if and only if 𝑓 ′ is irreducible over ℤ𝑝 since 𝑎 ∈ ℤ×

𝑝 . So without loss of generality let 𝑓  be
primitive. Since 𝑓  is reducible over ℚ we must have 𝑓  is reducible over ℤ. So 𝑓 = 𝑔ℎ where deg(𝑔), deg(ℎ) < deg(𝑓).
𝑓 = deg(𝑔) deg(ℎ) so 𝑓  is reducible over ℤ𝑝 which is a contradiction. Therefore 𝑓  must be irreducible over ℤ.

⬜

3.4.2. Example: Reducible over ℤ and irreducible over ℤ2

Let 𝑓(𝑋) = (2𝑋 + 1)(𝑋 + 1) ∈ ℤ[𝑋]. 𝑓  is clearly reducible in ℤ but 𝑓 = 𝑋 + 1 ∈ ℤ2[𝑋].
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3.4.3. Proposition

𝑓(𝑋) = 𝑋4 + 1 is reducible over ℤ𝑝 for any 𝑝.

Proof: First let 𝑝 = 2 then (𝑋4 + 1) = (𝑋2 + 1)2 ∈ ℤ2[𝑋]. Now let 𝑝 ≠ 2 and consider the following:

(Case 1) Assume there exists some 𝑎 ∈ ℤ𝑝 such that 𝑎2 = 2 then

(𝑋2 + 𝑎𝑋 + 1)(𝑋2 − 𝑎𝑋 + 1) = (𝑋2 + 1)2 − (𝑎𝑋)2

= 𝑋4 + 2𝑋 + 1 − (𝑎𝑋)2

= 𝑋4 + 1.

(Case 2) Now let there exists some 𝑎 ∈ ℤ𝑝 such that 𝑎2 = −2 then

(𝑋2 + 𝑎𝑋 − 1)(𝑋2 − 𝑎𝑋 − 1) = (𝑋2 − 1)2 − (𝑎𝑋)2

= 𝑋4 − 2𝑋 + 1 − (𝑎𝑋)2

= 𝑋4 + 1.

(Case 3) Finally assume there exists 𝑎 ∈ ℤ𝑝 such that 𝑎2 = −1 then

(𝑋2 + 𝑎)(𝑋2 − 𝑎) = 𝑋4 − 𝑎2 = 𝑋4 + 1.

Thus it is sufficient to show that for any 𝑝 ≠ 2 there exists some 𝑎 ∈ ℤ𝑝 such that 𝑎2 ∈ {−1, ±2}.

3.4.4. Lemma

Let 𝑝 be any prime then there exists some 𝑎 ∈ ℤ𝑝 such that 𝑎2 ∈ {−1, ±2}.

Proof: If 𝑝 = 2 then 1 = −1 so 12 = (−1)2 = ±1. Now let 𝑝 ≠ 2 and consider the map 𝜃 : ℤ×
𝑝 → ℤ×

𝑝  where
𝜃(𝑎) = 𝑎2 defines a group homomorphism. Note that

ker(𝜃) = {𝑎 ∈ ℤ𝑝 | 𝑎 = ±1}

such that | ker(𝜃)| = 2. Let 𝐻 = Im(𝜃) then [ℤ×
𝑝 : 𝐻] = 2. Suppose −1, 2 ∉ 𝐻  then we have that (−1)𝐻 = 2𝐻

so (−1)2𝐻 = (−2)𝐻 = 𝐻 . Thus we have that −2 ∈ 𝐻 .

⬜

Thus it follows that 𝑓(𝑋) is reducible over ℤ𝑝.

⬜

3.4.5. Definition: Eisenstein Polynomial

Let 𝑓(𝑋) = 𝑎0 + ⋯ + 𝑎𝑛𝑋𝑛 ∈ ℤ[𝑋]. 𝑓(𝑋) is an Eisenstein polynomial if there exists some prime 𝑝 such that 𝑝 ∤ 𝑎𝑛,
𝑝 ∣ 𝑎𝑖 for 𝑖 < 𝑛, and 𝑝2 ∤ 𝑎0. If the conditions are satisfied we say that 𝑓  is 𝑝-Eisenstein.

Page 42 of 56



Polynomial Reducibility Reducibility with ℤ𝑝 — 3.4

3.4.6. Example: Eisenstein Polynomial

Let 𝑓(𝑋) = 𝑋3 + 5𝑋2 + 15𝑋 + 5 is 5-Eisenstein.

3.4.7. Proposition

𝑓(𝑋) = 𝑋4 + 1 is irreducible over ℤ.

Proof: 𝑓(𝑋) = 𝑋4 + 1 is irreducible if 𝑓(𝑋 + 1) is irreducible. We have

𝑓(𝑋 + 1) = 𝑋4 + 4𝑋3 + 6𝑋2 + 4𝑋 + 2

which is 𝑝-Eisenstein and therefore is irreducible in ℚ by previous theorem. Since 𝑓  is a monic polynomial this
implies 𝑓  is irreducible over ℤ.

⬜

3.4.8. Example: Irreducible in ℤ𝑝 implies irreducible in ℤ

Let 𝑓(𝑋) = 21𝑋3 − 3𝑋2 + 2𝑋 + 8 ∈ ℤ[𝑋]. Then note that deg(𝑓 mod 2), deg(𝑓 mod 3) ≠ deg(𝑓). However
consider 𝑓 = 𝑓 mod 5 since

𝑓(𝑋) = 𝑋3 + 2𝑋2 + 2𝑋 + 3

such that deg(𝑓) = deg(𝑓). Then note 𝑓(𝑋) ≠ 0 for any 𝑋 ∈ ℤ5 such that 𝑓  is irreducible in ℤ5 implying that 𝑓  is
irreducible over ℤ.

