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1 Preliminaries

1.A Limits on the Extended Real Line

Our setting for most analysis in measure theory will be the extended real line ℝ = ℝ ∪ {±∞}. We review some 

important results regarding the infimum and supremum from real analysis, adapted to this new setting.

Definition: Infimum and Supremum

Let 𝑆 ⊆ ℝ be a nonempty set.

The infimum (or greatest lower bound) of 𝑆, denoted inf 𝑆, is the largest number 𝑚 such that 𝑚 ≤ 𝑠 for all 𝑠 ∈ 𝑆. 

Equivalently:

(i) 𝑚 ≤ 𝑠 for all 𝑠 ∈ 𝑆 (lower bound)

(ii) For any 𝜀 > 0, there exists 𝑠 ∈ 𝑆 with 𝑠 < 𝑚 + 𝜀 (greatest)

The supremum (or least upper bound) of 𝑆, denoted sup 𝑆, is the smallest number 𝑀  such that 𝑠 ≤ 𝑀  for all 𝑠 ∈ 𝑆. 

Equivalently:

(i) 𝑠 ≤ 𝑀  for all 𝑠 ∈ 𝑆 (upper bound)

(ii) For any 𝜀 > 0, there exists 𝑠 ∈ 𝑆 with 𝑠 > 𝑀 − 𝜀 (least)

We set inf ∅ = +∞ and sup ∅ = −∞ by convention.

Remark: Characterization of Infimum in ℝ

Now that we are in ℝ, the characterization of the infimum and supremum changes a little bit:

Given 𝑌 ⊆ [0, +∞] nonempty, inf(𝑌 ) ∈ {{+∞} if 𝑌 ={+∞}
[0,+∞) otherwise

In the former case, ∀𝜀 > 0, inf 𝑌 = inf 𝑌 + 𝜀 = +∞, and there does not exist 𝑦 ∈ 𝑌 such that 𝑦 < inf 𝑌 + 𝜀.

In the latter case, ∀𝜀 > 0, inf 𝑌 < inf 𝑌 + 𝜀, so inf 𝑌 + 𝜀 is not a lower bound of 𝑌  and there exists 𝑦 ∈ 𝑌  such that 

𝑦 < inf 𝑌 + 𝜀.

Definition: Limit Superior and Limit Inferior

Given a sequence {𝑥𝑛}𝑛∈ℕ ⊆ ℝ, define

lim sup
𝑛→+∞

𝑥𝑛 = inf
𝑘∈ℕ

sup
𝑛≥𝑘

𝑥𝑛 and lim inf
𝑛→+∞

𝑥𝑛 = sup
𝑘∈ℕ

inf
𝑛≥𝑘

𝑥𝑛.

Proposition

Given a sequence {𝑥𝑛}𝑛∈ℕ ⊆ ℝ, we have lim inf𝑛→+∞ 𝑥𝑛 ≤ lim sup𝑛→+∞ 𝑥𝑛.
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Preliminaries Limits on the Extended Real Line — 1.1

Proof: Let {𝑥𝑛}𝑛∈ℕ ⊆ ℝ. Consider the sequences 𝑎𝑘 ≔ inf𝑛≥𝑘 𝑥𝑛 and 𝑏𝑘 ≔ sup𝑛≥𝑘 𝑥𝑛, for a fixed 𝑘.

Now, it is clear that 𝑎𝑘 ≤ 𝑏𝑘∀𝑘 ∈ ℕ, implying lim𝑘→+∞ 𝑎𝑘 ≤ lim𝑘→+∞ 𝑏𝑘.

We claim that 𝑎𝑘 is nondecreasing, since

𝑎𝑘+1 = inf
𝑛≥𝑘+1

𝑥𝑛 ≥ min(𝑥𝑘, inf
𝑛≥𝑘+1

𝑥𝑛) = inf
𝑛≥𝑘

𝑥𝑛 = 𝑎𝑘

Similarly, 𝑏𝑘 is nonincreasing, since

𝑏𝑘+1 = sup
𝑛≥𝑘+1

𝑥𝑛 ≤ max(𝑥𝑘, sup
𝑛≥𝑘+1

𝑥𝑛) = sup
𝑛≥𝑘

𝑥𝑛 = 𝑏𝑘.

Thus by the Monotone Convergence Theorem, we must have that

lim
𝑘→+∞

𝑎𝑘 = sup
𝑘∈ℕ

𝑎𝑘 and lim
𝑘→+∞

𝑏𝑘 = inf
𝑘∈ℕ

𝑏𝑘.

Thus

lim inf
𝑛→+∞

𝑥𝑛 = sup
𝑘∈ℕ

𝑎𝑘 = lim
𝑘→+∞

𝑎𝑘 ≤ lim
𝑘→+∞

𝑏𝑘 = inf
𝑘∈ℕ

𝑏𝑘 = lim sup
𝑛→+∞

𝑥𝑛.

⬜︎

Proposition

For any sequence {𝑥𝑛}𝑛∈ℕ ⊆ ℝ,

lim sup
𝑛→+∞

(−𝑥𝑛) = − lim inf
𝑛→+∞

𝑥𝑛.

Proof: Let {𝑥𝑛}𝑛∈ℕ ⊆ ℝ. Observe that

− lim inf
𝑛→+∞

𝑥𝑛 = − sup
𝑘∈ℕ

( inf
𝑛≥𝑘

𝑥𝑛) definition

= inf
𝑘∈ℕ

(− inf
𝑛≥𝑘

𝑥𝑛) − sup(𝑆) = inf(−𝑆)

= inf
𝑘∈ℕ

(sup
𝑛≥𝑘

(−𝑥𝑛)) − inf(𝑆) = sup(−𝑆)

= lim sup
𝑛→+∞

(−𝑥𝑛) definition

⬜︎

Proposition

For any sequences {𝑥𝑛}𝑛∈ℕ, {𝑦𝑛}𝑛∈ℕ ∈ ℝ,

lim sup
𝑛→+∞

(𝑥𝑛 + 𝑦𝑛) ≤ lim sup
𝑛→+∞

𝑥𝑛 + lim sup
𝑛→+∞

𝑦𝑛,

as long as none of the sums are of the form ∞ − ∞.
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Preliminaries Limits on the Extended Real Line — 1.1

Proof: Let {𝑥𝑛}𝑛∈ℕ, {𝑦𝑛}𝑛∈ℕ ⊆ ℝ. Observe that, for a fixed 𝑛 ≥ 𝑘,

𝑥𝑛 ≤ sup
𝑗≥𝑘

𝑥𝑗 and 𝑦𝑛 ≤ sup
𝑗≥𝑘

𝑦𝑗

so, as long as we have no indeterminate expression of the form ∞ − ∞, we have

𝑥𝑛 + 𝑦𝑛 ≤ sup
𝑗≥𝑘

𝑥𝑗 + sup
𝑗≥𝑘

𝑦𝑗.

