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1 Preliminaries

1.A Limits on the Extended Real Line

Our setting for most analysis in measure theory will be the extended real line R = R U {4+00}. We review some
important results regarding the infimum and supremum from real analysis, adapted to this new setting.

Let S C R be a nonempty set.

The infimum (or greatest lower bound) of .S, denoted inf S, is the largest number m such that m < s forall s € S.
Equivalently:

(i) m < sforall s € S (lower bound)

(ii) For any € > 0, there exists s € S with s < m + ¢ (greatest)

The supremum (or least upper bound) of .S, denoted sup S, is the smallest number M such that s < M forall s € S.
Equivalently:

(i) s < M forall s € S (upper bound)

(ii) For any & > 0, there exists s € S with s > M — ¢ (least)

We set inf () = +o00 and sup ) = —oo by convention.

. J

Now that we are in R, the characterization of the infimum and supremum changes a little bit:

GivenY C [0, 00| nonempty, inf(Y) € {[{(;rioo};);fo}t’}:r{;s:}
In the former case, Ve > 0, infY = inf Y 4+ & = +00, and there does not exist y € Y such that y < infY + &.

In the latter case, Ve > 0, inf Y < infY + ¢, so inf Y + ¢ is not a lower bound of Y and there exists y € Y such that
y <infY +e.

Given a sequence {z,,} _ C R, define

limsupx, = infsupz,, and liminfz A = sup inf z,,.
n—s+o0o " keN >k " n—too keN n>k "

Given a sequence {xn}neN C R, we have liminf,, , x, <limsup, ., z,.
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PRELIMINARIES LimiTs oN THE EXTENDED REAL LINE — 1.1

Proof: Let {xn}nGN C R. Consider the sequences a, := inf,,. z,, and by, := sup, -, z,,, for a fixed k.
Now, it is clear that a;, < b, Vk € N, implying lim,_,  a, <lim,_,  b;.

We claim that a,, is nondecreasing, since

a = inf z, >min(x,, inf z,)=infz,6 =a
k17 Sk ("“ S ® g 2

Similarly, b, is nonincreasing, since

bgy1 = sup z,, < max (mk, sup a:n) =supz, = b.
n>k+1 n>k+1 n>k

Thus by the Monotone Convergence Theorem, we must have that

lim a; =supa;, and lim b, = infb,.

k—+o0 keN k—+o00 keN
Thus
liminfz,, =supa, = lim a; < lim b, = inf bk = limsupz,
n—+o0o keN k—+o00 k—+o00 keN n——+o00

For any sequence {z}

limsup(—z,) = —liminfz,
n—+00 n—+00

Proof: Let {z,} . C R. Observe that

—liminfz,, = —sup ( inf ) definition
n——+00 keN \n>k

= érellg( éggx ) —sup(S) = inf(—S)

~ jnf (igrlz(—xn)) _ inf(S) = sup(—$)

= lim sup(—z,,) definition
n—+00

For any sequences {z,,} _.{yn} _ € R,

lim sup(z,, + y,,) < limsupz, + limsupy,,

n—-+o0o n——+o0o n—+00

as long as none of the sums are of the form co — oc.
N J
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PRELIMINARIES LimiTs oN THE EXTENDED REAL LINE — 1.1

Proof: Let {z,} _.{un}, .y C R. Observe that, for a fixed n > &,

T, <supz; and y, < supy;
i>k >k

so, as long as we have no indeterminate expression of the form co — co, we have

Z, + Y, S supx; +supy;.
>k >k

Now since the supremum is the least upper bound,

sup(z,, +¥,) < supz; +supy;,
n>k 7>k >k

Thus taking limits gives

lim sup(z,, +y,,) < limsupz, + limsupy,,.

n—oo n—oo n—oo

using the same argument as in one of the previous propositions: the limit of a nonincreasing sequence is the same as
the infimum of that sequence.

O

An example where the strict inequality holds in the previous proposition is z,, = (—1)" and y,, = (—1)"*!. Then

observe lim sup,, , . (z,, + ¥, ) = limsup,,_,. ((—1)" — (—1)") = lim sup,,_,, 0 = 0. But lim sup,, . (—1)" =

1 =limsup,, ,,, (—1)™™, which can be shown easily through subsequential limits.

Ifz, <uy, forall n,

lim infz,, < lim inf
e, S,

Proof: Let {z,} _.{un}, .y C R. Since z,, < y,,, there must exist some k so that n > k => inf,,», z,, < inf, >, y,.
Then we can take the supremum over k£ € N on both sides, giving the result:

sup inf z,, = liminfz,, <liminfy, = sup inf
keg n>k n—+00 e ke§ nok T
0
For any real valued sequence {z,,} _ CR,

x,, converges <= limsupz,, = liminfz,,
n—+o0o n—+-00

Furthermore, if either equivalent condition holds, then z, = lim sup,,_,, ., ,, = liminf, _ _ x, is the limit of z,,

\ J
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PRELIMINARIES LimiTs oN THE EXTENDED REAL LINE — 1.1

1.B Topology
 Definition: Topology and Topologieal Space

A topology 7 on X is a collection of subsets of X that
(i) Contains () and X

(i) Is closed under arbitrary unions

(iii) Is closed under finite intersections

We call the pair (X, 7) a topological space.

. J

Elements of a topology 7 are called open sets. Complements of open sets are called closed sets.

On a topological space X, a sequence {:zz,n}nGN C X converges to a limit z € X if, for any open set U containing z,
there exists N € N such that z,, € U for alln > N.

A topological space X is called compact if for every collection C' of open subsets of X such that

x=]s,

SeC

there is a finite subcollection ' C C such that

x=Js.

SeF

Note that the collection C' is called an open cover and the finite collection F' is called a finite subcover.

. J

Given S C R",

S is compact <= S is closed and bounded

1.C The Riemann Integral

Recall that the Riemann integral is the formalization of approximation the area under the graph of a function by using
approximating rectangles. In particular, for a nonnegative function f : [a,b] — R,

/ab f(z)dz

S={(@,y):z € la,b,0 <y < f()}.

should be the area of the set
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PRELIMINARIES THE RIEMANN INTEGRAL — 1.3

If f changes sign, we write f = f, — f_, where

fi(z) = max{f(z),0}; f (z) = —min{f(z),0},

/abf(x)dx=/abf+(:c)dx—/abf_(x)dm'

We can formally define it as follows. Fix an interval [a, b], a # b.

with

A partition P of [a, ] is a finite set of points z, 21, ..., x,, satisfying

a=zy<z; <<z, 1<z, =0

Define Az, = z; — x,_;. For any bounded, real valued function f : [a,b] — R, we may define the upper and lower sums
with respect to a given partition P:

UP,f) =Y Mz, M= sup f(z)
=1

Z; 1 STST;

ZT; ST,

LP.f) =Y e, m = il f(a)
i=1

\

N\

This leads to the definition of the upper and lower Riemann integrals:

Define the upper and lower Riemann integrals of f over [a, b] by

/ab f(z)dz = ing(P, f)

/b f(z)dz = sup L(P, f).
" P

If f_j f(z)dz = f:, then we say f is Riemann integrable on [a, b], and the value of its integral is given by

bf(m)diB:: bf(a:)dx= bf(x)dx.
[ e [taria= [

~
\

1.D Limitations of the Riemann Integral

Riemann integration is nice, but falls short in a couple areas. For example, it struggles to handle weird sets and limits.
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PRELIMINARIES LiMITATIONS OF THE RIEMANN INTEGRAL — 1.4

Let f : [0,1] — R be the function that is 1 for every rational number and 0 for every irrational number. Prove that f

is not Riemann integrable on [0, 1].

Proof: Let P be a partition z, 21, ..., z,, of [0, 1] with
021'0 <1‘1 <"'<£I?n_1 <$n=1

Now examine a particular interval [z,_;, ;). Since the rationals are dense in the reals, 3¢ € [z,_;,z;) N Q, implying
that M; = sup, .-, f(z) > 1.But f is also bounded above by 1, so we have M; = 1. But since the irrationals are

also dense in the reals, 3w € [z,_;,z;) N (R \ Q), implying that m; = inf f(z) < 0. And since f is bounded

ZT; 1 STST,;
below by 0 we have m; = 0.

Now since ¢ was arbitrary, we have
UP,f)=> MAz, =) Az, =1
i=1 i=1

=1

But now since our partition was arbitrary, we also have

1 f(z)dz = i%fU(P, fi=1

(o) dw = sup L(P, £) = 0
P

o S—

so the upper and lower Riemann integrals are different, showing that f is not Riemann integrable.

1.E Motivation for Measure Theory

More generally, one of the most important questions that we seek to answer in real analysis is the following: Given f,, :
[a,b] — R with n € N such that

lim f, (z) = f(z),

n—oo

when can we prove that

b b
lim fo(x)dz = / f(z)dz?

n—oo

Measure theory greatly expands the tools we can use to answer this question.
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2 Introduction to Measures

2.A Problems with the Naive Definition

Lecture 1 Sep 25

Consider a set E C R. For reasons that will become apparent later, it would be nice to have a way to describe the “total
size” of that set. In particular, we would like to define a function x : 28" — [0, +-00] (where 2% for a set X denotes the

power set of X) such that:

(i) We assign the “right size” to simple sets. For example, p([a, b]) = b — a for a < b, and in particular u([a, a]) = 0.

(i) If{E,}" C 2R? are disjoint, then
if i1 ]
n n
12 (U Ez) = Z n(E;),
i=1 i=1
a property which makes . finitely additive. We can extend this to the notion of being countably additive:
{Ez}::1 C 2R disjoint = p (U E1> = Z,u(Ez)
i=1 =1

(iii) p is translation invariant. This means that for all E C R? and ¢ € R?, we have u(E + ¢) = u(E), where we
define E+c={z+c:z € E}.

&

Unfortunately for analysts, there is no such function satisfying each of the properties above, a fact proved by Giuseppe
Vitali in 1905. Before proceeding with the proof of the theorem, we proceed with a quick lemma showing monotonocity of

finitely additive measures:

Given a set X and a finitely additive function p : 2%X — [0, +-00], then VA, B € X, we have
AC B = p(4) < p(B).

Proof: Observe
n(AU(B\ A))
(A) + (B \ 4)

n(B)

v
/Et
=

Now onto the main result:
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INTRODUCTION TO MEASURES PROBLEMS WITH THE NAIVE DEFINITION — 2.1

There does not exist any function y : 28 — [0, 4+00] that satisfies
(i) p([a,b]) =b—afora<b

(ii) Countable additivity

(iii) Translation invariance

Proof: Assume by contradiction that such a p exists.
Define an equivalence relation on R by z ~ y < x — y € Q, with equivalence classes [z] = {y e R: y ~ z}.
We claim that every equivalence class contains an element in [0, 1].