Lecture 18 Feb 21
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3.4.9. Theorem

Eisenstein polynomials are irreducible over ℚ.

Proof: Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ +𝑎𝑛𝑥𝑛. Suppose that 𝑓  is reducible over ℚ by Proposition 2.6.8. Then 𝑓  is
reducible over ℤ, and we can write 𝑓 = 𝑐𝑓 ′ where 𝑐 = cont(𝑓) and 𝑓 ′ is primitive. Thus 𝑓 ′ is reducible over ℤ by
Proposition 2.6.4.

Now we can write 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) where 1 ≤ deg(𝑔), deg(ℎ) < 𝑛. Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅= 𝑎𝑛𝑥𝑛 and write
𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + ⋅ ⋅ ⋅ +𝑏𝑟𝑥𝑟 and ℎ(𝑥) = 𝑐0 + 𝑐1𝑥 + ⋅ ⋅ ⋅ +𝑐𝑠𝑥𝑠. Thus we have 𝑎0 = 𝑏0𝑐0 and 𝑎𝑛 = 𝑏𝑟𝑐𝑠.

3.4.10. Lemma

Let 𝑓(𝑥) = ∑
𝑛

𝑖=0
𝑎𝑖𝑥𝑖 be an Eisenstein polynomial. Let 𝑐 = cont(𝑓). Write 𝑓(𝑥) = 𝑐𝑔(𝑥), where 𝑔(𝑥) is a

primitive polynomial. Then 𝑔(𝑥) is also Eisenstein.

Proof: Write 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + ⋅ ⋅ ⋅ +𝑏𝑛𝑥𝑛. Then 𝑎𝑖 = 𝑐𝑏𝑖∀𝑖. Notice 𝑝 ∤⇒ 𝑝 ∤ 𝑏𝑛 and 𝑝 ∤ 𝑐. If 𝑝 ∣ 𝑎𝑖 = 𝑐𝑏𝑖 ⇒
𝑝 ∣ 𝑏𝑖∀𝑐 < 𝑛. Finally, if 𝑝2 ∣ 𝑏𝑐 ⇒ 𝑝2 ∣ 𝑎0 = 𝑐𝑏0 ⟹⟸.

⬜

i) Since 𝑝 ∣ 𝑎0 but 𝑝2 ∤ 𝑎0, it must divide either 𝑏0 or 𝑐0 but not both.
ii) We also have 𝑝 ∤ 𝑎𝑛 = 𝑏𝑟𝑐𝑠, so 𝑝 ∤ 𝑏𝑟 and 𝑝 ∤ 𝑐𝑠. Thus there exists a positive integer 𝑡 such that 𝑝 ∣ 𝑏𝑡.

iii) Look at

𝑎𝑙 = 𝑏𝑡𝑐0 + (𝑏𝑡−1𝑐1 + ⋅ ⋅ ⋅ +𝑏1𝑐𝑡−1 + 𝑏0𝑐𝑡) = 𝑏𝑡𝑐0 + 𝛼.

Then 𝑝 ∣ 𝛼 since 𝑝 ∣ 𝑏𝑖∀𝑖 < 𝑡, but 𝑝 ∣ 𝑎𝑡 since 𝑡 ≤ 𝑟 < 𝑛 so 𝑝 ∣ 𝑏𝑡𝑐0, but 𝑝 ∤ 𝑏𝑡 and 𝑝 ∤ 𝑐0. Contradiction.

⬜

3.4.11. Example

Consider the Eisenstein polynomial 𝑥4 + 4𝑥3 + 6𝑥2 + 4𝑥 + 2/ This is irreducible over ℤ because it’s Eisenstein, so
it’s reducible mod 𝑝 for all 𝑝.

Note the above theorem is to have an additional criterion for irreducibility in addition to Theorem 2.6.10, for example.

We might think that this is a very special case unlikely to come up, but we can easily construct Eisenstein
polynomials, which shows important examples. For example, consider the following corollary.

3.4.12. Corollary

There exists an irreducible polynomial over ℤ of every degree: 𝑓(𝑥) = 𝑥𝑛 + 𝑝.
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3.4.13. Proposition

Let 𝑝 be a prime. Consider 𝜙𝑝(𝑥) = 1 + 𝑥 + ⋅ ⋅ ⋅ +𝑥𝑝−1 ∈ ℤ[𝑥]. We claim 𝜙𝑝(𝑥) is irreducible over ℤ.

Proof: Notice 𝜙𝑝(𝑥) = 𝑥𝑝−1
𝑥−1 . Note this isn’t necessarily defined in ℤ[𝑥], so we instead work in the field of fractions of

ℤ[𝑥], the smallest ring where polynomial division is defined. Then we proceed as follows:

𝜙𝑝(𝑥 + 1) = (𝑥 + 1)𝑝 − 1
𝑥 + 1 − 1

=
𝑥𝑝 + (𝑝

1)𝑥𝑝−1 + ⋅ ⋅ ⋅ +( 𝑝
𝑝−1)𝑥 + 1 − 1

𝑥
= 𝑥𝑝−1 + 𝑝𝑥𝑝−2 + ⋅ ⋅ ⋅ +(𝑝

2)𝑥 + 𝑝 ∈ ℤ[𝑥].

This is an Eisenstein polynomial so it is irreducible.