Now since the supremum is the least upper bound,

sup
𝑛≥𝑘

(𝑥𝑛 + 𝑦𝑛) ≤ sup
𝑗≥𝑘

𝑥𝑗 + sup
𝑗≥𝑘

𝑦𝑗

Thus taking limits gives

lim sup
𝑛→∞

(𝑥𝑛 + 𝑦𝑛) ≤ lim sup
𝑛→∞

𝑥𝑛 + lim sup
𝑛→∞

𝑦𝑛.

using the same argument as in one of the previous propositions: the limit of a nonincreasing sequence is the same as 

the infimum of that sequence.

⬜︎

Example: Strict Inequality Applies

An example where the strict inequality holds in the previous proposition is 𝑥𝑛 = (−1)𝑛 and 𝑦𝑛 = (−1)𝑛+1. Then 

observe lim sup𝑛→∞(𝑥𝑛 + 𝑦𝑛) = lim sup𝑛→∞((−1)𝑛 − (−1)𝑛) = lim sup𝑛→∞ 0 = 0. But lim sup𝑛→∞ (−1)𝑛 =
1 = lim sup𝑛→∞ (−1)𝑛+1, which can be shown easily through subsequential limits.

Proposition

If 𝑥𝑛 ≤ 𝑦𝑛 for all 𝑛,

lim inf
𝑥→+∞

𝑥𝑛 ≤ lim inf
𝑛→+∞

𝑦𝑛

Proof: Let {𝑥𝑛}𝑛∈ℕ, {𝑦𝑛}𝑛∈ℕ ⊆ ℝ. Since 𝑥𝑛 ≤ 𝑦𝑛, there must exist some 𝑘 so that 𝑛 ≥ 𝑘 ⟹ inf𝑛≥𝑘 𝑥𝑛 ≤ inf𝑛≥𝑘 𝑦𝑛. 

Then we can take the supremum over 𝑘 ∈ ℕ on both sides, giving the result:

sup
𝑘∈ℕ

inf
𝑛≥𝑘

𝑥𝑛 = lim inf
𝑛→+∞

𝑥𝑛 ≤ lim inf
𝑛→+∞

𝑦𝑛 = sup
𝑘∈ℕ

inf
𝑛≥𝑘

𝑦𝑛

⬜︎

Theorem

For any real valued sequence {𝑥𝑛}𝑛∈ℕ ⊆ ℝ,

𝑥𝑛 converges ⟺ lim sup
𝑛→+∞

𝑥𝑛 = lim inf
𝑛→+∞

𝑥𝑛

Furthermore, if either equivalent condition holds, then 𝑥∗ = lim sup𝑛→+∞ 𝑥𝑛 = lim inf𝑛→+∞ 𝑥𝑛 is the limit of 𝑥𝑛.
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Preliminaries Limits on the Extended Real Line — 1.1

1.B Topology

Definition: Topology and Topological Space

A topology 𝜏  on 𝑋 is a collection of subsets of 𝑋 that

(i) Contains ∅ and 𝑋
(ii) Is closed under arbitrary unions

(iii) Is closed under finite intersections

We call the pair (𝑋, 𝜏) a topological space.

Definition: Open and Closed Set

Elements of a topology 𝜏  are called open sets. Complements of open sets are called closed sets.

Definition: Topological Convergence

On a topological space 𝑋, a sequence {𝑥𝑛}𝑛∈ℕ ⊆ 𝑋 converges to a limit 𝑥 ∈ 𝑋 if, for any open set 𝑈  containing 𝑥, 

there exists 𝑁 ∈ ℕ such that 𝑥𝑛 ∈ 𝑈  for all 𝑛 ≥ 𝑁 .

Definition: Compact Set

A topological space 𝑋 is called compact if for every collection 𝐶 of open subsets of 𝑋 such that

𝑋 = ⋃
𝑆∈𝐶

𝑆,

there is a finite subcollection 𝐹 ⊆ 𝐶 such that

𝑋 = ⋃
𝑆∈𝐹

𝑆.

Note that the collection 𝐶 is called an open cover and the finite collection 𝐹  is called a finite subcover.

Theorem: Heine-Borel Theorem

Given 𝑆 ⊆ ℝ𝑛,

𝑆 is compact ⟺ 𝑆 is closed and bounded

1.C The Riemann Integral

Recall that the Riemann integral is the formalization of approximation the area under the graph of a function by using 

approximating rectangles. In particular, for a nonnegative function 𝑓 : [𝑎, 𝑏] → ℝ,

∫
𝑏

𝑎
𝑓(𝑥) d𝑥

should be the area of the set

𝑆 = {(𝑥, 𝑦) : 𝑥 ∈ [𝑎, 𝑏], 0 ≤ 𝑦 ≤ 𝑓(𝑥)}.
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Preliminaries The Riemann Integral — 1.3

If 𝑓  changes sign, we write 𝑓 = 𝑓+ − 𝑓−, where

𝑓+(𝑥) = max{𝑓(𝑥), 0}; 𝑓−(𝑥) = − min{𝑓(𝑥), 0},

with

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = ∫

𝑏

𝑎
𝑓+(𝑥) d𝑥 − ∫

𝑏

𝑎
𝑓−(𝑥) d𝑥 .

We can formally define it as follows. Fix an interval [𝑎, 𝑏], 𝑎 ≠ 𝑏.

Definition: Partition

A partition 𝑃  of [𝑎, 𝑏] is a finite set of points 𝑥0, 𝑥1, …, 𝑥𝑛 satisfying

𝑎 = 𝑥0 < 𝑥1 <⋅ ⋅ ⋅< 𝑥𝑛−1 < 𝑥𝑛 = 𝑏.

Define Δ𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1. For any bounded, real valued function 𝑓 : [𝑎, 𝑏] → ℝ, we may define the upper and lower sums 

with respect to a given partition 𝑃 :

Definition: Upper and Lower Sums

𝑈(𝑃 , 𝑓) ≔ ∑
𝑛

𝑖=1
𝑀𝑖Δ𝑥𝑖, 𝑀𝑖 = sup

𝑥𝑖−1≤𝑥≤𝑥𝑖

𝑓(𝑥),

𝐿(𝑃 , 𝑓) ≔ ∑
𝑛

𝑖=1
𝑚𝑖Δ𝑥𝑖, 𝑚𝑖 = inf

𝑥𝑖−1≤𝑥≤𝑥𝑖
𝑓(𝑥).

This leads to the definition of the upper and lower Riemann integrals:

Definition: Riemann Integrable

Define the upper and lower Riemann integrals of 𝑓  over [𝑎, 𝑏] by

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = inf

𝑃
𝑈(𝑃 , 𝑓)

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = sup

𝑃
𝐿(𝑃 , 𝑓).