Proof: Take some z € R and denote its equivalence class by [z]. Let y = z — |z]. Notice that y € [z] since x — (z —
|z|) = |z] € Z C Q. Further,y € [0,1] since |z] <z < |[z]+1=0<z—|z] <1.[

Thus for each equivalence class, we can choose an element in [0, 1] belonging to that class. Let A be the set of elements
chosen (note that we used the Axiom of Choice to construct this set.)

Now define

B = U (A+9q).

q€QN[—1,1]
We claim this is a disjoint union.
Proof: Let U,V € {A + q} jeqnr—1,1) WithU # V. So 3¢y, ¢, € QN [—1,1] such that U = A+ ¢; and V = A + ¢,
with ¢; # ¢,. By contradiction suppose t € U N V. Then Ja,,ay € A such that t =a; + ¢; andt = ay + ¢, S0 a; —
gy = G — -
Now observe we must have a; # a,, because otherwise ¢; = ¢, contradicting U # V. Now since a; and a4 are in
different equivalence classes (since there is only one representative from each), we know a; — a, ¢ Q. But since Q is

closed under addition, we also know g, — ¢; € Q. Thus we have a contradiction. []
(1) (i)
We claim that [0,1] C B C [—1,2].
+ To see inclusion (i), observe A C [0,1]and QN [-1,1] C [-1,1],s0a+ ¢ € [-1,2]Va € A,q € QN [-1,1].
+ To see inclusion (i), observe given = € [0, 1], we have z € [a] for some a € A by our earlier claim. Thus  — a =
q for some ¢ € Q, and since a € [0,1] and z € [0, 1], we have ¢ € Q N [—1, 1], showing = € B.

Now, by the previous lemma and function property (i), we must have
1= p([0,1]) < p(B) < p([=1,2]) = 3.

But we also have

u(B) = ,u( U (A+ q)) definition

q€Qn[—1,1]
= Z w(A+q) property (ii), since the union is disjoint
qum[_111]
= Z w(A) property (iii)
4€QN-1,1]
oo
= Z wu(A) since Q is countably infinite
i—1
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INTRODUCTION TO MEASURES PROBLEMS WITH THE NAIVE DEFINITION — 2.1

Now since p(B) < 3, we must have pu(A) = 0. But then pu(B) = 0, contradicting 1 < u(B).
[

This result tells us that we must weaken at least one of our criteria to get a function with the desired properties.

We might consider loosening property (i). But this is the property that inspired the whole concepts of “measures”, and if we
change it, we might lose all notion of length and volume. The same goes for property (iii): we want to maintain the
intuition that translating length leaves it unchanged. Thus, we resolve to modify property (ii).

Notice that Vitali sets broke down our function by taking advantage of countably infinite sets. So, a natural attempt to fix
this is to replace countable additivity with the weaker notion of finite additivity.

However, this fails too, when we try higher dimensions.

Given any two bounded subsets with nonempty interior A and B of R¢, with d > 3, there exist partitions of A and B

into a finite number of disjoint subsets

A= Ai? AimAj:(Z)ai#:jv

=il
and
n
= UBlﬂ BimBj:(b:i?éja
=l

such that for each i € {1,2, ..., k}, the sets A, and B; are congruent. That is, one is obtained from the other through

translations, reflections and rotations in R?.
q y

This theorem shows, for example, that using the notion of volume given by this naive properties, we can show that a
baseball and the moon have the same volume.

Thus, let’s reduce the number of sets we consider from being the entire powerset of R%, so that we can prevent these
pathological problems from popping up.

2.B o-Algebras

Lecture 2 Sep 30

Then the question becomes: what subsets of R% might we want to measure?

One way to think about this question is to just assume that we have some existing collection of “measurable” sets, and
think about them as building blocks. If we can measure two sets, it’s natural to want to be able to measure their union,
intersection, and complements, since these are the most important operations we perform on sets. So, let’s define some
structure to encode this idea.

Let X be a nonempty set and let A C 2 be a family of subsets of X. We say that .4 is an algebra of sets if
() {E;};_, € A= Uy, E; € A (closure under finite unions)
(i) £ € A= E° € A (closure under complements)
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INTRODUCTION TO MEASURES 0-ALGEBRAS — 2.2

Notice that we didn’t bother to include closure under finite intersections, since it follows from the above two properties, as
the next proposition shows:

If A is an algebra of sets of X, then
(i) {Ei}?=1 CA= N, E, €A
(i) 0, X € A

Proof:

(i) Suppose Ej, ..., E,, € A.By closure under complements, we have EY, ..., ES € A. Since A is closed under

countable unions, we have U ; E¢ € A. Then since A is closed under complements, we have (U, ES)° = N7,

E, € A

(ii) Let E € A. Then by closure of complements, we have E¢ € A. Thus EU E€ = X € A. By the first part, we also
have ENE =0 € A.

L

(i) A=2%

(i) A ={0,X}
(iii) A is the set of clopen sets in any topology
(iv) A is the collection of finite and cofinite subsets of X

In analysis, we very often deal with limits, so it would be nice to restrict to those algebras which are closed under
countable unions. This leads us to a very important type of algebra, called a o-algebra.

A C 2% is a o-algebra of subsets of X if
(i) A is an algebra
(ii) A is closed under countable unions:

Note that this means that showing closure under complements and countable unions is sufficient to show a set is a -
algebra, since we can take sets in the union after a certain NV to be the empty set.

A o-algebra is also closed under countable intersections, which follows from closure under countable unions and
using De Morgan’s Law.

Some key differences between a o-algebras and topologies:

(i) o-algebras are closed under countable unions while topologies are closed under any unions
(ii) o-algebras are closed under countable intersections, while topologies are only required to be closed under finite
intersections
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INTRODUCTION TO MEASURES 0-ALGEBRAS — 2.2

An algebra A is a o-algebra if and only if it is closed under countable disjoint unions, that is,

=1

({Ez}zl C A disjoint = U E; € /l) < A is a o-algebra

Proof: The <= direction is clear from the definition of a o-algebra.

For the = direction, let A be an algebra closed under countable disjoint unions. Then let {Ez}f: , € A.Define a set
F=E\UZlE=En(VlE) =En (N2l E) e 4

To see this a sequence of disjoint sets, suppose by contradiction z € F, N F; with a < b without loss of generality.

Thenz € E, and x ¢ U?;% Ej, sox ¢ E,, contradicting x € F,.

Since E; C F;, we have U2, E;, C U2, F,. Now let z € U2, F;, so xz € F}, for some k € N. Thus z € E},, sox € U2,

E,.

7

Then {F;}°, C A is a sequence of disjoint sets, so Uf%; E; = U2, F; € A.

Any algebra that is closed under countable increasing unions is a o-algebra. (We say that an algebra A is closed under
countable increasing unions if, for all {EZ}:: , € Awith E; C E;, foralli, U2, E; € A.)

Proof: Let .4 be an algebra closed under countable increasing unions. Then let {EZ}Z , € A. Define a set
i
F=|JE;e4
j=1

Notice that F; C F,{, so {E}Zl C A is a countable increasing sequence. Now E; C F; is clear so U2, E; C U, F,.
Letz € U2, Fj, sox € F; for some j € N, meaning z € Ey, for some 1 < k < j. Thusz € U2, E,.

Then we have U2, E; = U2, F, € A.

]
Of our examples of algebras, notice that (i) and (ii) are o-algebras, but (iii) and (iv) are not if | X| = +o0.
Given a nonempty set X and a g-algebra M C 2%, we call (X, ) a measurable space and E € ) a measurable
set.

Vs
.

Given any nonempty collection € of o-algebras on X, then NC ={E C X : E € A,VA € C} is a o-algebra.
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INTRODUCTION TO MEASURES 0-ALGEBRAS — 2.2

Proof: Let € be a nonempty collection of g-algebras on X. Take A € €, which can be done since € is nonempty.

We first show that € is closed under countable unions. Let {EZ}Z , € NC. Then for each E;, we have E; € A. Since A

is a o-algebra, we have U, E; € A. Then since A was arbitrary, this is true for all A € €. But this means Uj°; E, €
Ne.

We now show that C is closed under complements. Let £ € N €. Then E € A, so E¢ € A. Then since A € € was
arbitrary, E¢ € N C.

L]

Given E C 2%, there always exists a smallest o-algebra containing E, which we denote by M (E) and refer to as the
o-algebra generated by E.

Note that by smallest o-algebra, we mean that all o-algebras F containing E satisfy M (E) C F.

Proof: Let E C 2% . Let C = {./l : A C 2% is a o-algebra, E C A}, i.e., this is the collection of o-algebras containing
E. Note since 2% € €, € is nonempty.

Now by our previous lemma, N € is a g-algebra. By definition of €, E C NCand VA € C,NC C A.

L

With those basic properties of g-algebras proven, we specify further, and investigate a particular very important class of o-
algebras.

The Borel o-algebra of X, denoted B(X), is the o-algebra generated by a topology 7. Its elements are called Borel
sets.

At this point, with so many definitions introduced in quick succession, we might wonder what exactly a Borel o-algebra
looks like. To aid with this, we introduce some quick notation:

Given some F C 2%, denote:

F := all countable unions of elements of F
F9 := all countable intersections of elements of F

F := all countable complements of elements of F

. J

Then we can visualize Borel sets by building them from the “inside out”, a process which gives us the Borel hierarchy:

_— — =\ 0
7'—>7'5—>7'5U7'5—>(7'6U7'5) - -+ = B(X)
—_—
uncountably

many steps

Fix an open set U C R. There exist {an}zozl, {bn}zo=1 C Rsothat U = U2, (a,,b,).

n» n
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INTRODUCTION TO MEASURES 0-ALGEBRAS — 2.2

Proof: Fix an open set U C R. Since U is open, for each x € U, there exists an open interval of = contained in U. So
we have z € (a;,b;) C U, and now by density of Q in R, we can find rational numbers p; and g; such that z €
(p;»q;) C U. This implies we can write

U= U (Pi> 4;)
(p:,9:;)CU
p,q€Q

and this union is countable since Q x Q is countable. Thus, we can order the (p,, g;) pairs, for example by taking the
p,’s in increasing order.

L

Proposition

The Borel o-algebra of R, denoted By, is generated by
(i) Open intervals & := {(a,b) : a < b}

(i) Half-open intervals & := {[a,b) : a < b}

(iii) Openrays &; == {(a,+0) : a € R}

Proof:
(i) M(&3) C By: Let (a,b] € &. Notice that

(a,b] = ﬁ(a,b—i—%),

n=1

where each (a,b + %) is in the topology on R, meaning that it is in By. Then By, is closed under countable
intersections as a o-algebra, so (a,b] € By. So &5 C By, which clearly implies M (&5) C By.