⬜

3.4.14. Remark

These polynomials are called cyclotomic polynoimals.

3.4.15. Example

Consider 𝑓(𝑥) = 𝑥3 − 3𝑥 − 1.

3.4.16. Proposition: Rational Root Test

Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ +𝑎𝑛−1𝑥𝑛−1 + 𝑥𝑛 ∈ ℤ[𝑥]. Suppose that 𝑓(𝑚) ≠ 0∀𝑚 such that 𝑚 ∣ 𝑎0. Then 𝑓  has
no zeros in ℚ.

Proof: Suppose by contradiction ∃𝑞 = 𝑟
𝑠 such that 𝑓(𝑞) = 0. We can assume (𝑟, 𝑠) = 1 and 𝑠 ≥ 1.

Then 𝑓(𝑞) = 0 ⇔ 𝑎0 + 𝑎1
𝑟
𝑠 + ⋅ ⋅ ⋅ +𝑎𝑛−1(𝑟

𝑠)𝑛−1 + (𝑟
𝑠)𝑛 = 0. Thus 𝑟𝑛 + 𝑎𝑛−1𝑟𝑛−1𝑠 + ⋅ ⋅ ⋅ +𝑎1𝑟𝑠𝑛−1 + 𝑎𝑛𝑠𝑛 = 0. So

𝑟𝑛 = −(𝑎𝑛−1𝑟𝑛−1 + ⋅ ⋅ ⋅ +𝑎1𝑟𝑠𝑛−2 + 𝑎0𝑠𝑛−1)𝑠. Since (𝑟, 𝑠) = 1, we have 𝑠 = 1. Then 𝑓(𝑟) = 0 ⇒ 𝑟𝑛 + 𝑎𝑛−1𝑟𝑛−1 +
⋅ ⋅ ⋅ +𝑎1𝑟 + 𝑎0 = 0 ⇒ 𝑟(𝑟𝑛−1 + 𝑎𝑛−1𝑟𝑛−2 + ⋅ ⋅ ⋅ +𝑎1) = −𝑎0. So 𝑟 ∣ 𝑎0, a contradiction.

⬜

3.4.17. Proposition

Let 𝑅 be a PID and let 𝑓 ∈ 𝑅 be irreducible. Then (𝑓) is a maximal ideal.

Proof: Suppose ∃𝐽 ⊆ 𝑅 is an ideal such that (𝑓) ⊆ 𝐽 = (𝑔), so 𝑔 ∣ 𝑓 . So either 𝐽 = 𝑅 or 𝐽 = (𝑓) because 𝑓  is
irreducible.

⬜

Lecture 19 Feb 24
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3.4.18. Proposition

Let 𝐾 be a field and 𝑅 = 𝐾[𝑋]. We are interested in irreducible polynomials.

Let 𝐴 be any PID and 𝑎 ≠ 0 in 𝐴. The following are equivalent
• 𝑎 is irreducible
• (𝑎) is a prime ideal
• (𝑎) is a maximal ideal

Also, if 𝑎 is irreducible, then 𝑎 ∣ 𝑏𝑐 ⟹ 𝑎 ∣ 𝑏 or 𝑎 ∣ 𝑐.

Proof:

⬜

3.5. Field Extensions

3.5.1. Definition: Field Extension

𝐾′ is a field extension of 𝐾 if 𝐾 ⊆ 𝐾′. If deg(𝐾′

𝐾 ) = dim𝐾(𝐾′) is finite, then it is called a finite field extension.
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3.5.2. Corollary

𝑓(𝑥) ∈ 𝐾[𝑥] is irreducible ⟺ 𝐾[𝑥]
𝑓(𝑥)  is a finite field extension of 𝐾 of degree deg(𝑓). Furthermore, if 𝑓  is

irreducible, then 𝐾′ is the smallest field extension of 𝐾 which contains a root of 𝑓(𝑋).

Proof: It is clear from the previous proposition that 𝑓(𝑥) is irreducible ⟺ 𝐾′ = (𝐾[𝑥]
𝑓(𝑥) ) is a field (because 𝐾[𝑋] is a

PID). Look at 𝑘 → 𝐾[𝑥], 𝑘 → 𝑘[𝑥]
(𝑓(𝑥)) = 𝑘′, 𝑘[𝑥] ↠ 𝑘[𝑥]

𝑓(𝑥) = 𝑘′.

3.5.3. Remark

Recall that we saw that a field could be a vector space over itself. We can consider 𝐾′ as a vector space over 𝐾
and find a basis, as the following shows.

3.5.4. Proposition

Suppose 𝑓(𝑥) is irreducible. Consider 𝑘 ⟶ 𝑘[𝑥]
𝑓(𝑥) = 𝑘′. We claim that {1, 𝑥, …, 𝑥𝑛−1} is a 𝐾-basis of 𝐾′ if

deg(𝑓) = 𝑛 (note 𝑥 = 𝑥 mod 𝑓(𝑥)).

Proof: If 𝑔(𝑥) ∈ 𝐾[𝑥], then 𝑔(𝑥) = 𝑞(𝑥)𝑓(𝑥) + 𝑟(𝑥) where deg(𝑟(𝑥)) < 𝑛. Thus 𝑔(𝑥) mod 𝑓(𝑥) =
𝑟(𝑥) mod 𝑓(𝑥). But 𝑟(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ +𝑎𝑛−1𝑥𝑛−1 ⟹ 𝑆 generates 𝐾′ as a 𝐾 vector space. On the other
hand, 𝑎𝑛 + 𝑎𝑛−1𝑥 + ⋅ ⋅ ⋅ +𝑎𝑛−1𝑥𝑛−1 = 0 in 𝐾′. This implies 𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ +𝑎𝑛−1𝑥𝑛−1 = ℎ(𝑥)𝑓(𝑥) ∈ 𝐾[𝑥].
Thus 𝑎𝑖 = 0∀𝑖 ⇒ 𝑆 is linearly independent.