If ∫𝑏
𝑎

𝑓(𝑥) d𝑥 = ∫𝑏
𝑎

, then we say 𝑓  is Riemann integrable on [𝑎, 𝑏], and the value of its integral is given by

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 ≔ ∫

𝑏

𝑎
𝑓(𝑥) d𝑥 = ∫

𝑏

𝑎
𝑓(𝑥) d𝑥 .

1.D Limitations of the Riemann Integral

Riemann integration is nice, but falls short in a couple areas. For example, it struggles to handle weird sets and limits.
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Preliminaries Limitations of the Riemann Integral — 1.4

Exercise: A Function where Riemann Integration Fails

Let 𝑓 : [0, 1] → ℝ be the function that is 1 for every rational number and 0 for every irrational number. Prove that 𝑓  

is not Riemann integrable on [0, 1].

Proof: Let 𝑃  be a partition 𝑥0, 𝑥1, …, 𝑥𝑛 of [0, 1] with

0 = 𝑥0 < 𝑥1 <⋅ ⋅ ⋅< 𝑥𝑛−1 < 𝑥𝑛 = 1.

Now examine a particular interval [𝑥𝑖−1, 𝑥𝑖). Since the rationals are dense in the reals, ∃𝑞 ∈ [𝑥𝑖−1, 𝑥𝑖) ∩ ℚ, implying 

that 𝑀𝑖 = sup𝑥𝑖−1≤𝑥≤𝑥𝑖
𝑓(𝑥) ≥ 1. But 𝑓  is also bounded above by 1, so we have 𝑀𝑖 = 1. But since the irrationals are 

also dense in the reals, ∃𝑤 ∈ [𝑥𝑖−1, 𝑥𝑖) ∩ (ℝ \ ℚ), implying that 𝑚𝑖 = inf𝑥𝑖−1≤𝑥≤𝑥𝑖
𝑓(𝑥) ≤ 0. And since 𝑓  is bounded 

below by 0 we have 𝑚𝑖 = 0.

Now since 𝑖 was arbitrary, we have

𝑈(𝑃 , 𝑓) = ∑
𝑛

𝑖=1
𝑀𝑖Δ𝑥𝑖 = ∑

𝑛

𝑖=1
Δ𝑥𝑖 = 1

𝐿(𝑃 , 𝑓) = ∑
𝑛

𝑖=1
𝑚𝑖Δ𝑥𝑖 = 0

But now since our partition was arbitrary, we also have

∫
1

0
𝑓(𝑥) d𝑥 = inf

𝑃
𝑈(𝑃 , 𝑓) = 1

∫
1

0
𝑓(𝑥) d𝑥 = sup

𝑃
𝐿(𝑃 , 𝑓) = 0

so the upper and lower Riemann integrals are different, showing that 𝑓  is not Riemann integrable.

⬜︎

1.E Motivation for Measure Theory

More generally, one of the most important questions that we seek to answer in real analysis is the following: Given 𝑓𝑛 :
[𝑎, 𝑏] → ℝ with 𝑛 ∈ ℕ such that

lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥),

when can we prove that

lim
𝑛→∞

∫
𝑏

𝑎
𝑓𝑛(𝑥) d𝑥 = ∫

𝑏

𝑎
𝑓(𝑥) d𝑥?

Measure theory greatly expands the tools we can use to answer this question.
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2 Introduction to Measures

2.A Problems with the Naive Definition

Lecture 1 Sep 25

Consider a set 𝐸 ⊆ ℝ. For reasons that will become apparent later, it would be nice to have a way to describe the “total 

size” of that set. In particular, we would like to define a function 𝜇 : 2ℝ𝑑 → [0, +∞] (where 2𝑋 for a set 𝑋 denotes the 

power set of 𝑋) such that:

Concept: Ideal Properties of a Measure

(i) We assign the “right size” to simple sets. For example, 𝜇([𝑎, 𝑏]) = 𝑏 − 𝑎 for 𝑎 ≤ 𝑏, and in particular 𝜇([𝑎, 𝑎]) = 0.

(ii) If {𝐸𝑖}
𝑛
𝑖=1 ⊆ 2ℝ𝑑

 are disjoint, then

𝜇(⋃
𝑛

𝑖=1
𝐸𝑖) = ∑

𝑛

𝑖=1
𝜇(𝐸𝑖),

a property which makes 𝜇 finitely additive. We can extend this to the notion of being countably additive:

{𝐸𝑖}
∞
𝑖=1 ⊆ 2ℝ𝑑 disjoint ⟹ 𝜇(⋃

∞

𝑖=1
𝐸𝑖) = ∑

∞

𝑖=1
𝜇(𝐸𝑖).

(iii) 𝜇 is translation invariant. This means that for all 𝐸 ⊆ ℝ𝑑 and 𝑐 ∈ ℝ𝑑, we have 𝜇(𝐸 + 𝑐) = 𝜇(𝐸), where we 

define 𝐸 + 𝑐 = {𝑥 + 𝑐 : 𝑥 ∈ 𝐸}.

Unfortunately for analysts, there is no such function satisfying each of the properties above, a fact proved by Giuseppe 

Vitali in 1905. Before proceeding with the proof of the theorem, we proceed with a quick lemma showing monotonocity of 

finitely additive measures:

Lemma: Monotonicity of Finitely Additive Measures

Given a set 𝑋 and a finitely additive function 𝜇 : 2𝑋 → [0, +∞], then ∀𝐴, 𝐵 ∈ 𝑋, we have

𝐴 ⊆ 𝐵 ⇒ 𝜇(𝐴) ≤ 𝜇(𝐵).

Proof: Observe

𝜇(𝐵) = 𝜇(𝐴 ∪ (𝐵 \ 𝐴))
= 𝜇(𝐴) + 𝜇(𝐵 \ 𝐴)
≥ 𝜇(𝐴).

⬜︎

Now onto the main result:
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Theorem: Vitali Theorem

There does not exist any function 𝜇 : 2ℝ𝑑 → [0, +∞] that satisfies

(i) 𝜇([𝑎, 𝑏]) = 𝑏 − 𝑎 for 𝑎 ≤ 𝑏
(ii) Countable additivity

(iii) Translation invariance

Proof: Assume by contradiction that such a 𝜇 exists.

Define an equivalence relation on ℝ by 𝑥 ∼ 𝑦 ⇔ 𝑥 − 𝑦 ∈ ℚ, with equivalence classes [𝑥] = {𝑦 ∈ ℝ : 𝑦 ∼ 𝑥}.

We claim that every equivalence class contains an element in [0, 1].

Proof: Take some 𝑥 ∈ ℝ and denote its equivalence class by [𝑥]. Let 𝑦 = 𝑥 − ⌊𝑥⌋. Notice that 𝑦 ∈ [𝑥] since 𝑥 − (𝑥 −
⌊𝑥⌋) = ⌊𝑥⌋ ∈ ℤ ⊆ ℚ. Further, 𝑦 ∈ [0, 1] since ⌊𝑥⌋ ≤ 𝑥 ≤ ⌊𝑥⌋ + 1 ⇒ 0 ≤ 𝑥 − ⌊𝑥⌋ ≤ 1. ⬜︎

Thus for each equivalence class, we can choose an element in [0, 1] belonging to that class. Let 𝐴 be the set of elements 

chosen (note that we used the Axiom of Choice to construct this set.)