Br C M(&;): Let U C R be open. By Problem 3, there exist sequences {an}zo:l, {bn}zozl CRsothat U = U2,

(a,,b,,). Now observe

for each a;, b, in the sequences. Thus

o0 o0 o0 1
U = b)) = D
a8 =UJ U (st~ 1|
Now since each (al, b, — 1] € & C M (&;), and o-algebras are closed under countable unions, we have U €
M (&3). But now By C M (&), since the Borel o-algebra is generated by the open sets in R.
(il) M (&) C Bg: Let (a, +00) € &. Notice that (a,n) is clearly open in the topology on R, meaning that it is in Bp.
Then By, is closed under countable unions as a o-algebra, so (a, +00) € By.So & C By = M (&) C By.

Br € M(&): Let U C R be open. By Problem 3, there exist sequences {an}zozl, {bn}zozl CRsothatU = U2,
(a,,b,,).- Now observe

(a;,b;) = (a;, +00) N (—o0,b;) = (a;,+00) N [b;, +00)° = (a;, +00) (ﬂ (b - = —I—oo)) :
for each a;, b; in the sequences. Thus
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INTRODUCTION TO MEASURES 0-ALGEBRAS — 2.2

U= [j(ai?bi) = G {(ai,-i-oo) " (ﬁ <bi N %,4-00))0]

n=1

Now since each (a; + 00), (b; — =,+00) € & C M (&), and o-algebras are closed under countable unions,
countable intersections and complements, we have U € M (&;). But now By C M (&;), since the Borel o-algebra
is generated by the open sets in R.

(iii) M (&;) C Bgy: Let [a, +00) € &;. Notice that

o0

[a, +00) = ) (a— %,+oo),

n=1
where each (a + %, —|—oo) is in the topology on R, meaning that it’s in By.

Then By, is closed under countable unions and intersections as a o-algebra, so [a, +00) € By.So &, C By =
M(&;) C By.

Br C M(&;): Let U C R be open. By Problem 3, there exist sequences {an}:;l’ {bn}zo=1 CRsothat U = U2,
(@,,b,,). Now observe

=
=
[
38

%) z)

[ 1
a; aF E, bz)

i
L

Il
3

_[ai + %, +OO> N (—oo, bl)]

i
L

I
(G

[ 1
[ai + 57 +OO) N [bz’ +Oo)c:|

=l
for each a;, b; in the sequences. Thus
oo (e ol o) 1 .
U= U(aiabi) = U U Hai + E""OO) N [b;, +00) ]
i=1 i=1n=1

Now since each [a; + =, 400), [b;, +00) € & C M(&;), and o-algebras are closed under countable unions and
complements, we have U € M (&;). But now By C M (&;), since the Borel o-algebra is generated by the open
sets in R.

O]

Importantly, the Borel o-algebra of R won’t include Vitali sets, or any other pathological examples of sets that don’t work
with our desired notion of measure. That makes it a great candidate to use as a g-algebra for our desired function.

Now, we can define the general notion of a measure, where we restrict the domain to a o-algebra rather than the entire
powerset.
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2.C Measures

Given a measurable space (X, M), a measure is a function p : M — [0, +00] such that:

(@) p@) =0

(ii) Given a sequence of disjoint sets {El}z | © M, we have

u(@) = f;u(m

=1

Recall the second property is called countable additivity. We call (X, M, 1) a measure space.

.

.

Notice that translation invariance is not included. Only some measures have this property.

Take the measurable space (X, M) = (X,2%). For z, € X, define

lifzge A
0 otherwise’

i) = {

which is often denoted =6, .

\ J

Again take the measurable space (X, M) = (X,2%). Define u(A) = |A| := # of elements in A.

\ J

Lecture 3 Oct 2

For any measure space (X, M, u) and A, B € M with {Ai}zl cMm,
(i) AC B= p(A) < pu(B)
(i) AC Band ,u(Ay) < 400 = u(B\ A) = u(B) — u(A)
(i) pu(uge; 4;) < Z:I#(Ai)
(iv) A; C A, Vi EN— p(U2; A;) =lim;_, o pu(A;) (continuity from below)
) A, 2 A; 1 VieNand p(4;) < +oo = p(NX; 4;) = lim,_, . u(4;) (continuity from above)

Note that we can understand continuity from below intuitively by thinking of the sets as increasing upwards, like an
inverted pyramid. Similarly, continuity from above can be thought of as starting at the top of an inverted pyramid and

going down.

Proof:
(i) Shown in 2.B.
(ii) Let A C B. Then u(B) = (AU (B\ A)) = pu(A) + p(B\ A). Now since u(A) < 400, we have u(B) — u(A) =
w(B\ A).
(iii) Define B, = A;, By = Ay \ Ay, ..., B, = A, \UX! A,. Then {Bi}z1 C M are disjoint and U, B, = U2, A,,
with B, C A,Vi € N. Now observe
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INTRODUCTION TO MEASURES MEASURES — 2.3

M(@Az) :,U(DBi) = iN(Bi) < iN(A

i=1

where we invoked property (i) in the last step.
(iv) Suppose A; C A, ,Vie N Define B; = A, and B; = A, \ A,_; for i > 1. By definition, U}" ; B; = A,,. Also,
U2, B, = U2, A;. Thus,

wA,) = p (U Bi) = (B
=1 i=1
But taking n — 400 gives

- So—((n) o31)

(v) Suppose A; D A, ,,Vi € N. Define B; = A, \ A,. By construction, B; C B, ;Vi € N. Then

B, = J4, i):szlAlmAnglm<UAg>=A1m<QAi) =A1\mAi.

i=1 o=l

‘llC8

Thus,

=1

=p( [ |4 | + lim u(B;) by (iv)

=W ﬂ A; +z.1_igloli(A1 \4;)

= ()4:) + lim p(ay) - (4. by (i)

1—00

Now using our assumption that p(A4;) < +o0o, we can subtract it from both sides, giving the result.

Take X = N, M = 2V and u(E) = |E|. Now let our setsbe A, = {n € N:n > i}.

Then we get N5°; A, = 0 and u(N2; 4;) =0 # +oo = lim,_,, . u(4,;).

We proceed with some important terminology that characterizes measures and the sets they act on:
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INTRODUCTION TO MEASURES MEASURES — 2.3

« We call p a finite measure if (X)) < +00
» Further, i is a o-finite measure if 3{E;}* C M such that U%; E; = X and p(E;) < +ooVi €N

EC Xisanullsetof pif E € M and u(E) =0

We say a property holds p-almost everywhere if the set of points where it fails is a null set

Suppose we have some f : X — R. Then f = 0 almost everywhere if {z : f(z) # 0} € M and p({z : f(z) #0}) =
0, (that is, if { f # 0} is a null set).

2.D Limit Inferior and Limit Superior for Sets

Given a collection of sets {Ez}fi1 define

i—+00 t—+00

We can characterize the lim sup and lim inf intuitively by the following:

liminf E; := {z : € E; for all but finitely many i}

i—+00

limsup E; := {x : x € E; for infinitely many ¢}.

1—+00

Proof: Notice

z €limsup B, <=z € N2, U2, E;

i—+00
SSreU2, EVk>1
4:>er3. for some j > kVk > 1

< x € E; for infinitely many ¢

z € liminf <=z € U2, N2, E;
1—+00

<= dJk € N such that z € N;2, E;
< Jk € N such that z € E;,Vi > k
< x € E; for all but finitely many 4.
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INTRODUCTION TO MEASURES LimMiT INFERIOR AND LIMIT SUPERIOR FOR SETS — 2.4

Suppose (X, M, p) is a measure space with u(X) < 4o00. Suppose A;, A,, ... are sets in M with u(A4;) > ¢ > 0 for
all i. Let Z be the set of elements z € X that belong to infinitely many of the A;’s. Prove that u(Z) > c.

Proof: From the previous proposition, we can write Z = lim sup,_,, . A,. Now define B;, = U2, A, so that Z =
N2, By. Observe that By, ; C By, so by continuity from above (which is justified since p(X) < 400), we have

w(Z) = p(OR21 Bo) = lim_u(B,).
—+00

Now since A; C Bj,, by monotonicity we have

w(By) = p(4y) > c.

Now take k — +00. Thus we have u(Z) > c as desired.
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3 Outer Measures

3.A Outer Measures

Now, we have a good definition for a measure, since we restricted to thinking about the individual “building blocks” rather
than every possible subset of X. We also introduced some basic measures.

The key now is to show this notion solves our original difficulty: finding a measure that properly assigns lengths to closed
intervals [a, b], and find an associated o-algebra. In fact, we’ll do this in a general way: given a notion of size, how can we
find an associated o-algebra and measure?

Our general plan will be as follows:
(i) Start with a collection of sets containing all sets we want to know how to measure (like 2%)
(ii) Define a way to approximate the measure from the outside (called the outer measure)
(iii) Construct a o-algebra using the outer measure (this can be done Carathéodory’s criterion, shown later on)
(iv) Obtain an actual measure on that o-algebra

Assuming our initial collection of sets is 2%, we proceed with step 2.

An outer measure on X is a function p* : 2% — [0, +-00] such that
(i) p(0)=0
(i) ACB=pu* (AZOS w*(B) (monotonicity)
(i) p*(Ue, A,) < Y u*(4,;) (countable subadditivity)
i=1

The idea behind property (iii) is that we get a covering of the sets we want, even if there is some wasteful overlap. Then,
we can make the bound tight and get equality, producing a measure. Also, property (ii) is needed because while it follows
from countable additivity, it does not follow from countable subadditivity.

From (ii) and (iii), we have that E C U$°; A, then p*(E) < Y p*(4,).
i=1

In fact, showing this plus (i) is enough to show a function is an outer measure.

If pu* : 2% — [0, +-00] satisfies

() p*(0) =0and o

@) B C Uz A = p*(B) < 30 p'(4),
i=1

then p* is an outer measure.
& J

Now comes the outer measure for the measure we have been trying to construct:

(20

;| ACUR (a; b]} with a; < b;.
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OUTER MEASURES OUTER MEASURES — 3.1

We will show that * has many of the properties we wanted:
 p* is an outer measure
» u* is translation invariant

« 1*((a,b])) =b—avVa<b

and it will become a measure when it is restricted to the relevant o-algebra. Again, how do we actually do this? The
answer is Caratheodory’s Theorem, which we will now build up to.

3.B Caratheodory’s Theorem

Given an outer measure p* on X, A C X is pu*-measurable if
p(E) =p(ENA)+p(ENA°)
forall £ C X.

We can read this as “A is measurable we can break any set £ apart nicely.” We use the notation M. := {A C X :

A is p* measurable}. This is also called Caratheodory’s criterion.