⬜

Since 𝑓(𝑥) = 0 in 𝐾′, we see that 𝑥 ∈ 𝐾′ is a root of 𝑓(𝑥). Suppose 𝐿 is a field extension of 𝐾 in which 𝑓  has a root,
say 𝑎 ∈ 𝐿. Consider 𝜙 : 𝐾[𝑥] ⟶ 𝐿 defined by 𝜙(𝑥) = 𝑎 (and 𝜙 is the identity on 𝐾). Since 𝑓(𝑎) = 𝜙(𝑓) = 0, this
map uniquely factors as 𝑘 ↪ 𝐿 and 𝑘 ↪ 𝐾′ and 𝐾′ ↪ 𝐿. So this is the smallest field in which it has a root.

⬜

3.5.5. Remark

The above shows why we care about irreducible polynomials. It is the condition we need to get a root, and many
topics in math eventually boil down to doing that.

3.5.6. Example: Field of order 4

Consider ℤ2[𝑥] and 𝑓(𝑥) = 𝑥2 + 𝑥 + 1. Observe this polynomial is irreducible by the Root Test. Consider ℤ2[𝑥]
𝑓(𝑥) = 𝐾′

is a field extension of ℤ2 of degree 2, so |𝐾′| = 4.

3.5.7. Example: Field of order 8

Consider ℤ2[𝑥] and 𝑓(𝑥) = 𝑥3 + 𝑥 + 1. Observe it’s again irreducible by the Root Test. Then 𝐾′ = ℤ2[𝑥]
𝑓(𝑥)  is a field

extension of ℤ2 of degree 3. So |𝐾′| = 23 = 8.
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3.5.8. Example: Field of order 9

Consider ℤ2[𝑥] and 𝑓(𝑥) = 𝑥2 + 1 ∈ ℤ3[𝑥]. Then 𝐾′ = 𝐾[𝑥]
𝑓(𝑥)  is a field extension of ℤ3 of degree 2, so |𝐾′| = 32 = 9.

3.5.9. Remark

A natural question to ask is whether there exists a field of every prime power. It turns out there is, but constructing
one is difficult and outside the scope of this class.
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4. Important Classes of Rings

4.1. Euclidean Domains

4.1.1. Remark

Recall the ring of Gaussian integers ℤ[𝑖], and how it had two copies of ℤ. Recall ℤ was a PID, but what can we say
about ℤ[𝑖]?

4.1.2. Definition: Euclidean Domain

Let 𝑅 be an integral domain. We say that 𝑅 is a Euclidean domain (ED) if ∃ a norm 𝑁 : 𝑅 → ℤ (a function such
that 𝑁(0) = 0) such that ∀𝑎, 𝑏 ∈ 𝑅 with 𝑏 ≠ 0, ∃𝑞, 𝑟 ∈ 𝑅 such that 𝑎 = 𝑞𝑏 + 𝑟 with 𝑟 = 0 ∨ 𝑁(𝑟) < 𝑁(𝑏).

4.1.3. Exercise

The norm is multiplicative.

Solution

4.1.4. Example

i) Every field is a Euclidean domain with respect to the trivial norm. If 𝑎, 𝑏 ∈ 𝐾 and 𝑏 ≠ 0, 𝑎 = (𝑏−1𝑎)𝑏.

ii) 𝑅 = ℤ and 𝑁(𝑎) = |𝑎|, so ℤ is an ED.

iii) 𝐾 is a field and 𝑅 = 𝐾[𝑥]. If 𝑁(𝑓(𝑥)) = deg(𝑓(𝑥)), then 𝑅 is a Euclidean domain by the division algorithm.

4.1.5. Example

People wondered whether a PID was also a Euclidean domain, but the following counterexample shows this is false.
𝑥2 + 𝑥 + 5 ∈ ℤ[𝑥]

Lecture 20 Feb 26
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4.1.6. Theorem

ℤ[𝑖] is an ED.

Proof: ℤ[𝑖] ⊆ ℂ and observe 𝑁(𝑎 + 𝑏𝑖) = |𝑎 + 𝑏𝑖|2 = 𝑎2 + 𝑏2. So 𝑁(𝛼) = 0 ⇔ 𝛼 = 0. If we take 𝛼 = 𝑎 + 𝑏𝑖 and
𝛽 = 𝑐 + 𝑑𝑖 ≠ 0, we get

𝛼𝛽−1 = 𝑎 + 𝑏𝑖
𝑐 + 𝑑𝑖

= (𝑎 + 𝑏𝑖)(𝑐 − 𝑑𝑖)
𝑁(𝛽)

= 𝑎𝑐 + 𝑏𝑑
𝑁(𝛽)

+ 𝑏𝑐 − 𝑎𝑑
𝑁(𝛽)

𝑖 = 𝑟 + 𝑠𝑖 ∈ ℚ[𝑖].

Note we had to step out of ℤ[𝑖] to get this to work.