Now define

𝐵 = ⋃
𝑞∈ℚ∩[−1,1]

(𝐴 + 𝑞).

We claim this is a disjoint union.

Proof: Let 𝑈, 𝑉 ∈ {𝐴 + 𝑞}𝑞∈ℚ∩[−1,1] with 𝑈 ≠ 𝑉 . So ∃𝑞1, 𝑞2 ∈ ℚ ∩ [−1, 1] such that 𝑈 = 𝐴 + 𝑞1 and 𝑉 = 𝐴 + 𝑞2 

with 𝑞1 ≠ 𝑞2. By contradiction suppose 𝑡 ∈ 𝑈 ∩ 𝑉 . Then ∃𝑎1, 𝑎2 ∈ 𝐴 such that 𝑡 = 𝑎1 + 𝑞1 and 𝑡 = 𝑎2 + 𝑞2, so 𝑎1 −
𝑎2 = 𝑞2 − 𝑞1.

Now observe we must have 𝑎1 ≠ 𝑎2, because otherwise 𝑞1 = 𝑞2, contradicting 𝑈 ≠ 𝑉 . Now since 𝑎1 and 𝑎2 are in 

different equivalence classes (since there is only one representative from each), we know 𝑎1 − 𝑎2 ∉ ℚ. But since ℚ is 

closed under addition, we also know 𝑞2 − 𝑞1 ∈ ℚ. Thus we have a contradiction. ⬜︎

We claim that [0, 1] ⊆
(𝑖)

𝐵 ⊆
(𝑖𝑖)

[−1, 2].
• To see inclusion (𝑖𝑖), observe 𝐴 ⊆ [0, 1] and ℚ ∩ [−1, 1] ⊆ [−1, 1], so 𝑎 + 𝑞 ∈ [−1, 2]∀𝑎 ∈ 𝐴, 𝑞 ∈ ℚ ∩ [−1, 1].
• To see inclusion (𝑖), observe given 𝑥 ∈ [0, 1], we have 𝑥 ∈ [𝑎] for some 𝑎 ∈ 𝐴 by our earlier claim. Thus 𝑥 − 𝑎 =

𝑞 for some 𝑞 ∈ ℚ, and since 𝑎 ∈ [0, 1] and 𝑥 ∈ [0, 1], we have 𝑞 ∈ ℚ ∩ [−1, 1], showing 𝑥 ∈ 𝐵.

Now, by the previous lemma and function property (i), we must have

1 = 𝜇([0, 1]) ≤ 𝜇(𝐵) ≤ 𝜇([−1, 2]) = 3.

But we also have

𝜇(𝐵) = 𝜇( ⋃
𝑞∈ℚ∩[−1,1]

(𝐴 + 𝑞)) definition

= ∑
𝑞∈ℚ∩[−1,1]

𝜇(𝐴 + 𝑞) property (ii), since the union is disjoint

= ∑
𝑞∈ℚ∩[−1,1]

𝜇(𝐴) property (iii)

= ∑
∞

𝑖=1
𝜇(𝐴) since ℚ is countably infinite
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Now since 𝜇(𝐵) ≤ 3, we must have 𝜇(𝐴) = 0. But then 𝜇(𝐵) = 0, contradicting 1 ≤ 𝜇(𝐵).

⬜︎

This result tells us that we must weaken at least one of our criteria to get a function with the desired properties.

We might consider loosening property (i). But this is the property that inspired the whole concepts of “measures”, and if we 

change it, we might lose all notion of length and volume. The same goes for property (iii): we want to maintain the 

intuition that translating length leaves it unchanged. Thus, we resolve to modify property (ii).

Notice that Vitali sets broke down our function by taking advantage of countably infinite sets. So, a natural attempt to fix 

this is to replace countable additivity with the weaker notion of finite additivity.

However, this fails too, when we try higher dimensions.

Theorem: Banach-Tarski Paradox (1924)

Given any two bounded subsets with nonempty interior 𝐴 and 𝐵 of ℝ𝑑, with 𝑑 ≥ 3, there exist partitions of 𝐴 and 𝐵 

into a finite number of disjoint subsets

𝐴 = ⋃
𝑛

𝑖=1
𝐴𝑖, 𝐴𝑖 ∩ 𝐴𝑗 = ∅, 𝑖 ≠ 𝑗,

and

𝐴 = ⋃
𝑛

𝑖=1
𝐵𝑖, 𝐵𝑖 ∩ 𝐵𝑗 = ∅, 𝑖 ≠ 𝑗,

such that for each 𝑖 ∈ {1, 2, …, 𝑘}, the sets 𝐴𝑖 and 𝐵𝑖 are congruent. That is, one is obtained from the other through 

translations, reflections and rotations in ℝ𝑑.

This theorem shows, for example, that using the notion of volume given by this naive properties, we can show that a 

baseball and the moon have the same volume.

Thus, let’s reduce the number of sets we consider from being the entire powerset of ℝ𝑑, so that we can prevent these 

pathological problems from popping up.

2.B 𝜎-Algebras

Lecture 2 Sep 30

Then the question becomes: what subsets of ℝ𝑑 might we want to measure?

One way to think about this question is to just assume that we have some existing collection of “measurable” sets, and 

think about them as building blocks. If we can measure two sets, it’s natural to want to be able to measure their union, 

intersection, and complements, since these are the most important operations we perform on sets. So, let’s define some 

structure to encode this idea.

Definition: Algebra of Sets

Let 𝑋 be a nonempty set and let 𝒜︀ ⊆ 2𝑋 be a family of subsets of 𝑋. We say that 𝒜︀ is an algebra of sets if

(i) {𝐸𝑖}
𝑛
𝑖=1 ⊆ 𝒜︀ ⟹ ∪𝑛

𝑖=1 𝐸𝑖 ∈ 𝒜︀ (closure under finite unions)

(ii) 𝐸 ∈ 𝒜︀ ⟹ 𝐸𝑐 ∈ 𝒜︀ (closure under complements)
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Notice that we didn’t bother to include closure under finite intersections, since it follows from the above two properties, as 

the next proposition shows:

Proposition

If 𝒜︀ is an algebra of sets of 𝑋, then

(i) {𝐸𝑖}
𝑛
𝑖=1 ⊆ 𝒜︀ ⟹ ∩𝑛

𝑖=1 𝐸𝑖 ∈ 𝒜︀
(ii) ∅, 𝑋 ∈ 𝒜︀

Proof:

(i) Suppose 𝐸1, …, 𝐸𝑛 ∈ 𝒜︀. By closure under complements, we have 𝐸𝑐
1, …, 𝐸𝑐

𝑛 ∈ 𝒜︀. Since 𝒜︀ is closed under 

countable unions, we have ∪𝑛
𝑖=1 𝐸𝑐

𝑖 ∈ 𝒜︀. Then since 𝒜︀ is closed under complements, we have (∪𝑛
𝑖=1 𝐸𝑐

𝑖 )𝑐 = ∩𝑛
𝑖=1

𝐸𝑖 ∈ 𝒜︀.