Suppose we want to show A € M. By countable subadditivity, we always have
p(E) < p (ENA)+p (BN A°),

so all we need to do is show the > direction.
\

|

M. is not the “largest” o-algebra on which p* is a measure. (Update with details later.)

Vs
|

For any outer measure *, if *(B) = 0, then B € M ..

Proof: For any £ C X, by monotonicity we have

w*(E) > 0+ p*(E N B°)
= u*(ENB) + p*(EN B°)

Thus, B € Mu*‘

(i) M,. is an algebra .
(i) Given {B;}" | C M,,. disjoint, we have p*(E N (U, B;)) = 3, u*(ENB;)VE C X

(iii) p* is finitely additive
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OUTER MEASURES CARATHEODORY’S THEOREM — 3.2

Proof:

(i) Since p*(P) = 0, by the previous proposition we have ) € M., so M ,. is nonempty. Further, M ,. is closed under
complements, since we can just replace £ with E¢ in the definition.

To see that M. is closed under finite unions, it suffices to show that A, B € M. = AU B € M,.. Suppose
A,BeM, . FixEC X.

Then

N(AUA°UB))+ u*(EN (AU B)°)

w(
e (
> ((ENA)U(ENA°NB))+ pu*(EN (AU B)°)
e (
p(EN(AUB))+ p*(EN (AU B)°).

(if) Suppose {Bi}?zl C M,,. disjoint. Fix E C X. Proceed by induction. The base case n = 1 is trivial, and now
suppose it holds for n — 1. Then

p(EN (UL, By)) =p(EN (UL, B)NB,)+p (EN (UL, B;)NB;)
w(ENB,) +p(EN((Ui' BN B;) U (B, NBY)))
w(ENB,)+u (En (VL B))
S W(ENB).

=1

(iii) Take E = B, in (ii).

Given {B;}° C M, disjoint,

§(E) =i (BN By + (BN (U2, B)')

forall £ C X.

| J

Proof: (<) By subadditivity we have
NB;) +p (ENB)
N B;) + ' (EN (U2 B;))

< ZN*(E NB;) + p*(EN(UZ, B)°).
(=) By (i) of the previous proposition, M. is closed under finite unions, so for any n € N we have

.UBi €M,

i=1

Thus we have
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OUTER MEASURES CARATHEODORY’S THEOREM — 3.2

p*(E) = p*(EN (U By)) +u*(E N (UL, B)°)

I
.M:

Il
-

W (ENB;) +p (BN (UL B))

2
K3

where we used part (ii) of the previous proposition. Now take n — +o0o and we get the result.

Lecture 4 Oct 7

Given an outer measure u*,
(i) M. is a o-algebra

(ii) p* is a measure on M .
\_ J

Proof:

(i) Note that we proved M ,. is an algebra two propositions ago, so we need only show that it is closed under
countable unions. In fact, from this lemma, it is sufficient to show closure under countable disjoint unions.

Thus suppose {Bz}f: | € M. disjoint. Fix £ C X. Then from the previous proposition we have

p(E)

> w(ENB)+p(EN (U2, B)°)

=1

\V]

p*(EN (U2, By)) + p* (BN (U2 B;))
where the second line follows from subadditivity.

(ii) Since p* is an outer measure, we already know p()) = 0. To show countable additivity, we can take E = U°, B,
in the previous proposition.

O

Although Caratheodory’s Thoerem tells us that any outer measure p* gives us a measure when we restrict it to the
collection of 1* measurable sets, it turns out that this is not, in general, the largest o-algebra on which p* becomes a
measure. The following exercise shows this.

Consider the set X = {1, 2, 3}. Define an outer measure as follows:

0 if [A] =0
pr(A) =41 if |[A]=1,2
2 if |A|=3.

(a) Prove that p* is an outer measure on X.
(b) Prove that the collection of p* measurable sets is {0, X }.
(c) Prove that A := {0, {1},{2,3}, X} is a o-algebra.

| J
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(d) Prove that p* | 4 is a measure.

This shows that the Caratheodory o-algebra ) . is not, in general, the largest o-algebra on which o™ can be
restricted to be a measure.

Proof:
(i) We confirm each property of an outer measure:
« u*(0) = 0since || =0

« Let A C B. Observe that u*(A) i , meaning that

ACB= A< Bl = u(4) < u(B).
+ Let {Ai}j; C X. Let A:=U2, A,. Clearly we have p(A) <A
» If |A| = 0, we have p*(A) =0 < Z w*(A;), just from nonnegativity of the outer measure.

» Suppose |A| € {1,2}. Notice that if all A, = () then we would have A = (), a contradiction. So at least one 4,
is nonempty, meaning 35 such that (A ) > 1. Thus p*(A) =1 < p*(4;) < Z w(A,;).

» Suppose |A| = 3, in which case I (A) = 2. Then the A,’s must collectively . each of {1,2,3}.
— Ifany A, has |A;| = 3, then > u*(4,,) > n*(4;) > 2 and we’re done.

n=1
- Ifany A, hasOLAi] = 2, then there must be another set A; covering the last element, with |4, > 1. Thus we
would have > u*(4,) > u*(4;) + p* (Aj) > 141 = 2, and we’re done.

n=1
— If all nonempty A, have |A4;| = 1, we need at least three of them to cover A. Thus there exist A;, A;, Ay,

each with outer measure 1 that cover A, meaning that > u*(4;) > 3 and we’re done.
i=1

(ii) (D) Notice that u*(E) = p*(EN Q) + p*(E N X), so {0, X} are both trivially x* measurable.
(C) Let A C X be a p* measurable set.

« First suppose that |A| = 1. Without loss of generality take A = {1}, and consider E = {1,2}. Then 1 =
w*({1,2}) # p*({1}) + p*({2}) = 2, so this doesn’t work.

« Now suppose that |A| = 2. Without loss of generality take A = {1, 2}, and consider £ = {2,3}. Then 1 =
w({2,3}) # p*({2}) + w*({3}) = 2, so this also doesn’t work.

Thus we must have that |A| € {0, 3}, showing that A C {0, X}.

(iii) First notice that )¢ = X and {1}° = {2, 3}, showing closure under complement. Next notice that the only
nontrivial union is {1} U {2,3} = X, showing closure under countable unions.

(iv) Notice that § € A so u* | 4 (0) = 0. For the trivial disjoint sets, notice

ply QUB)=p* |, 0)=0=0+0=p" [, (0)+p |, (D)
g QUA)=p |4 (A)=p" |4 (A)+0=p* |4 (A)+p |, )

The only nontrivial disjoint sets in A are {1} and {2, 3}, and we have
Pl ((13UL2,3) = p” g (X) =2=p" [, ({1} + 47 |4 ({2,3})

which shows that p* | 4 is indeed closed under disjoint unions, so it is indeed a measure.
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Regardless, now we can take p* in Caratheodory’s Theorem to be the Lebesgue outer measure, as discussed previously.
This gives us the Lebesgue measure, which has our desired properties.

Instead of proving that those properties hold directly though, it turns out that they hold for a larger class of outer
measures, and the properties of the Lebesgue measure will become apparent as a special case. Thus, we generalize first.

3.C Lebesgue-Stieltjes Outer Measure

We can generalize the Lebesgue outer measure to the Lebesgue-Stieltjes Outer Measure, which concerns itself with
nondecreasing, right continuous functions. We briefly review the definition of right continuity:

A function F' : R — R U {+o00} is right continuous if Vx € R we have lim,_, . F(y) = lim . , F(y) = F(z).

Given F : R — R nondecreasing and right continuous, define the Lebesgue-Stieltjes Outer Measure u% : 28 —
[0, +-00] by

Win(4) = inf{fjw(bi) - F(ai>|} _ inf{fj |I,-|F}

where A C U2, (a;,b;] and a; < b,

1) 71 T — "1
" J

Note that the Lebesgue Outer Measure from before is the case where F'(z) = z.

For any F' : R — R nondecreasing and right continuous, x4} is an outer measure on R.

18

Proof: By definition, u} > 0. Since §) C U$°, (0,0], p5(0) < > 0 =0, we have u}(0) <0, so u3(0) = 0.

-
Il
—

o0
It remains to show A C U2, B; = pjp(A) < 3 pk(B;) (which sufficient to prove p, is an outer measure via this

-
Il
—

proposition).
Now fix A C U, B,. Without loss of generality, ) u5(B;) < +0o (because otherwise this is trivially true). Thus
=1

=

wi(B;) < +00Vi € N.

Then let € > 0 be fixed. Since the outer measure of each B, is finite, for each B; there exists {IZJ ’8}00 such that B; C
: _ J=1
21 I°. Then we have (using the characterization of the infimum in R),

W (B,) < i 77| <upB) + 5
=
Furthermore,
Acug, e
Thus
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Now taking e — 0 gives the result.

For F' : R — R nondecreasing, right continuous and all a, b € R with a < b, we have

pr((a,b]) = F(b) — F(a).

Proof: (<): Notice that (a,b] C (a,b] UQU DU - - is a valid covering, immediately giving us u%((a,b]) < F(b) —
F(a).
(>): Without loss of generality let a < b. Suppose (a,b] C U°; (a;, b;] with a; < b;. Fix e > 0. Since F' is right
continuous, 30, > 0 such that
b, <z < b+ 8, = |F(z) — F(b,)| < 23
In particular, take x = b; + J; and observe F'(b; + 6,) > F'(b;) since it is nondecreasing,
€

0< F(b;+9,) — F(b;) < i

Further,
(a,b] C U2, (a;,b;] C U2y (a;,b; +6;).
Thus we have an open cover for (a, b], and since [a + €, b] is compact, there exists a finite subcover, meaning that after
reindexing we have
[a+¢,b] CUY, (a;,b; +6,).
Thus up to reindexing again we have b; + 6, <---< by + dy.

Further, for each i =1, ..., N we have b; + J; € (a;,1,b; 11 + J,,1), since we would have a gap in the cover otherwise.

Now since F' is nonincreasing, we have

F(b)—F(a+¢) < F(by +0y) — F(ay)
N-1

=F(by +0y) — Flay) + Z: F(a;y1) — Fl(a;)
N—1

< F(by +6y)— Flay) + > F(b; +6;) — F(a;)
i=1
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=&+ iF(bl) — F(a;)
i=1
Now sending € — 0 gives the result, noting again that F' is nondecreasing.
0
Lecture 5 Oct 9

In the previous two theorems, taking F'(x) = z gives us that
(i) w, is an outer measure

(i) p,((a,b]) =b—a

And from Caratheodory’s Theorem, (i) gives us that y* is a measure on the o-algebra M ,.. We call this measure the
Lebesgue measure; it’s what we were originally after. Since it’s a measure, we can see it satifies countable additivity,
and by definition, it gives the “right length” to intervals. It remains to show the translation invariance property, which
we will do shortly.