Now by rounding, choose 𝑝 and 𝑞 such that |𝑟 − 𝑝| ≤ 1
2  and |𝑠 − 𝑞| ≤ 1

2 . Then

𝛼𝛽−1 = 𝑟 + 𝑠𝑖 = (𝑟 − 𝑝 + 𝑝) + (𝑠 − 𝑞 + 𝑞)
= [𝑝 + 𝑞𝑖] + [(𝑟 − 𝑝) + (𝑠 − 𝑞)𝑖]
⟹ 𝛼 = (𝑝 + 𝑞𝑖)𝛽 + [(𝑟 − 𝑝) + (𝑠 − 𝑞)𝑖]𝛽
⟹ 𝛼 = 𝑡𝛽 + 𝑡′

where 𝑡 = 𝑝 + 𝑞𝑖 and 𝑡′ = [(𝑟 − 𝑝) + (𝑠 − 𝑞)𝑖]𝛽. Now observe 𝑡, 𝛼, 𝛽 ∈ ℤ[𝑖], which implies 𝑡′ ∈ ℤ[𝑖].

It remains to show 𝑁(𝑡′) < 𝑁(𝛽). Observe 𝑁(𝑡′) = 𝑁(𝛽)𝑁((𝑟 − 𝑝) + (𝑠 − 𝑞)𝑖). But 𝑁((𝑟 − 𝑝) + (𝑠 − 𝑞)𝑖) =
(𝑟 − 𝑝)2 + (𝑠 − 𝑞)2 ≤ 1

4 + 1
4 = 1

2 ⟹ 𝑁(𝑡′) ≤ 𝑁(𝛽)
2 < 𝑁(𝛽).

⬜

4.1.7. Remark

We just saw that ℤ[𝑖] is a Euclidean domain. Now what about ℤ[2𝑖] = {𝑎 + 2𝑏𝑖 : 𝑎, 𝑏 ∈ ℤ}?

It seems simple, but this is difficult question, since how can we know we can’t find a norm? We must develop the
theory further first.

4.1.8. Theorem

Every Euclidean domain is a PID. (The converse is false due to Example above).

Proof: Let 𝐼 ⊆ 𝑅 be an ideal. If 𝐼 = (0), there is nothing to prove. If 𝐼 ≠ (0), there is an element 𝑎 ∈ 𝐼  (𝑎 ≠ 0) of
smallest norm.

Let 𝑏 ∈ 𝐼 . Then we can find 𝑞, 𝑟 ∈ 𝑅 such that 𝑏 = 𝑞𝑎 + 𝑟 with 𝑟 = 0 or 𝑁(𝑟) < 𝑁(𝑎). If 𝑟 = 0 we are done, and
otherwise 𝑟 ∈ 𝐼  and 𝑁(𝑟) < 𝑁(𝑎), contradiction. Thus 𝑎 ∣ 𝑏 ⇒ 𝐼 = (𝑎).

⬜
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4.1.9. Exercise

ℤ[2𝑖] is generated by the ideal 𝐼 = (2, 2𝑖), and is thus not an integral domain.

Solution

4.2. Unique Factorization Domains

4.2.1. Definition: Associate

If 𝑎 = 𝑢𝑏 with 𝑢 ∈ 𝑅×, then 𝑎 and 𝑏 are associates.

4.2.2. Definition: Unique Factorization Domain (UFD)

Let 𝑅 be an integral domain. We say that 𝑅 is a Unique Factorization Domain if every nonzero element 𝑎 which is
not a unit has the following two properties:
i) 𝑎 can be written as a finite product of irreducible elements, i.e., 𝑎 = 𝑝1 ⋅ ⋅ ⋅ 𝑝𝑛 where 𝑝𝑖’s are irreducible.

ii) This factorization of 𝑎 is unique in the sense that if 𝑎 = 𝑞1 ⋅ ⋅ ⋅ 𝑞𝑚 with 𝑞𝑖’s irreducible, then 𝑚 = 𝑛 and up to
renumbering, 𝑞𝑖 is an associate of 𝑝𝑖.

4.2.3. Example

i) Every field is a UFD (since every nonzero element is a unit, making it vacuously true).
ii) 𝑅 = ℤ

iii) What about 𝑅 = 𝐾[𝑋]? We will come back to this.
iv) 𝑅 = ℤ[𝑖] is an example.
iv) 𝑅 = ℤ[2𝑖] is not an example.

To see this, observe that 4 = 2 ⋅ 2 = (2𝑖)(−2𝑖). We will show these elements are irreducible. Suppose (𝑎 +
2𝑏𝑖)(𝑎′ + 2𝑏′𝑖) = 2 ⟹ (𝑎𝑎′ − 4𝑏𝑏′) + 2(𝑎𝑏′ + 𝑎′𝑏)𝑖 = 2, so 𝑎𝑎′ − 4𝑏𝑏′ = 2 ⇒ 2 ∣ 𝑎𝑎′, so either 2 ∣ 𝑎 or 2 ∣ 𝑎′.
First suppose 2 ∣ 𝑎 ⇔ 𝑎 = 2𝑐. Then we get (2𝑐 + 2𝑏𝑖)(𝑎′ + 2𝑏′𝑖) = 2 ⇒ 2(𝑐 + 𝑏𝑖)(𝑎′ + 2𝑏′𝑖) = 2 ⇒ (𝑐 +
𝑏𝑖)(𝑎′ + 2𝑏′𝑖) = 1 ⇒ 𝑎′ + 2𝑏′𝑖 ∈ 𝑅×.

Similarly, if 2 ∣ 𝑎′, then 𝑎′ + 2𝑏𝑖 ∈ 𝑅×, so 2 is irreducible.
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4.2.4. Proposition

2 ∈ ℤ[2𝑖] is not a prime.