(ii) Let 𝐸 ∈ 𝒜︀. Then by closure of complements, we have 𝐸𝑐 ∈ 𝒜︀. Thus 𝐸 ∪ 𝐸𝑐 = 𝑋 ∈ 𝒜︀. By the first part, we also 

have 𝐸 ∩ 𝐸𝑐 = ∅ ∈ 𝒜︀.

⬜︎

Example

(i) 𝒜︀ = 2𝑋

(ii) 𝒜︀ = {∅, 𝑋}
(iii) 𝒜︀ is the set of clopen sets in any topology

(iv) 𝒜︀ is the collection of finite and cofinite subsets of 𝑋

In analysis, we very often deal with limits, so it would be nice to restrict to those algebras which are closed under 

countable unions. This leads us to a very important type of algebra, called a 𝜎-algebra.

Definition: 𝜎-algebra

𝒜︀ ⊆ 2𝑋 is a 𝜎-algebra of subsets of 𝑋 if

(i) 𝒜︀ is an algebra

(ii) 𝒜︀ is closed under countable unions:

{𝐸𝑖}
∞
𝑖=1 ⊆ 𝒜︀ ⟹ ∪∞

𝑖=1 𝐸𝑖 ∈ 𝒜︀

Note that this means that showing closure under complements and countable unions is sufficient to show a set is a 𝜎-

algebra, since we can take sets in the union after a certain 𝑁  to be the empty set.

Remark

A 𝜎-algebra is also closed under countable intersections, which follows from closure under countable unions and 

using De Morgan’s Law.

Remark

Some key differences between a 𝜎-algebras and topologies:

(i) 𝜎-algebras are closed under countable unions while topologies are closed under any unions

(ii) 𝜎-algebras are closed under countable intersections, while topologies are only required to be closed under finite 

intersections
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Lemma

An algebra 𝒜︀ is a σ-algebra if and only if it is closed under countable disjoint unions, that is,

({𝐸𝑖}
∞
𝑖=1 ⊆ 𝒜︀ disjoint ⟹ ⋃

∞

𝑖=1
𝐸𝑖 ∈ 𝒜︀) ⟺ 𝒜︀ is a 𝜎-algebra

Proof: The ⟸ direction is clear from the definition of a 𝜎-algebra.

For the ⟹ direction, let 𝒜︀ be an algebra closed under countable disjoint unions. Then let {𝐸𝑖}
∞
𝑖=1 ⊆ 𝒜︀. Define a set

𝐹𝑖 = 𝐸𝑖 \ ∪𝑖−1
𝑗=1 𝐸𝑗 = 𝐸𝑖 ∩ (∪𝑖−1

𝑗=1 𝐸𝑗)
𝑐

= 𝐸𝑖 ∩ (∩𝑖−1
𝑗=1 𝐸𝑐

𝑗 ) ∈ 𝒜︀.

To see this a sequence of disjoint sets, suppose by contradiction 𝑥 ∈ 𝐹𝑎 ∩ 𝐹𝑏 with 𝑎 < 𝑏 without loss of generality. 

Then 𝑥 ∈ 𝐸𝑏 and 𝑥 ∉ ∪𝑏−1
𝑗=1 𝐸𝑗, so 𝑥 ∉ 𝐸𝑎, contradicting 𝑥 ∈ 𝐹𝑎.

Since 𝐸𝑖 ⊆ 𝐹𝑖, we have ∪∞
𝑖=1 𝐸𝑖 ⊆ ∪∞

𝑖=1 𝐹𝑖. Now let 𝑥 ∈ ∪∞
𝑖=1 𝐹𝑖, so 𝑥 ∈ 𝐹𝑘 for some 𝑘 ∈ ℕ. Thus 𝑥 ∈ 𝐸𝑘, so 𝑥 ∈ ∪∞

𝑖=1
𝐸𝑖.

Then {𝐹𝑖}
∞
𝑖=1 ⊆ 𝒜︀ is a sequence of disjoint sets, so ∪∞

𝑖=1 𝐸𝑖 = ∪∞
𝑖=1 𝐹𝑖 ∈ 𝒜︀.

⬜︎

Exercise

Any algebra that is closed under countable increasing unions is a 𝜎-algebra. (We say that an algebra 𝒜︀ is closed under 

countable increasing unions if, for all {𝐸𝑖}
∞
𝑖=1 ⊆ 𝒜︀ with 𝐸𝑖 ⊆ 𝐸𝑖+1 for all 𝑖, ∪∞

𝑖=1 𝐸𝑖 ∈ 𝒜︀.)

Proof: Let 𝒜︀ be an algebra closed under countable increasing unions. Then let {𝐸𝑖}
∞
𝑖=1 ⊆ 𝒜︀. Define a set

𝐹𝑖 = ⋃
𝑖

𝑗=1
𝐸𝑗 ∈ 𝒜︀

Notice that 𝐹𝑖 ⊆ 𝐹𝑖+1, so {𝐹𝑖}
∞
𝑖=1 ⊆ 𝒜︀ is a countable increasing sequence. Now 𝐸𝑖 ⊆ 𝐹𝑖 is clear so ∪∞

𝑖=1 𝐸𝑖 ⊆ ∪∞
𝑖=1 𝐹𝑖. 

Let 𝑥 ∈ ∪∞
𝑖=1 𝐹𝑖, so 𝑥 ∈ 𝐹𝑗 for some 𝑗 ∈ ℕ, meaning 𝑥 ∈ 𝐸𝑘 for some 1 ≤ 𝑘 ≤ 𝑗. Thus 𝑥 ∈ ∪∞

𝑖=1 𝐸𝑖.

Then we have ∪∞
𝑖=1 𝐸𝑖 = ∪∞

𝑖=1 𝐹𝑖 ∈ 𝒜︀.

⬜︎

Note

Of our examples of algebras, notice that (i) and (ii) are 𝜎-algebras, but (iii) and (iv) are not if |𝑋| = +∞.

Definition: Measurable Space and Measurable Set

Given a nonempty set 𝑋 and a 𝜎-algebra ℳ︀ ⊆ 2𝑋 , we call (𝑋, ℳ︀) a measurable space and 𝐸 ∈ ℳ︀ a measurable 

set.