~
\

When F(z) = z, write
A=k (the Lebesgue outer measure)
My. :== M, (the Lebesgue measurable sets)

A= A" |5, (the Lebesgue measure)

Vs
.

Generalizing the above, we now know we can take any F' : R — R nondecreasing and right continuous and produce
a measure:

/J’F = IJ/} |MH* °
i

We call this the Lebesgue-Stieltjes Measure.

~
\

For any nondecreasing, right continuous function F' : R — R, we have By C M. .

Proof: Since (—o0, b] generates the Borel o-algebra, it suffices to show that (—oo, b] € M. Vb € R, that is, we must
show that VE C R, b € R, we have

pr(E) 2 pp(E N (=00,b]) + pp(E N (=00, b]°).

Take E C R. Without loss of generality, y7 (E) < 400. Fix € > 0. By definition, 3{(a,, bi”Zl such that £ C U,
(a;,b;] and > F(b;) — F(a;) < p(E) + €. Observe
i=1

(ai7 bz] n (—OO, b] - (aia min{biv b})
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(a;,b;] N (b, +00) C (max{a,,b},b,)

En(— (a;, min{b,;, b})

8

)

=
N
8

-
Il
—

IN
8

E N (b, +0) (max{a;,b},b;).

-
Il
—

Thus

(&)

i (E N (=00,b]) + pp(E N ( i (min{b;, b}) — F(a;) + Z F(b;) — F(max{a,, b}).

1), D),

Consider the ith term of the sum:
(i Ifb < a;, then (I); = 0 and (II); = F(b;) — F(a;)
(ii) Ifb > b,, then (I); = F(b;) — F(a;) and (I), = 0
(iii) Ifb € (a;,b,], then (I) + (II) = F(b) — F(a;) + F(b;) — F(b) = F(b;) — F(a;)

So in general we have

Wi (B 1 (=00,b]) + 1 (B (00, %) < 3 F(by) — F(ay)

Now taking e — 0 gives the result.

The Lebesgue Outer Measure \* is translation invariant on 2%, and ) is translation invariant on M.

Proof: For any a € Rand A C R, we have A C U?; (a;,b;] & A+ a C U2, (a; + a,b; + a], and both have the same
“length” for F(z) = x. Thus A*(A) = X\*(A + a), so we have established translation invariance on 2%.

Now we show translation invariance when we restrict to M3. Suppose A € M,.. Fix a € R. We want to show A + a €
M.

Fix E C R. Note that for any S C R, we have (E —a)NS =[EN(S+a)]—aand (S +a)® = S5°+a.Since A €
MA*,

A(
A ((E — ) A) + X ((E —a) N A°)
=M([ENn(A+a)]—a)+ X([EN(A°+a)] —a)
A(EN (A—i—a))—i—)\*(Eﬂ(Ac—l-a))
MENA+a)+X(EN(A+a)°).

Thus, we have shown at last that the Lebesgue Measure solves our initial question.
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Suppose p is a finite Borel measure on R. Define F' : R — R by F(z) := u([—o0, z]) (this is called a Cumulative
Distribution Function. Then

(i) F is nondecreasing and right continuous
(i) p=pp

Proof:

(i) To see that it is nondecreasing, notice z < y = F(z) = u((—o00,z]) < u((—o0,y]) = F(y). To see that F is right
continuous, notice that for any sequence {xn}zozl N\ &, we have lim,, ,,  F(z,) =lim,_,  p((—o0,z,]) =
lim,,_, . o p(NS, (—o0,z,]) = u((—o0,z,]), where we used continuity from above

(ii) Fix a < b. Then
u((a,b]) = p((—00,b] \ (=00, a]) = p((—00,b]) — p((—00,a]) = F(b) — F(a) = pp((a,b]).

(<) Now fix E € By and consider {(a;, bi]}oil with a; < b, and E C U3, (a;,b;]. By subadditivity and

’i = 27 71
monotonicity, we have

W(E) < (U2 (0 b)) < 3 (b)) < 3 F(b) — Flay).
=1 =1

Now taking the infimum over all covers on the right hand side, we see u(E) < p5(E) = pp(E).

(>) Observe that u(R) = lim,,_,  p((—n,n]) =lim,_, o pp((—n,n]) = pp(R), where we used continuity from
below. Thus we can say

W(E) = p(R) — u(E) 2 pp(R) — pp(E°) = pp(E),
where we used the argument we made in the (<) direction.

O

Given a nonempty set X, and a function f : X — R U {+o0}, with C C X and C # (J, consider the optimization
problem

M := zl:ggf(x) = inf{f(z) : x € C}.

We call

« (C the constraint set

+ [ the objective function
« M the optimum

By definition of the infimum, there exists a minimizing sequence z,,, that is, a sequence {xn}zoz , € C such that
limn—H-oo f(xn) = M.

If 3z € C such that f(z) = M, then we call x an optimizer (since it obtains the optimum).

Lecture 6 Oct 14
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pp(E) = inf{Z:u'F(Ai) tECUZ, A A; € Mu*p}

=1

Proof: HW3 Q2

Given F' : R — R nondecreasing and right continuous, VE C M. ,

pr(E) = pp(E) = inf{iP‘F((ai’bi)) t B CUZ, (ai7bi)}'

Proof: (<) We have this by the previous proposition, since there we are taking the inf over a larger set.

(>) Without loss of generality assume p(E) < +00. Fix € > 0. By definition of p}, 3{(a;, bi]}zl with a; < b, and
E C Ug°, (a;, b;] such that

By continuity from above, we have
Lim #F((aia b; + %)) = pp((a;b;).
Notice that pp((a;,b; + 1)) < pp((a;,b; +1]) = F(b; + 1) — F(a;) < +oc. Further, since F is right continuous at b,
we have F(b, + §) — F(b;) asd — 07. So
pp((ag, b +0)) = F(b; + 6) — F(a;) = F(b;) — F(a;) = p((a;, b;])
asd — 0t
So Vi € N3§; > 0 such that
urp((ag, b +6;)) = pp((a;, b;]) + pp((b;, b; + 6;])

= pr((a;, b;]) + F(b; + 6;) — F(b;)

€
< pp((a; b)) + 9

Thus E C U2, (a;,b; + 0;) and

[:U'F((ai’ b; +96;)) — %

[M]8

pp(E)+e2>

©
Il
iy

pr((a;, b +96;)) —e.

o

~
Il
—

So,
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pp(E) +2e > inf{ZNF((ambi)) t B C U2y (a;,b),a; < bi}

i=1
Sending € — 0 gives the result.

L

Let (X, 7) be a topological space and let ¥ be a o-algebra on X. Let u be a measure on (X, X). A measurable subset
E C X is called inner regular if

w(A) =sup{up(K): K C E, K compact and measurable}.

It’s called inner regular because we are “approximating from within” A measurable subset £ C X is called outer
regular if

u(A) = inf{up(U) : E CU,U open and measurable}

If a measure is both inner regular and outer regular, it is called regular.

A measure p on (X, B(X)) is a Radon measure if it is
(i) Finite on compact sets

(if) Outer regular

(iii) Inner regular

Suppose F': R — R is a nondecreasing, right continuous function. For E' € M . , we have

(*)  pp(E) =inf{pp(U): ECU,U open}
(**) = sup{up(K): K C E, K compact}.

That is, the Lebesgue-Stieltjes Measure is regular.

\ J

Proof: We begin with (*). Fix E € M. .
(<) If we take U open such that E C U, we have pp(E) < pp(U) by monotonicity, so
pp(E) <inf{up(U): E CU,U open}.

(>) Without loss of generality, assume pp(E) < 400. Fix € > 0. By the previous lemma, we have 3{(aq,, bl)}z | With
a; < b, and E C U7°, such that

up(B) +2 2 3 npl(as b)) > up(UZ; (b)) > nf{up(U) : B C U,U open).
=1

Now take e — 0 and we’re done.
Now we do (**). By monotonicity again, (>) is trivial, so we need only show (<).

« Case 1: Assume E C R is bounded. Fix ¢ > 0. By (*), 3U D E \ E, with U open such that
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LEBESGUE-STIELTJES OUTER MEASURE — 3.3

pr(U)

<up(E\E)+e

Let K := E\ U=ENU¢so K is closed. Notice since F is bounded, then K is bounded. Now by the Heine-Borel

Theorem, K is compact. Also, K C FE since

K=EnU°CEN(E\E)=En

Further,
pr(E)
Thus
pp(K) > p
= p
>
> g

Sending £ — 0 we obtain (<), showing F is inner regular.
+ Case 2: Assume E C R is unbounded. Define £, = E N (4, j + 1] with j € Z. By what we’ve already shown, 3K; C

E; with K; compact such that

,UF(

Now let H,, := U

J=n

= i NF(K

j=n

By continuity from below,

n—+0oo

Kj) 2 IU’F(Ej) -

n
lim ,uF( U Ej) =
j=—n

Now if pp(E) < 400, AN € N such that n > N gives

sup{pp(

On the other hand if pp(E) = +o0,

(EnE°)*

&
213l

=FEN(E°UE)=E.

=pp(ENU) +pp(E\U) < pp(ENU) + pp(K).

F(E) —pp(ENT)

F(B) —[ppU) —pp(U\ E)]
(E) = pp(U) + pp(E\ E)
(E) —e.

€

o
K;, which we note is a disjoint union. Observe H,, is compact and H,, C E.Foralln € N,

) > 55 D%(E%)—

=

]__MF( n . E;)—3e

K): K C E,K compact} > u(H,)
> MF(U;L
> pp(E) —

E)—35
4e.

n
hrf MF( U Ej> = 400 = sup{up(K): K C E,K compact} = +00 > pup(E).
n——+oo

j=n

So either way we get the result.
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4 Integration

4.A Measurable Functions

Lecture 7 Oct 16

Suppose (X, M) and (Y, V') are measurable spaces. Then the following are o-algebras:
« {f71(E) : E € N}, which we call the pullback of N
« {E: fY(E) € M}, which we call the push forward of M

f: X — Yis (M, N)-measurable if, for all E € IV, we have f~}(E) € M, i.e., the preimage of every measurable set
is measurable. Note that, we can also write this in terms of the pullback and push forward:

f:X =Y is (M, N)measurable <= {f"}(E): EEN} C M
= (B fYE)eM}DN

\ J

Importantly, when f : X — R (resp R), we can assume the codomain is endowed with By, (resp Bg).

We call f: R — R Lebesgue measurable if it is (M., By )-measurable.

Given X, Y topological spaces, f : X — Y is called Borel measurable if it is (B y, By )-measurable.

Given f : R — R, note that f is Borel measurable => f is Lebesgue measurable.

However, B C M., so the reverse is not true. Thus to be more general, we’ll consider f to be Lebesgue measurable
in the general case in many of the following results.