Proof:

ℤ[2𝑖] = ℤ[𝑥]
𝑥2 + 4

⇒ ℤ[2𝑖]
(2)

= ℤ2[𝑥]
(𝑥2 + 4)

= ℤ2[𝑥]
(𝑥2)

(where we just modded by 2 on both sides, and then observed 4 = 0 now).

This is not an integral domain since 𝑥 ⋅ 𝑥 = 0, which shows 2 is not a prime by Proposition 2.3.3.

⬜

Lecture 21 Feb 28

4.2.5. Proposition

Let 𝑅 be a UFD. Let 𝑎 ∈ 𝑅 be an irreducible element. Then 𝑎 is a prime element. (Observe we have already proven
this for a PID in 3.4.18)

Proof: Suppose 𝑎 ∣ 𝑏𝑐. Write 𝑏 = 𝑝1 ⋅ ⋅ ⋅ 𝑝𝑛 and 𝑐 = 𝑞1 ⋅ ⋅ ⋅ 𝑞𝑛: products of irreducible elements. Since 𝑎 ∣ 𝑏𝑐, write
𝑏𝑐 = 𝛼𝑎, so we can write 𝛼 = 𝑟1 ⋅ ⋅ ⋅ 𝑟𝑠, where each 𝑟𝑖 is irreducible. Thus 𝑏𝑐 = (𝑟1 ⋅ ⋅ ⋅ 𝑟𝑠)𝑎 = (𝑝1 ⋅ ⋅ ⋅ 𝑝𝑛)(𝑞1 ⋅ ⋅ ⋅ 𝑞𝑚).
By uniqueness of factorization of 𝑏𝑐 into irreducibles, we get that 𝑎 = 𝑢𝑝𝑖 or 𝑎 = 𝑣𝑞𝑗 for some 𝑢, 𝑣 ∈ 𝑅×. So 𝑝𝑖 =
𝑢−1𝑎 and since 𝑝𝑖 ∣ 𝑏 we have 𝑎 ∣ 𝑏. Similarly, if the latter holds, then 𝑎 ∣ 𝑐.

⬜

4.2.6. Corollary

ℤ[2𝑖] is not a UFD.

Proof: This ring has irreducible elements which are not primes.

⬜

4.2.7. Definition: GCD

Let 𝑅 be an integral domain. Let 𝑎1, …, 𝑎𝑛 ∈ 𝑅. We say that 𝑑 = gcd(𝑎1, …, 𝑎𝑛) if
i) 𝑑 ∣ 𝑎𝑖∀𝑖

ii) ∀𝑐 ∈ 𝑅, 𝑐 ∣ 𝑎𝑖 ⟹ 𝑐 ∣ 𝑑
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4.2.8. Proposition

Let 𝑅 be a UFD and let 𝑎, 𝑏 ∈ 𝑅 be nonzero elements. Then gcd(𝑎, 𝑏) exists.

Proof: Choose irreducible elements 𝑝1, …, 𝑝𝑛 ∈ 𝑅 such that 𝑎 = 𝑝𝑒1
1 ⋅ ⋅ ⋅ 𝑝𝑒𝑛𝑛  and 𝑏 = 𝑝𝑓1

1 ⋅ ⋅ ⋅ 𝑝𝑛𝑓𝑓𝑛  where 𝑎𝑖, 𝑓𝑖 ≥
0.

Let 𝑔𝑖 = min(𝑒𝑖, 𝑓𝑖) and write 𝑑 = 𝑝𝑔1
1 ⋅ ⋅ ⋅ 𝑝𝑔𝑛𝑛 ∈ 𝑅. We claim that 𝑑 = gcd(𝑎, 𝑏). First, observe 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏. Now

suppose 𝑐 ∣ 𝑎, 𝑏. Write 𝑐 = 𝑞ℎ1
1 ⋅ ⋅ ⋅ 𝑞ℎ𝑚𝑚  as a unique factorization, so that 𝑞ℎ1

1 ⋅ ⋅ ⋅ 𝑞ℎ𝑚𝑚 ∣ 𝑝𝑒1
1 ⋅ ⋅ ⋅ 𝑝𝑒𝑛𝑛  and 𝑞ℎ1

1 ⋅ ⋅ ⋅ 𝑞ℎ𝑚𝑚 ∣
𝑝𝑓1

1 ⋅ ⋅ ⋅ 𝑝𝑓𝑛𝑛 . This means 𝑞ℎ1
1 ∣ 𝑝𝑒1

1 ⋅ ⋅ ⋅ 𝑝𝑒𝑛𝑛  and 𝑞ℎ1
1 ∣ 𝑝𝑓1

1 ⋅ ⋅ ⋅ 𝑝𝑓𝑛𝑛 . Since 𝑞1 is irreducible, it is prime by our previous
proposition. Thus 𝑞1 must be 𝑝1 (after renumbering). So 𝑞ℎ1

1 ∣ 𝑝𝑒1
1  and 𝑞ℎ1

1 ∣ 𝑝𝑓1
1  so 𝑞𝑚

1 ∣ 𝑝𝑔1
1 . Similarly, 𝑞ℎ𝑖

𝑖 ∣ 𝑝𝑔𝑖
𝑖 ∀𝑖, so

𝑐 = 𝑞ℎ1
1 ⋅ ⋅ ⋅ 𝑞ℎ𝑚𝑚 ∣ 𝑝𝑔1

1 ⋅ ⋅ ⋅ 𝑝𝑔𝑛𝑛 = 𝑑.