Lemma

Given any nonempty collection 𝒞︀ of 𝜎-algebras on 𝑋, then ∩ 𝒞︀ = {𝐸 ⊆ 𝑋 : 𝐸 ∈ 𝒜︀, ∀𝒜︀ ∈ 𝒞︀} is a 𝜎-algebra.
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Proof: Let 𝒞︀ be a nonempty collection of 𝜎-algebras on 𝑋. Take 𝒜︀ ∈ 𝒞︀, which can be done since 𝒞︀ is nonempty.

We first show that 𝒞︀ is closed under countable unions. Let {𝐸𝑖}
∞
𝑖=1 ⊆ ∩ 𝒞︀. Then for each 𝐸𝑖, we have 𝐸𝑖 ∈ 𝒜︀. Since 𝒜︀ 

is a 𝜎-algebra, we have ∪∞
𝑖=1 𝐸𝑖 ∈ 𝒜︀. Then since 𝒜︀ was arbitrary, this is true for all 𝒜︀ ∈ 𝒞︀. But this means ∪∞

𝑖=1 𝐸𝑖 ∈
∩ 𝒞︀.

We now show that 𝒞︀ is closed under complements. Let 𝐸 ∈ ∩ 𝒞︀. Then 𝐸 ∈ 𝒜︀, so 𝐸𝑐 ∈ 𝒜︀. Then since 𝒜︀ ∈ 𝒞︀ was 

arbitrary, 𝐸𝑐 ∈ ∩ 𝒞︀.

⬜︎

Proposition

Given 𝐸 ⊆ 2𝑋 , there always exists a smallest 𝜎-algebra containing 𝐸, which we denote by ℳ︀(𝐸) and refer to as the 

𝜎-algebra generated by 𝐸.

Note that by smallest 𝜎-algebra, we mean that all 𝜎-algebras ℱ︀ containing 𝐸 satisfy ℳ︀(𝐸) ⊆ ℱ︀.

Proof: Let 𝐸 ⊆ 2𝑋 . Let 𝒞︀ = {𝒜︀ : 𝒜︀ ⊆ 2𝑋 is a 𝜎-algebra, 𝐸 ⊆ 𝐴}, i.e., this is the collection of 𝜎-algebras containing 

𝐸. Note since 2𝑋 ∈ 𝒞︀, 𝒞︀ is nonempty.

Now by our previous lemma, ∩ 𝒞︀ is a 𝜎-algebra. By definition of 𝒞︀, 𝐸 ⊆ ∩ 𝒞︀ and ∀𝒜︀ ∈ 𝒞︀, ∩ 𝒞︀ ⊆ 𝒜︀.

⬜︎

With those basic properties of 𝜎-algebras proven, we specify further, and investigate a particular very important class of 𝜎-

algebras.

Definition: The Borel 𝜎-algebra

The Borel 𝜎-algebra of 𝑋, denoted 𝐵(𝑋), is the 𝜎-algebra generated by a topology 𝜏 . Its elements are called Borel 

sets.

At this point, with so many definitions introduced in quick succession, we might wonder what exactly a Borel 𝜎-algebra 

looks like. To aid with this, we introduce some quick notation:

Notation

Given some ℱ︀ ⊆ 2𝑋 , denote:

ℱ︀𝜎 ≔ all countable unions of elements of ℱ︀
ℱ︀𝛿 ≔ all countable intersections of elements of ℱ︀
ℱ︀ ≔ all countable complements of elements of ℱ︀

Then we can visualize Borel sets by building them from the “inside out”, a process which gives us the Borel hierarchy:

𝜏 → 𝜏𝛿 → 𝜏𝛿 ∪ 𝜏𝛿 → (𝜏𝛿 ∪ 𝜏𝛿)
𝜎

→ ⋅ ⋅ ⋅⏟
uncountably
many steps

→ 𝐵(𝑋)

Lemma

Fix an open set 𝑈 ⊆ ℝ. There exist {𝑎𝑛}∞
𝑛=1, {𝑏𝑛}∞

𝑛=1 ⊆ ℝ so that 𝑈 = ∪∞
𝑛=1 (𝑎𝑛, 𝑏𝑛).
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Proof: Fix an open set 𝑈 ⊆ ℝ. Since 𝑈  is open, for each 𝑥 ∈ 𝑈 , there exists an open interval of 𝑥 contained in 𝑈 . So 

we have 𝑥 ∈ (𝑎𝑖, 𝑏𝑖) ⊆ 𝑈 , and now by density of ℚ in ℝ, we can find rational numbers 𝑝𝑖 and 𝑞𝑖 such that 𝑥 ∈
(𝑝𝑖, 𝑞𝑖) ⊆ 𝑈 . This implies we can write

𝑈 = ⋃
(𝑝𝑖,𝑞𝑖)⊆𝑈

𝑝,𝑞∈ℚ

(𝑝𝑖, 𝑞𝑖)

and this union is countable since ℚ × ℚ is countable. Thus, we can order the (𝑝𝑖, 𝑞𝑖) pairs, for example by taking the 

𝑝𝑖’s in increasing order.

⬜︎

Proposition

The Borel 𝜎-algebra of ℝ, denoted 𝐵ℝ, is generated by

(i) Open intervals ℰ︀3 ≔ {(𝑎, 𝑏) : 𝑎 < 𝑏}
(ii) Half-open intervals ℰ︀5 ≔ {[𝑎, 𝑏) : 𝑎 < 𝑏}

(iii) Open rays ℰ︀7 ≔ {(𝑎, +∞) : 𝑎 ∈ ℝ}

Proof:

(i) ℳ︀(ℰ︀3) ⊆ ℬ︀ℝ: Let (𝑎, 𝑏] ∈ ℰ︀3. Notice that

(𝑎, 𝑏] = ⋂
∞

𝑛=1
(𝑎, 𝑏 + 1

𝑛
),

where each (𝑎, 𝑏 + 1
𝑛) is in the topology on ℝ, meaning that it is in ℬ︀ℝ. Then ℬ︀ℝ is closed under countable 

intersections as a 𝜎-algebra, so (𝑎, 𝑏] ∈ ℬ︀ℝ. So ℰ︀3 ⊆ ℬ︀ℝ, which clearly implies ℳ︀(ℰ︀3) ⊆ ℬ︀ℝ.

ℬ︀ℝ ⊆ ℳ︀(ℰ︀3): Let 𝑈 ⊆ ℝ be open. By Problem 3, there exist sequences {𝑎𝑛}∞
𝑛=1, {𝑏𝑛}∞

𝑛=1 ⊆ ℝ so that 𝑈 = ∪∞
𝑛=1

(𝑎𝑛, 𝑏𝑛). Now observe

(𝑎𝑖, 𝑏𝑖) = ⋃
∞

𝑛=1
(𝑎𝑖, 𝑏𝑖 − 1

𝑛
].

for each 𝑎𝑖, 𝑏𝑖 in the sequences. Thus

𝑈 = ⋃
∞

𝑖=1
(𝑎𝑖, 𝑏𝑖) = ⋃

∞

𝑖=1
⋃
∞

𝑛=1
(𝑎𝑖, 𝑏𝑖 − 1

𝑛
]

Now since each (𝑎𝑖, 𝑏𝑖 − 1
𝑛] ∈ ℰ︀3 ⊆ ℳ︀(ℰ︀3), and 𝜎-algebras are closed under countable unions, we have 𝑈 ∈

ℳ︀(ℰ︀3). But now ℬ︀ℝ ⊆ ℳ︀(ℰ︀3), since the Borel 𝜎-algebra is generated by the open sets in ℝ.