Given measurable spaces (X, M), (Y, V) where NV is generated by &, then f : X — Y is (M, V')-measurable if and
onlyif VE € &, f1(E) € M.

Proof: (=) is immediate since £ C V.

(<=): Note that £ C {E : f~}(E) € M}. Since NV is the smallest o-algebra containing &, we have N' C {E :
fHE) e M}

L
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If X,Y topological spaces, then every continuous function f : X — Y is Borel measurable.

| Proof: Since f is continuous, VU C Y, f~1(U) is open, so f~1(U) € By.

If (X, M) is a measure space and f : X — R then

f is (M, Bg)-measurable < f~!((a,+o0]) € MVa € R.

I Proof: We showed {(a,+00] : a € R} generate By. Then this follows from the proposition.

Suppose (X, M) is a measure space and let f : X — R be given by f(z) = cVz € X for some ¢ € R. Then f is
(M, Bg)-measurable.

Proof: Given E € By, we have

_ [0 ifc¢E
f 1(E)_{XifceE

Now the result follows from the fact that any o-algebra contains () and X.

O

Fix a measurable space (X, M) and a sequence { fi: X— R}(ﬁl with each f; being (M, Bg)-measurable. Then the
following are also (M, Bg)-measurable:

W) £+ f
@) f,f,

(iii) f; V fy, where (fy V fp)(z) = max{f, (), fo(z)}
(iv) fi A fa, where (f; A f5)(z) = min{f,(z), fo(2)}
(v) sup; f;

(vi) inf; f;

(vii) lim sup;_, . f;

(viii) liminf;, . f;

(ix) lim; ,,  f; (assuming the limit exists)
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Proof:
(i) HW 4
(i) HW4
(iii) Note that
(f1V £2) "' ((a,+00)) = {z € X : (L V fo) (@)}
={zeX: filz)>alU{x: X: fy(z) >a}
= fr'((a,+o0]) U f3 ! ((a, +oo]) € M

(iv) We have f; A fo = —((—f1) V (—f3)), so this reduces to (iii)
(v) We have

(SIZ}p fi)_l((a, +o0]) = {-’L‘ < 2L sty fi(@) > a}

= {z € X : Ji such that f;(z) > a}
=UX, {zeX: fi(x) >a}
= Ule fi_l((a’a +OO]) eM
(vi) Follows from (v)
(vii) Note lim sup; ,, ., = inf, .y sup;sn f;
(viii) Follows from (vii)
(ix) lim,;_, o = lim sup f; whenever the limit exists

Consider f : R — R and g : R — R. Then if both are Borel measurable, notice f o g is Borel measurable. Also if f is
Lebesgue measurable and g is Borel measurable, then f o g is Lebesgue measurable, but g o f isn’t.

4.B Simple Functions

For any A C X, define the indicator function of that set A by

lifze A
140 = {

0 otherwise

Note that for any B in the codomain,

A if1€B,0¢B
Acif1¢ B,0e B
) if0,1¢ B
X if0,1€ B

1,(B) =

Note if A € M, 1, is a (M, Bg)-measurable function.
N b,
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A (M, Bg)-measurable function f : X — R is a simple function if f(X) is a finite set.

In particular, this means we can represent a simple function f by
n
f(z) = Z clg, (z)
i—1

where f(X) = {c;,...,c,} and E; = f~!(c,). This is called the standard representation of that function.

. J

Lecture 8 Oct 21

In the above, notice {EZ}Z , are disjoint and form a partition of the domain.

Consider f(z) = 2 and X = R. Then f(z) = 2 1z (z).

For a measure space (X, M, u) and nonnegative simple function f with standard representation
n
f(@) =) elg, (@)
i—1

we define [ fdp:= Y c;u(E;).
i=1

Vs
.

Suppose for a moment that we allowed negative simple functions. Consider

1 ifz€]0,+00)
fz) = {—1 if z € (—00,0)

Then [ fdX =1-A([0,+00)) + (—1)A((—00,0)) = 00 — 0.

Note the problem this presents! It’s unclear how to define co — oo. Thus for now, we will ignore negative functions.

Vs
.

We will use the following notation for integrals:

/X fdu= /X fl@)n(e) = [ fo)Lxdu(o)

We call this integrating with respect to the measure p on a set X.

Vs
.
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Given a measure space (X, M, p1) and simple functions f,g: X — [0, +00),
() fe>0, fefdp=c [ fdu

(i) [(f+g)dp=[fdu+ [gdu

(ii) f<g= [fdu< [gdu

(iv) The function A — [ " fdu is a measure on (X, M)

| J

Proof:

n
(i) Without loss of generality, suppose ¢ > 0. Then cf = Y ca;1 B,» S0 we have
i=1

[etau=3con(B) =Y au(E) =c [ fap.
p=Il =1

(i) Suppose {El}:l_ , and {F;}m | are disjoint partitions of X with
- =

[rau=YanE) wd  [odu=> bu(E)
i=1 j=1

Observe we can write

7

E=UEnE  E=UEnE
=1 =1

where these are both disjoint unions (which will allow us to get measure equality). Also, observe (f + ¢)(X) =
{e1, -+, ¢o}, and we must have ¢, = a; + b, for some i, j. Therefore, we can say

/fdqu/gd,u = iaiﬂ(Ei) +_§:bjﬂ(Fj)

Jj=1

= Y an(ENE)+ Y bu(ENF)

]

7
0,J

- Y (a+b)u(ENE)

k=1 1i,j:a;+b;=cy,

=gckﬂ( U EOFJ)

i,j:a;+b;=cy,
¢
= Z%N(Gk) where G, := (f +9) " (cz)
k=1

= /(f + g)dp.

(iii) Suppose f < g. Then whenever E; N F, # (), we have a; < b;. Therefore,

/fdﬂ = Zai#(Ei) = Z%‘N(Ei N F}) < ijM(Ei n F}) =
i=1 o

2 J=1

Nt
Q@‘
=
G|
I
—
)
A
=
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(iv) Define v(A) := fA fdu. Notice this is a nonnegative function on M. Now we show v is a measure.
First, observe v(()) = f® fdu=[f-1ydu=0.

Now let {4, }7°  C M be disjoint, and let A := U2, A,. Then we have that

= Z a;u(E; N A)
=il

= Zai Z/L(El N Ak:)
=1 k=1

- Z aiM(Ez N Ak)
k=1 =1

= Z/ az:ﬂ'EﬂAde
k=1 o=l

> [ sau
k=17A,

= Z v(Ag)
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Note that (i) and (ii) ensure that the definition of [ fdy is independent of the representation of f as a nonnegative
linear combination of simple functions.

That is, if
n m
f= 2 el = D dilr
i=1 J=1
representation 1 representation 2

then we have

/(ZciﬂEi —Zdjllp;>du = /(f—f)du= 0
i=1 Jj=1
:ici/]lEid,uzidj/ledu
i=1 =1

n

= ZCiM(Ei) = idjﬂ(ﬁ})-

i=1 j=1

4.C Integration of Nonnegative Measurable Functions

Let (X, M, 1) be a measure space and suppose f : X — [0, +00] is a measurable function. Then we define

/fdu = sup{/godu 0< < fip simple}

as the integral of f with respect to p.
\ )
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(i) Note that if f is simple, this is the same as the previous definition.
(ii) If ¢ = 0, then ¢ fdpu = ¢ [ fdp.If ¢ > 0, then

/cfdu = sup{/cpdu 0<p<cf;p simple}
_ . b o i
= sup{/godu :0< - < fip s1mple}
= sup{c/wd,u 0< Y < fi simple}

= csup{/wdu 0< Y < fi simple}

=c/fdu.

(iii) If f < g, then [ fdu < [ gdp.
L

Lecture 9 Oct 28

Given { fn}zo= , ¢ X — [0, +-00] measurable such that f,, < f,,,,Vn, then

lim fndpz/ lim f,du.
n—oo

n—oo

Proof: Note that both limits exist by monotonicity.

(<) By hypothesis, f,, <lim, , f,.so [ f,dp < [lim, , f,dpu.

(>) Let ¢ : X — [0, +00) be a simple function such that 0 < ¢ < lim_, _ f,,. Without loss of generality take
lim, . [ f,du < +00. Take a € (0,1). Note that if ¢(z) # 0, then ap(z) < lim,,_, , f,,(z). Now define E,, := {z :
f,(x) > ap(z)}. Note this is measurable since it is the preimage of the Borel measurable set [0, +00).

Since f, < f,,1,wehave E; C B, C---C E,, C--- Further, U32 ;| E,, = X because
« if o(z) =0,thenz € E,Vn € N
+ if o(z) > 0then IN suchthatn > N =z € E,,

/fndMZ/ fnduz/ asodu=a/ edp.
E, E, E

n

Therefore,

Now since we showed in the previous proposition that A -+ [ " wdy is a measure, by continuity from below we have

lim /fnd,u > a lim / pdy = a/god,u.
n— 00 n— 00 E

Now take @ — 1.
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Given f : X — [0, +00| measurable, there exists a seqeunce f,, of nonnegative simple functions such that f,, * f
pointwise.

Proof: For n € {0} UN, we chop up the range of f, up to height 2", in increments of height 27". In particular, define
Ey=fY(k2 (k+1)27"]); B, =f(@2 +o0);  k=0,..,22"71

and

2277,—1

fn = Z k2_n]]'Efi + 2n]an
k=0

Some important properties are that:

° fn(m) < fn+1($)vl' eX
c 0< f(z) — fu(z)Ve e X
+ 0< f(z) — fulz) <27"Vz € By

Notice that if z € U2, F¥ then 3N € N such that x € FyVn > N we have
0< f(2) = falz) £27"Vn > N

solim,, . f,(z) = f(x). On the other hand, if z € N2 ; F, then f(z) = 400 and lim,,_,  f,,(z) = lim,,_, 2" =
+00 = f(x)

L

Given { fn}zo= | © X = [0, +00] measurable functions, then

ni_ojl [t | i_ojl fudis

Proof: First, fix f, g : X — [0, +00] measurable. By the previous theorem, El{goi}j: Y {Q/)l}f: | such that p; 7 f, ¢ /7
g pointwise. So ¢, + 9, * f + g pointwise. Therefore

/(f +g)dp = lim ¢; +¢dp
= lim /goi + 1, dp (by MCT)
71— 00
= lim [ ¢;du+ / Y;du
71— 00

= lim [ p,dp+ lim /widu
1— 00 1—00

=/fdu+/gdu.

By induction, VN € N, we have
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N N
/andu= Z/fndu-
i=1 n=1
By the Monotone Convergence Theorem,
0 N MOT o)
nd=lim/ nd:/ ndu.
S [ pauw= tim [S5an™ S [3 g a

[

Now, we introduce one more theorem on interchanging limits and integrals without the monotonicity requirement.