⬜

4.2.9. Proposition

Let 𝑎1, …, 𝑎𝑛 ∈ 𝑅 (an integral domain). Let 𝑑 ∈ (𝑎1, …, 𝑎𝑛). Then 𝑑 = gcd(𝑎1, …, 𝑎𝑛) ⟺ (𝑑) = (𝑎1, …, 𝑎𝑛).

(Note if the gcd is not in the ideal, it doesn’t work.)

Proof: Suppose that 𝑑 = gcd(𝑎1, …, 𝑎𝑛). Then 𝑑 ∣ 𝑎𝑖∀𝑖 ⟺ 𝑎𝑖 ∈ (𝑑)∀𝑖. So (𝑎1, …, 𝑎𝑛) ⊆ (𝑑) ⊆ (𝑎1, …, 𝑎𝑛). Thus
(𝑑) = (𝑎1, …, 𝑎𝑛) so this is principal.

Conversely, suppose that (𝑑) = (𝑎1, …, 𝑎𝑛). Then 𝑎𝑖 ∈ (𝑑), so 𝑑 ∣ 𝑎𝑖∀𝑖. Let 𝑐 ∈ 𝑅 such that 𝑐 ∣ 𝑎𝑖∀𝑖, so 𝑎𝑖 ∈ (𝑐)∀𝑖.
Thus (𝑎1, …, 𝑎𝑛) ⊆ (𝑐), but now (𝑑) ⊆ (𝑐), so 𝑐 ∣ 𝑑. So 𝑑 = gcd(𝑎1, …, 𝑎𝑛).

⬜

4.2.10. Example

Consider 𝑅 = ℤ[𝑋] and take 𝑎 = 𝑝, 𝑏 = 𝑥 where 𝑝 is prime. We claim gcd(𝑝, 𝑋) = 1. To see this, consider 𝑅
(𝑝,𝑋) =

ℤ[𝑋]
(𝑝,𝑋) = ℤ𝑝. Since ℤ𝑝 is a field note that (𝑝, 𝑋) is maximal, and we have shown previously that (𝑝, 𝑋) is not principal.
Observe (𝑝, 𝑋) ⊆ (gcd(𝑝, 𝑋)) and since (𝑝, 𝑋) is maximal and not principal, we must have (gcd(𝑝, 𝑋)) = 𝑅. Thus
gcd(𝑝, 𝑋) must be a unit, which we can take to be 1 (but since all units are associates any should work).

Lecture 22 Mar 3

4.2.11. Definition: Ascending Chain of Ideals

An ascending chain of ideals (*) is a sequence of ideals 𝐼1 ⊆ 𝐼2 ⊆⋅ ⋅ ⋅⊆∈ 𝑅. We say that (*) is stationary if ∃𝑁 >
0 such that 𝐼𝑖 = 𝐼𝑗∀𝑖, 𝑗 ≥ 𝑁 ).

4.2.12. Definition: Noetherian Ring

Rings where every ascending chain of ideals is stationary are called Noetherian.
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4.2.13. Proposition

Let 𝑅 be a commutative ring where every ideal is finitely generated. Then 𝑅 is a Noetherian ring.

Proof: Let

𝐼1 ⊆ 𝐼2 ⊆ 𝐼3 ⊆ ⋯

be an ascending chain of ideals. Let 𝐼 ≔ ⋃∞
𝑖=1 𝐼𝑖; we claim this is an ideal.

Note that if 𝑎, 𝑏 ∈ 𝐼  there must exist some 𝑘 ≫ 0 such that 𝑎, 𝑏 ∈ 𝐼𝑘 implying that 𝑎 + 𝑏 ∈ 𝐼𝑘 ⊆ 𝐼 . Similarly, for 𝑎 ∈
𝐼  and 𝑏 ∈ 𝑅 there exists some 𝑗 ≫ 0 such that 𝑎 ∈ 𝐼𝑗 and therefore 𝑎𝑏 ∈ 𝐼𝑗 ⊆ 𝐼 . Therefore, 𝐼  is an ideal and 𝐼 =
⟨𝑎1,…,𝑎𝑟⟩.

This implies there exists some 𝑛 ≫ 0 such that 𝑎𝑖 ∈ 𝐼𝑛 for any 𝑖. Therefore 𝐼 ⊆ 𝐼𝑛 but 𝐼𝑛 ⊆ 𝐼  such that 𝐼 = 𝐼𝑛.
Therefore 𝐼𝑗 = 𝐼𝑛 for all 𝑗 ≥ 𝑛.

⬜

4.2.14. Corollary

Let 𝑅 be a PID. Then any ascending chain of ideals in 𝑅 is stationary.

Proof: By the previous proposition, 𝑅 is trivially a Noetherian ring, and therefore any ascending chain of ideals is
stationary.

⬜

4.2.15. Example

𝑅 = ℂ[0, 1]. Define 𝛽 = [0, 1
𝑛] for 𝑛 ≥ 1. I.e., 𝐼𝑛 = {𝑓 ∈ 𝑅 : 𝑓 |𝛽 = 0} is an ideal in 𝑅. Then 𝐼1 ⊂ 𝐼2 ⊂ 𝐼3 ⊂⋅ ⋅ ⋅

Take any 𝑛 ≥ 1. Define

𝑓(𝑥) = {
0 if 0 ≤ 𝑥 ≤ 1

𝑛+1
𝑥 − 1

𝑛+1 if 1
𝑛+1 ≤ 𝑥 ≤ 1

Thus 𝑓 ∈ 𝐼𝑛+1 \ 𝐼𝑛.
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4.2.16. Theorem

Every PID 𝑅 is a UFD.