(ii) ℳ︀(ℰ︀5) ⊆ ℬ︀ℝ: Let (𝑎, +∞) ∈ ℰ︀5. Notice that (𝑎, 𝑛) is clearly open in the topology on ℝ, meaning that it is in ℬ︀ℝ.

Then ℬ︀ℝ is closed under countable unions as a 𝜎-algebra, so (𝑎, +∞) ∈ ℬ︀ℝ. So ℰ︀5 ⊆ ℬ︀ℝ ⟹ ℳ︀(ℰ︀5) ⊆ ℬ︀ℝ.

ℬ︀ℝ ⊆ ℳ︀(ℰ︀5): Let 𝑈 ⊆ ℝ be open. By Problem 3, there exist sequences {𝑎𝑛}∞
𝑛=1, {𝑏𝑛}∞

𝑛=1 ⊆ ℝ so that 𝑈 = ∪∞
𝑛=1

(𝑎𝑛, 𝑏𝑛). Now observe

(𝑎𝑖, 𝑏𝑖) = (𝑎𝑖, +∞) ∩ (−∞, 𝑏𝑖) = (𝑎𝑖, +∞) ∩ [𝑏𝑖, +∞)𝑐 = (𝑎𝑖, +∞) ∩ (⋂
∞

𝑛=1
(𝑏𝑖 − 1

𝑛
, +∞))

𝑐

.

for each 𝑎𝑖, 𝑏𝑖 in the sequences. Thus
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𝑈 = ⋃
∞

𝑖=1
(𝑎𝑖, 𝑏𝑖) = ⋃

∞

𝑖=1[
(𝑎𝑖, +∞) ∩ (⋂

∞

𝑛=1
(𝑏𝑖 − 1

𝑛
, +∞))

𝑐

]


Now since each (𝑎𝑖 + ∞), (𝑏𝑖 − 1
𝑛 , +∞) ∈ ℰ︀5 ⊆ ℳ︀(ℰ︀5), and 𝜎-algebras are closed under countable unions, 

countable intersections and complements, we have 𝑈 ∈ ℳ︀(ℰ︀5). But now ℬ︀ℝ ⊆ ℳ︀(ℰ︀5), since the Borel 𝜎-algebra 

is generated by the open sets in ℝ.

(iii) ℳ︀(ℰ︀7) ⊆ ℬ︀ℝ: Let [𝑎, +∞) ∈ ℰ︀7. Notice that

[𝑎, +∞) = ⋂
∞

𝑛=1
(𝑎 − 1

𝑛
, +∞),

where each (𝑎 + 1
𝑛 , +∞) is in the topology on ℝ, meaning that it’s in ℬ︀ℝ.

Then ℬ︀ℝ is closed under countable unions and intersections as a 𝜎-algebra, so [𝑎, +∞) ∈ ℬ︀ℝ. So ℰ︀7 ⊆ ℬ︀ℝ ⟹
ℳ︀(ℰ︀7) ⊆ ℬ︀ℝ.

ℬ︀ℝ ⊆ ℳ︀(ℰ︀7): Let 𝑈 ⊆ ℝ be open. By Problem 3, there exist sequences {𝑎𝑛}∞
𝑛=1, {𝑏𝑛}∞

𝑛=1 ⊆ ℝ so that 𝑈 = ∪∞
𝑛=1

(𝑎𝑛, 𝑏𝑛). Now observe

(𝑎𝑖, 𝑏𝑖) = ⋃
∞

𝑛=1
[𝑎𝑖 + 1

𝑛
, 𝑏𝑖)

= ⋃
∞

𝑛=1
[[𝑎𝑖 + 1

𝑛
, +∞) ∩ (−∞, 𝑏𝑖)]

= ⋃
∞

𝑛=1
[[𝑎𝑖 + 1

𝑛
, +∞) ∩ [𝑏𝑖, +∞)𝑐]

for each 𝑎𝑖, 𝑏𝑖 in the sequences. Thus

𝑈 = ⋃
∞

𝑖=1
(𝑎𝑖, 𝑏𝑖) = ⋃

∞

𝑖=1
⋃
∞

𝑛=1
[[𝑎𝑖 + 1

𝑛
, +∞) ∩ [𝑏𝑖, +∞)𝑐].

Now since each [𝑎𝑖 + 1
𝑛 , +∞), [𝑏𝑖, +∞) ∈ ℰ︀7 ⊆ ℳ︀(ℰ︀7), and 𝜎-algebras are closed under countable unions and 

complements, we have 𝑈 ∈ ℳ︀(ℰ︀7). But now ℬ︀ℝ ⊆ ℳ︀(ℰ︀7), since the Borel 𝜎-algebra is generated by the open 

sets in ℝ.

⬜︎

Importantly, the Borel 𝜎-algebra of ℝ won’t include Vitali sets, or any other pathological examples of sets that don’t work 

with our desired notion of measure. That makes it a great candidate to use as a 𝜎-algebra for our desired function.

Now, we can define the general notion of a measure, where we restrict the domain to a 𝜎-algebra rather than the entire 

powerset.
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2.C Measures

Definition: Measure and Measure Space

Given a measurable space (𝑋, ℳ︀), a measure is a function 𝜇 : ℳ︀ → [0, +∞] such that:

(i) 𝜇(∅) = 0
(ii) Given a sequence of disjoint sets {𝐸𝑖}

∞
𝑖=1 ⊆ ℳ︀, we have

𝜇(⋃
∞

𝑖=1
) = ∑

∞

𝑖=1
𝜇(𝐸𝑖).

Recall the second property is called countable additivity. We call (𝑋, ℳ︀, 𝜇) a measure space.

Notice that translation invariance is not included. Only some measures have this property.

Example: Dirac Mass / Dirac Measure

Take the measurable space (𝑋, ℳ︀) = (𝑋, 2𝑋). For 𝑥0 ∈ 𝑋, define

𝜇(𝐴) = {1 if 𝑥0 ∈ 𝐴
0 otherwise,

which is often denoted 𝜇 = 𝛿𝑥0
.

Example: Counting Measure

Again take the measurable space (𝑋, ℳ︀) = (𝑋, 2𝑋). Define 𝜇(𝐴) = |𝐴| ≔ # of elements in 𝐴.