Given { fn}::’=1 : X — [0, +00] measurable,

liminf/fnd,u, > /liminffnd,u.
n—oo n—oo

Proof: By definition, lim inf,_,  f,, = lim,_, inf ., f, = lim;_,  g;. Then by the MCT,
lim /gkd,u Mgr/ lim ¢, dp = /liminffndu.
k—o0 k—o0 n—00

By definition, g, < f,Vk € N, so

lim inf/fnd,u > lim inf/gndu = /lim inf f, dp.
n— oo n—oo n— oo

Take our measure space to be (X, M, p) = (R, My., A).

nooo Jn = 0 pointwise. But

(i) Run away to infinity: Suppose f,, = 1, .- Observe lim

1= lim fnd)\>/lim fndA=0.
n—oo

n—00

(ii) Goes up the spout: Let

_ ) . _JO if#0
fo=nlpays lim fa(@) = {+oo if o — 0
Then
1= lim fnd)\>/lim frndA=0.
n—oo n—oo
Lecture 10 Oct 30

Notice that we haven’t justified that last inequality yet. We do so in the following proposition:
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Given f : X — [0, 4+00| measurable, we have

/fdu =0« f=0 p-almost everywhere, i.e. u({z: f(z) #0}) = 0.

Proof: First suppose f is simple, i.e.,

n
fZZai]lEi, azZO
=1
Then

/fd,u = Z%N(Ei) = 0 < Vi,either a; =0 or pu(E;) =0
i=1
< f=0 p-a.e.
Now consider a general f : X — [0, +00].

(<=) By definition,
/fdu = sup{/ edp:0< p< fp simple} = sup{0} = 0.

(=>) We proceed by contraposition. Assume f = 0 is not p-a.e. Note that {z : f(z) > 0} = U2, {z: f(z) > L}.By
countable subadditivity,

0<pu({z: f(z)>0}) < 2({ %})

So In € Nsuch that pu({z : f(z) > 1}) > 0.Let p = %ﬂ{m:f(xbl}- Then ¢ < f. By definition,

/fduz /goduz %u({x:f(m) > %}) > 0.

L

4.D Integration of Real-Valued Measurable Functions

Suppose we are in a measure space (X, M, u). Given f : X — R, define the “positive part” to be f, := f V 0 and the
“negative part” to be f_ := (—f) V 0. Therefore, f = f, — f_and |f| = f, + f_.

Given f : X — R measurable, if either [ fidp < +ooor [ f du < +oo, then define

/ fdp = / fedp— / fodp.

Ifboth [ f,dp < 400 and [ f_dp < +oo, then we say f is integrable and write f € L' (). Note that this means

the integral can be defined even if f is not integrable.
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Observe that

f integrable <= /f+du < 400 and/f_du < +o00
<=)/f+d,u+/f_d,u<+oo

= [l < +oo.

L*(p) is a real vector space and f > [ fdu is a linear functional on L' (y).

Proof: First we show this is a vector space. Let f,g € L'(u) and a, b € R. Then observe
J1af +vglds< [lal- 171+ 161 lolds =1al [171dse+ 10 loidn < +cc.

Now we check that integration is a linear functional. Fix f € L*(u) with a > 0. Then [afdu = a [ fdu. Now in the
a < 0 case, note af = (—a)(—f), so the result follows. Finally, for any f, g € L*(u), we have

/(f +g)du = /(f +g) dp — / (f +g)_du

:/h@+/hw—/ﬁw—/ﬂw

= / fdp + / gdp.
We justify the second equality by noting

f+9)s—(F+9_=—f)+ (9 —9)
= (f+9),+f +g =f +g9,+(F+9)_

/(f+g)+dﬂ+/f_d,u+/9_dﬂ=/(f+g)_du+/f+du+/g+du.
H

Note that some steps in the preceding proof were not properly justified, since we haven’t yet shown f € L ()
implies

so by Beppo-Levi,

p({z : f(z) € {—00,+00}}) =0,

so that the values of the function don’t affect the integral value. Thus, we could have some co — co expressions above.
We will show this shortly.

. J
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If f € L*(p), then | [ fdp| < [|fldu.

Proof: Simply observe

’/ﬁ%s/ﬁ@+/ﬁwz/m@.

Now, it would be nice if we could show L' (1) is a normed vector space, with norm

If = gl = / 1 — gldg.

The problem is that based on the theory laid out thus far, the norm would be degenerate, meaning 3 f, g with f # g such
that "f = g||L1(H) =0.

If f,g € L'(p) then [|f —gldu =0« f = g p-ae.

Proof: (<) If f = g p-a.e., then |f — g| = 0 u-a.e., so
/ |f —gldp = 0.

(=) Suppose [|f — g|dp = 0. Since |f — g| > 0, we must have |f — g| = 0 p-a.e, and thus f = g p-a.e.
L]

Importantly, this corollary tells us that if an integrable function is modified on a null set, then it doesn’t change the
integral. Further, even if a function f is only defined y-.a.e, [ fdu is still well-defined. This motivates an improved
definition for L*(u).

We define

IR

{f : X ﬁ@measurable,/m < +oo}/ ~

where f ~ gif f = g p-ae.

.

By abuse of notation, we will let f € L'(u) denote
« the equivalence class

.

« arepresentative of the equivalence class

« arepresentative that is only defined p-a.e.
. J/
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1£122(s) = J1f1dp is a norm on L (s,

Proof: nondegeneracy, triangle inequality, positive homogeneity

4.E Dominated Convergence Theorem

Now, we move onto results that allow us to interchange limits and integrals for real valued functions.

Given {f,}>° C L' (u) such that lim,, , _ f,, exists p-a.e., if 3g € L'(p) such that |f,| < g¥n € N p-a.e., then

n— oo

lim fnd,u=/ lim f,du
n—oo

Proof: Since lim,,_, . f, exists y-a.e. and | f,,| < g p-a.e. Vn € N, we have lim,, , _ f,, € L (u). (Note there is a
subtlety in that the f,,’s may be p-a.e. in different places, but this is irrelevant because we can just take the countable

union of those sets.)

Since g — f,, > 0, g + f,, > 0 p-a.e., by Fatou’s Lemma (can be invoked due to nonnegativity) we have

/gd,u + lim inf/ f,, = lim inf/g + fdp > /lim infg + f,du

= /gdu+/lirginffndu.

/gdu—lim sup/fnd,uzlimsup/gdu—/fndu
n—oo n—oo

> lim inf/g— fndp
n— oo

Likewise,

> /liminfg—fndu
n—oo

z/gd,u-l-/ lirginf(—fn) du

/ gdp — / hm sup f
n—oo
Since [ g < +o0, this gives

/ lim f,dp = /hmsupf dp > hmsup/fnd,u > liminf/fndu > /lim inffnduz/ lim f,du.
n—oo n—oo n— oo n—oo

n— oo

Thus lim,,_, [ f,, exists and in fact,
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lim fnd,uz/ lim f,du.
n—oo n—oo

as desired.

Note that the Dominated Convergence Theorem does not require that g is bounded.

In fact, g bounded # g € L' (u), since we can take g(z) = 1 for example, and g € L' (1) # g bounded, since we can
for example take

0 otherwise

g(x)z{%ifxe(o,u

Then

Vs
.

Lecture 11 Nov 4

Define the support of a function f to be the closure of the set on which f is nonzero:

supp f = {z : f(z) # 0}.

s
|

Now we apply the DCT to two useful subsets of functions that are dense in L*(u).

For any measure space (X, M, ), simple functions are dense in L ().

For Lebesgue-Stiltjes measures on R, the following are also dense in L' (11):

(6)) Simple functions of the form & = % a;1 By F, = :1’1 I,; for disjoint open intervals {Ii’ J}::’l

(i) C.(R)={f:R — R where f is cholntinuous and supp f is compact}

Note that by definition, supp f is closed, so by the Heine-Borel theorem, we mean by the above that the support is
bounded.

Vs
|

Proof: Fix f € L' (u). Since f, and f_ are nonnegative measurable functions, 3 simple functions v,,, ¢,, such that
Y, / fyand ¢,  f_. Further,

(W — 0n) — F] " 0 and |(1, — @) — F] < ¥ + 00 + | £] < 2I]-

Thus by the Dominated Convergence Theorem,

tim_ [ 11, — gl = Sldn = [l (0, — ) = fld = [ 0du =0,

n—+o0o
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Now suppose u is a Lebesgue-Stieltjes measure on R. We will show that simple functions can be approximated by a
function of the form (i) and functions of the form (i) can be approximated by C.(R).

Fix a simple function ¢ € L' (u). We may express ¢ as
= Z a;lpg, where a; # 0V, {Ej}:zl are disjoint
j=1
Thus Vj, we have ‘aj|,u( ) < [leldp < +o0 so M(Ej) < 400V

Now by HW4 Q2, recall that for any E' € M . with pi(E) < 400, for all € > 03 disjoint open intervals {Ii}izl such
that

pr(BAUL I') <e

Thus for all € > 03 disjoint open intervals {I J’}m’l such that
=

€
W(EAU I) < — S
nmax;|a;|

Therefore,

n

=Y alyr <Z|aJ|H1E | <e

=i 1 i L ( )

/ L*(p)
This shows functions of the form (i) are dense in L' ().
It remains to prove (ii). Fix a function of the form (i),

n
&= Z aj ]luzjl I;
j=1
Let € > 0. For any open interval I?, there exists f]’ € C.(R) such that ‘f -1, < e. Now
L (p)

nn—mbw=[1

a—%,a

e el ) (o)

by continuity from above, using the fact that Lebesgue-Stieltjes measures are locally bounded. Thus V4, j3 f; €
C.(R) such that

&

fl ]]_I’L

<
L)  nmax;|a;| max;|m;|

Therefore,

< B.
L1 ()

n iy
. %
mp = 05|21
=1 i=1

n m; .
SE}MJE}H%@ —
p= =

L ()

Now we proceed with one more theorem on interchanging limits and integrals:
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Fix a < b. Consider f : X X [a,b] — R with z,t) — f(z,t). Suppose
@ f(-t) € L' (p)Vt € [a, b]

(ii) & (z,t) exists ¥(z,t) € X x [a,b]

(iii) 3g € L*(u) such that ‘%(m,t)‘ < g(z)V(z,t) € X X [a,b]

Thent > [, f(z,t)du(z) is differentiable and

5 [ S 0iue) = [ G 0autz)

Proof: Fix t, € [a, b] and suppose {tn}:;l C [a,b] \ {t,} with t,, — t,. By (ii),

hin ()
TFram f(x7tn) B f(x7t0) _ g(l‘,to).
n—o0 t, —to ot
So % (+,t) is measurable. By the Mean Value Theorem,
Bf (iif)
[ha (@) < sup |=(,8)| < g(z)
te(a,b)

By the Dominated Convergence Theorem,

i L)) = [ S t)dnta) L

n—oo tn — tO n—o00

_ / lim A, (2)dp(z)

n—oo

- [Fat)aut).
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5 Convergence and Product Measures

5.A Modes of Convergence

Let (X, M, i) be a measure space where f,, f : X — R are measurable.