Proof: Let us first show that every nonzero nonunit element 𝑎 ∈ 𝑅 has a factorization. Suppose 𝑎 is irreducible. Then
there’s nothing to prove, so suppose it’s reducible. Then we can write 𝑎 = 𝑎1𝑎2 where neither 𝑎1 nor 𝑎2 is a unit. If
𝑎1 and 𝑎2 are irreducible, we are done. Otherwise, suppose 𝑎1 is reducible. Then 𝑎1 = 𝑎11𝑎12, where neither is a unit.
It remains to show that this process terminates.

Notice if it didn’t stop, we get a chain of ideals

(𝑎) ⊂ (𝑎1) ⊂ (𝑎11) ⊂⋅ ⋅ ⋅

4.2.17. Lemma

If 𝑎 = 𝑎1𝑎2 such that neither 𝑎1 nor 𝑎2 is a unit then (𝑎1) ⊊ (𝑎).

Proof: Suppose to the contrary that 𝑎1 ∈ (𝑎). Then we can write 𝑎1 = 𝑎𝑏 for some 𝑏 ∈ 𝑅. So 𝑎 = 𝑎1𝑎2 =
𝑎𝑏𝑎2 ⇒ 𝑎 − 𝑎𝑏𝑎2 = 0 ⇒ 𝑎(1 − 𝑏𝑎2) = 0 ⇒ 𝑏𝑎2 = 1 ⇒ 𝑎2 ∈ 𝑅×. Contradiction.

Observe this works in any integral domain, not necessarily a PID.

⬜

Now we show factorization is unique. Suppose 𝑎 = 𝑝1 ⋅ ⋅ ⋅ 𝑝𝑟 = 𝑞1 ⋅ ⋅ ⋅ 𝑞𝑠 ⇒ 𝑝1 ∣ 𝑞1 ⋅ ⋅ ⋅ 𝑞𝑠. Since 𝑝1 is irreducible and
hence prime, 𝑝𝑖 ∣ 𝑞𝑖 for prime 𝑖. (Recall in a PID, irreducible implies prime).

Now we can assume without loss of generality 𝑖 = 1 ⇒ 𝑝1 ∣ 𝑞1. Since 𝑞1 is irreducible, we must have that 𝑞1 =
𝑢1𝑝1 for some 𝑢1 ∈ 𝑅×. By induction on 𝑟 and 𝑠, we must have 𝑟 − 1 = 𝑠 − 1 and 𝑞𝑗 is an associate of 𝑝𝑗 for 𝑗 ≥ 2.
But then 𝑟 = 𝑠 and ∀𝑖, 𝑞𝑖 = 𝑢𝑖𝑝𝑖 for some 𝑢𝑖 ∈ 𝑅×.

⬜

4.2.18. Corollary

Let 𝐾 be a field. Then 𝐾[𝑋] is a UFD.

Proof: We have shown that 𝐾[𝑋] is a PID.

⬜
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4.2.19. Corollary

ℤ[𝑖] is a UFD.

Proof: We showed that ℤ[𝑖] is an ED. We also showed that ED ⇒ PID.

⬜

4.2.20. Remark

Is ℤ[𝑋] a UFD? We cannot yet answer this question, but this outlines our next goal.

We devise a trick to do this. Let 𝑅 be a UFD. Let 𝐹  be the field of fractions of 𝑅. This means 𝑅[𝑋] ↪ 𝐹[𝑋]. Now
since we know 𝐹[𝑋] is a UFD, we observe that we might be able to use the map to go into 𝐹[𝑋], then come back to
𝑅[𝑋].

4.2.21. Definition: Least Common Multiple (LCM)

Let 𝑅 be an integral domain. Let 𝑎1, …, 𝑎𝑟 ∈ 𝑅 \ {0}. Then an element 𝑑 ∈ 𝑅 is called an lcm of 𝑎1, …, 𝑎𝑟 if
i) 𝑎𝑖 ∣ 𝑑∀𝑖

ii) 𝑎𝑖 ∣ 𝑐∀𝑖 for some 𝑐 ∈ 𝑅 ⟹ 𝑑 ∣ 𝑐

4.2.22. Lemma

Let 𝑎1, …, 𝑎𝑟 ∈ 𝑅. Then lcm of 𝑎1, …, 𝑎𝑟 exists if and only if ∩𝑟
𝑖=1 (𝑎𝑖) is principal.

Proof: Suppose ∩𝑟
𝑖=1 (𝑎𝑖) = (𝑑). Then 𝑎𝑖 ∣ 𝑑∀𝑖. If 𝑎𝑖 ∣ 𝑐∀𝑖 ⟹ 𝑐 ∈ ∩ (𝑎𝑖) ⇒ 𝑑 ∣ 𝑐.

Conversely, suppose 𝑑 = lcm(𝑎1, …, 𝑎𝑟). Then 𝑎𝑖 ∣ 𝑑∀𝑖 ⟹ (𝑑) ⊆ ∩ (𝑎𝑖). Also, if 𝑐 ∈ ∩ (𝑎𝑖) ⇒ 𝑎𝑖 ∣ 𝑐∀𝑖 ⇒ 𝑑 ∣ 𝑐∀𝑖 ⇒
𝑐 ∈ (𝑑).

Thus (𝑑) = ∩ (𝑎𝑖).

⬜

4.2.23. Corollary

In a UFD, intersection of finitely many principal ideals is principal.

Proof:

⬜
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