Recall from undergraduate analysis the idea of uniform convergence:

n—oo

(1) sup|f,(z) = f(x)] — 0

zeX

and pointwise convergence:

n—oo
@) f.@) =S f@)va e X.
We introduce the notion of pointwise p-a.e. convergence:
n—oo

(3) f.(x) — f(z)p-ae Ve X

and recall our prior notion of L!(p) convergence:
n—o00 X
@) 1a =l =3 0 tim_ [1f, = fldu(z) =0

We wish to understand exactly how these various modes of convergence are related. It is easy to see that (1) = (2) and
(2) = (3). The following examples illustrate that other relations are less clear.

Let f,, = %Il[o’n] and f = 0. Then | f,, — f] ,, W= 1£nll = 1 + 0. But this converges uniformly, showing that (1)
# (4).

Forn > 1, write n = 2F + jwhere 0 < j < 2k Then define

Fo = Ljjpar (1)24-

L

Notice that f,, does not converge pointwise, since there it infinitely oscillates between 0 and 1, and [ f,,[ ,, w=F
0, so it converges in L' (p). Thus shows that (4) # (3).
\. J/
Lecture 12 Nov 6

Thus, we need to modify our L*(u) convergence definition so that we can relate it to the other modes of convergence.
Inspired by our work with the DCT, we might try adding a dominating function to (3). It turns out that with this addition,
we will have (3) = (4) In particular, suppose 3g € L' () such that |f,,(x)| < g(z) p-a.e. Then we can notice |f,,(x) —
f(z)] <2g(x) p-a.e., so by the DCT,

tm [1£,0) ~ f@ldua) = [ lim |, () - f(@)ldu(a) =0.
What about the other direction?
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We will work to show (4) = (3) “up to a subsequence”, by which we mean 3f,, such that f,, — f p-a.e. Our strategy
will invoke a new concept...

5.B Convergence in Measure

A sequence of measurable functions f,, : X — R converges in measure to a limiting measurable function f : X —
R if Ve > 0,

im p({z:|f,(z) — f(z)| > €}) = 0.

n—oo

Likewise, f,, is Cauchy in measure if Ve > 0,

im p({z:|f,(2) = fn.(2)] > €}) = 0.

n,M—00

Vs

On homework, we will show that when u(X) < +00, convergence in measure is metrizable.

Vs

In fact, for arbitrary (X, M, i), convergence in measure = Cauchy in measure.

y

|

Proof: Fix € > 0. Then
@:1fa@) ~ fm(@)| 2 e} € {o: |fale) - @] 2 £} U
{23 1ful@) — f@) 2

since otherwise | f,,(€) — f,,(2)| < [f,(2) — f(2)| + | (2) — f(2)| < 5 + § = &, contradicting [ f,,(2) — fn(2)] >
. Now by subadditivity,

p{z s 1fa(@) = (@) 2 ) < p({o: 1ful@) - f@) 2 2}) +
=u({z: ful@) - f@1 2 £}).

N ™

As n,m — 400, the right hand side goes to zero, so f,, is Cauchy in measure.

|.

Consider f,, : X — R measurable.

(i) If f,, is Cauchy in measure, then 3f : X — R measurable such that
(@) f, — fin measure
(b) 3f,, suchthat f,, — f p-ae.

(i) If in addition f,, — ¢ in measure, then f = g p-a.e.

Vs

|
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Proof: First, we must find our guess for f. Since f,, is Cauchy in measure, 3f,, such that Vk € N we have

1 1
pl gz fo, (@) = fo,, (@) 2 (| <2
L
9x(z)

Define
F, —UEk and G := UF,;.
k=¢ (=1l
Note thatifz ¢ F) & x € N2, Ey, thenfori > j > ¢,
‘1 1
|gz(93) | S Z|gk gk+1 )| < Zz_k < 51"
k=j

Thus if z ¢ F, for some £ € N, then z € G and {g;(z)} ", is Cauchy, so it converges to lim, , ., g;(z) € R.

Now define
~ lim;_, gi(x)ifz e
fle) = {O if x € G¢
Further,
() ~ 1
WG = p eﬂFé < u(F) < oy
=1
so u(G¢) =0.So f,, = g — f p-ae.
This shows (i)(b). Now we show (i)(a).
Ifa: € Fyand j > { then | f(z) (z)| = lim, ,|g;(x) — g;(«)| < 5. Therefore by contraposition, if | f(z)
|> 1andg>€wehave:c€]*}
Thus for all ¢ > 0 and ¢ € N large enough so that ¢ > 2@% if j > £, then
1 1
ul{e 1@ = g5(@)| 2 e}) < u{o: [f@) — 0,00 > 75 }) <ulB) < 55

So fnj = g; — [ in measure. Now applying the same argument as before,

{z:|f(2) — f(z)| 2 e} C {m | fu(@) = fo,(@)] 2 %} U {x | f, (@) — £(2)] 2 g}
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Sending n, j — +o0 shows f,, — f in measure.

Finally we show (ii). Suppose f,, — ¢ in measure and fix € > 0. By the same argument,
€ €
u{z: 1f@) —9@)| = ) <u({o: 1f@) — @) = 2 }) +u({z: 1£a@) —g@)] = £ }).
By (i) and the given, notice the right hand side goes to zero as n — 400, and the left hand side is independent of n so

p{z - lg(z) — f(z)] 2 €}) =0

and

(fe  lg(a) — (@) > 0) = M(G{x |9(@) — )] 2 %}) < n({z: o) sl 2 £}) =0

k=1 1

so f = g p-ae.

We now apply these results to study convergence in L ().

(i) If f, is Cauchy in L' (), then it’s Cauchy in measure.

(ii) If f,, is convergent in L'(p), then it’s convergent in measure.

Proof: If f, is convergent in L' (), because L' (1) is a metric space, we have that f,, is Cauchy. Then (i) from the
previous proposition implies f,, is Cauchy in measure.

Define E,, ,, . := {z : |f,(z) — f,,(z)] > €}. Then

X

n,m,e n,m,e

Since f,, is Cauchy in L' (), n,m — +0o means the right hand side goes to zero. So f,, is convergent in measure.

O]

If £, is Cauchy in L' (u), then f € L'(u) and a subsequence fn, suchthat f, — f p-ae.

Proof: By the previous theorem, f,, is Cauchy in measure. By previous proposition, 3f : X — R measurable such that
fn, = f p-a.e. It remains to show f € L (). By Fatou’s Lemma,

< +00

k—+00 L(u)

Jian = [ mints, < ymgnt 17,0 = mine] .|

L' () is a Banach space, that is, a complete normed vector space.
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Proof: Let f, be Cauchy in L' (). By the previous corollary, 3f € L (u) and a subsequence fn, suchthat f, — f p-
a.e. By Fatou’s Lemma,

Lt ()

flin, = sl = [ imntls, g, < i, ~ 5,

Thus the left hand side goes to zero as k — +co so f,, — fin L' (). Finally, on any metric space, if a subsequence of
a Cauchy sequence converges to a limit, then the whole sequence must converge to the same limit.

O

So to summarize the modes of convergence:

up to subseq
fo— fin L'(p) = f, = f inmeasure = f,, =  fp-ae

5.C Product Measures

Lecture 14 Nov 13

Let
« {(X,, M, a)}ae 4 a countable collection of measurable spaces

o X = H X,
acA
+ Let 7, denote the projection of X onto X, som, : X = X,

\

The product o-algebra is

®MQ=M<{HEQ:EQEMQ}>

acA acA

For example, if each £, = [a,b] C R, then we define a rectanglar prism.

.

.

Our first goal is to show ®j= , Br = Bga.

Given &, C 2%a such that X, € &, and M, = M(&,) then

%Ma =M({01;£Ea . B, eea})

Proof: HW7

Recall the following facts, which will be useful in the following the following theorem:
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(i) {XZ}:L= | separable = X = Hl X, separable
1=
(ii) In a separable metric space, every open set can be written as a countable union of open balls

(iii) {El}?_ , open = [] E; open
- i=1

d
Given metric spaces X;, X5, ..., X and [[ X, endowed with the metric d . ((21,...,Z4), (Y1, -, Yq)) =
i—1
max; ;<4 d;(2;,y;). Then ®;,1=1 Bx, C Bx. Further, if {Xi}?zl is separable, then By = ®%_; By,

Proof: By the proposition,

éﬂxi =]V[<{1£[E1EZ gXi}) CMHU :U C X open}) = By.

i=1

Since X is endowed with d .,

d
we know B = [[ B, for balls B; C X.

=1

d
d,.x is convenient because B, (z,...,x,) = [[ B,(z;).

i1

Since the definition of By depends only on the topology of X, the result continues to hold if X is endowed with any

equivalent metric.
J

Suppose we have measure spaces (X, M, ) and (Y, NV, v) and rectangles A X B where A € M,B € N.Then M @ N =
M({AxB:AeM,Be N}). Our goal is to prove the existnce of a unique measure w on the measure space (X x
Y, M ® N') with the property

w(A X B) = u(A)v(B)VAEe M,B e N.

We will denote this measure by p ® v := w. To accomplish this goal, we will use the Monotone Class Theorem.

C C 2% is called a monotone class if it is a nonempty collection such that

Given any £ C 2% nonempty, 3 a smallest monotone class containing & denoted C(&).

Proof: HW
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Forany E € M ® N, define the x-section E, and y-section E, by

E,={y:(z,y) € £}
E,={z:(z,y) € E}

Here are some basic properties of sections:

(i) fE=AxB,AeM,Bec N then (i) Given{Ei}ZlgMg)N,

Bifze A oo oo
Ew:{(l)ifx¢A (LJIEZ) {y:(a:,y)EUEZ}
L X

v \0ify¢ B = {y: (=z.9) € E}
=1
= U (Ez)X
i=1
(iii) Given E € M @ N, (iv) f E € M ® N then
(B, ={y: (z,y) € E°} v(E,) = / 1 (y)dv(y) = / 1g(z,y)dv(y)
Y Y

={y: (z,y) € E}°

fEeM@NthenE, € NEY € M,thenVx € X,ye€Y.

Proof: Let £ = {E € M ® NV : above holds}. By a, £ contains all rectangles. By b and ¢, £ is a o-algebra.
By definition, M ® MV is the smallest o-algebra containing all rectangles. Thus M ® NV C &.

Lecture 15 Nov 20
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