Lecture 3 Oct 2

Theorem: Measure Properties

For any measure space (𝑋, ℳ︀, 𝜇) and 𝐴, 𝐵 ∈ ℳ︀ with {𝐴𝑖}
∞
𝑖=1 ⊆ ℳ︀,

(i) 𝐴 ⊆ 𝐵 ⟹ 𝜇(𝐴) ≤ 𝜇(𝐵)
(ii) 𝐴 ⊆ 𝐵 and 𝜇(𝐴) < +∞ ⟹ 𝜇(𝐵 \ 𝐴) = 𝜇(𝐵) − 𝜇(𝐴)

(iii) 𝜇(∪∞
𝑖=1 𝐴𝑖) ≤ ∑

𝑛

𝑖=1
𝜇(𝐴𝑖)

(iv) 𝐴𝑖 ⊆ 𝐴𝑖+1∀𝑖 ∈ ℕ ⟹ 𝜇(∪∞
𝑖=1 𝐴𝑖) = lim𝑖→+∞ 𝜇(𝐴𝑖)  (continuity from below)

(v) 𝐴𝑖 ⊇ 𝐴𝑖+1∀𝑖 ∈ ℕ and 𝜇(𝐴1) < +∞ ⟹ 𝜇(∩∞
𝑖=1 𝐴𝑖) = lim𝑖→+∞ 𝜇(𝐴𝑖)  (continuity from above)

Note that we can understand continuity from below intuitively by thinking of the sets as increasing upwards, like an 

inverted pyramid. Similarly, continuity from above can be thought of as starting at the top of an inverted pyramid and 

going down.

Proof:

(i) Shown in 2.B.

(ii) Let 𝐴 ⊆ 𝐵. Then 𝜇(𝐵) = 𝜇(𝐴 ∪ (𝐵 \ 𝐴)) = 𝜇(𝐴) + 𝜇(𝐵 \ 𝐴). Now since 𝜇(𝐴) < +∞, we have 𝜇(𝐵) − 𝜇(𝐴) =
𝜇(𝐵 \ 𝐴).

(iii) Define 𝐵1 = 𝐴1, 𝐵2 = 𝐴2 \ 𝐴1, …, 𝐵𝑛 = 𝐴𝑛 \ ∪𝑛−1
𝑖=1 𝐴𝑖. Then {𝐵𝑖}

∞
𝑖=1 ⊆ ℳ︀ are disjoint and ∪∞

𝑖=1 𝐵𝑖 = ∪∞
𝑖=1 𝐴𝑖, 

with 𝐵𝑖 ⊆ 𝐴𝑖∀𝑖 ∈ ℕ. Now observe
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𝜇(⋃
∞

𝑖=1
𝐴𝑖) = 𝜇(⋃

∞

𝑖=1
𝐵𝑖) = ∑

∞

𝑖=1
𝜇(𝐵𝑖) ≤ ∑

∞

𝑖=1
𝜇(𝐴𝑖)

where we invoked property (i) in the last step.

(iv) Suppose 𝐴𝑖 ⊆ 𝐴𝑖+1∀𝑖 ∈ ℕ. Define 𝐵1 = 𝐴1 and 𝐵𝑖 = 𝐴𝑖 \ 𝐴𝑖−1 for 𝑖 > 1. By definition, ∪𝑛
𝑖=1 𝐵𝑖 = 𝐴𝑛. Also, 

∪∞
𝑖=1 𝐵𝑖 = ∪∞

𝑖=1 𝐴𝑖. Thus,

𝜇(𝐴𝑛) = 𝜇(⋃
𝑛

𝑖=1
𝐵𝑖) = ∑

𝑛

𝑖=1
𝜇(𝐵𝑖).

But taking 𝑛 → +∞ gives

lim
𝑛→+∞

𝜇(𝐴𝑛) = ∑
∞

𝑖=1
𝜇(𝐵𝑖) = 𝜇(⋃

∞

𝑖=1
𝐵𝑖) = 𝜇(⋃

∞

𝑖=1
𝐴𝑖).

(v) Suppose 𝐴𝑖 ⊇ 𝐴𝑖+1∀𝑖 ∈ ℕ. Define 𝐵𝑖 = 𝐴1 \ 𝐴𝑖. By construction, 𝐵𝑖 ⊆ 𝐵𝑖+1∀𝑖 ∈ ℕ. Then

⋃
∞

𝑖=1
𝐵𝑖 = ⋃

∞

𝑖=1
(𝐴1 \ 𝐴𝑖) = ⋃

∞

𝑖=1
𝐴1 ∩ 𝐴𝑐

𝑖 = 𝐴1 ∩ (⋃
∞

𝑖=1
𝐴𝑐

𝑖) = 𝐴1 ∩ (⋂
∞

𝑖=1
𝐴𝑖)

𝑐

= 𝐴1 \ ⋂
∞

𝑖=1
𝐴𝑖.

Thus,

𝜇(𝐴1) = 𝜇(𝐴1 ∩ (⋂
∞

𝑖=1
𝐴𝑖)) + 𝜇(𝐴1 \ (⋂

∞

𝑖=1
𝐴𝑖))

= 𝜇(⋂
∞

𝑖=1
𝐴𝑖) + 𝜇(⋃

∞

𝑖=1
𝐵𝑖)

= 𝜇(⋂
∞

𝑖=1
𝐴𝑖) + lim

𝑖→∞
𝜇(𝐵𝑖) by (iv)

= 𝜇(⋂
∞

𝑖=1
𝐴𝑖) + lim

𝑖→∞
𝜇(𝐴1 \ 𝐴𝑖)

= 𝜇(⋂
∞

𝑖=1
𝐴𝑖) + lim

𝑖→∞
𝜇(𝐴1) − 𝜇(𝐴𝑖). by (ii)

Now using our assumption that 𝜇(𝐴1) < +∞, we can subtract it from both sides, giving the result.

⬜︎

Example: Why 𝜇(𝐴1) < +∞ is required

Take 𝑋 = ℕ, ℳ︀ = 2ℕ and 𝜇(𝐸) = |𝐸|. Now let our sets be 𝐴𝑖 = {𝑛 ∈ ℕ : 𝑛 ≥ 𝑖}.

Then we get ∩∞
𝑖=1 𝐴𝑖 = ∅ and 𝜇(∩∞

𝑖=1 𝐴𝑖) = 0 ≠ +∞ = lim𝑖→+∞ 𝜇(𝐴𝑖).

We proceed with some important terminology that characterizes measures and the sets they act on:
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Definition: Finite Measure

• We call 𝜇 a finite measure if 𝜇(𝑋) < +∞
• Further, 𝜇 is a 𝜎-finite measure if ∃{𝐸𝑖}

∞
𝑖=1 ⊆ ℳ︀ such that ∪∞

𝑖=1 𝐸𝑖 = 𝑋 and 𝜇(𝐸𝑖) < +∞∀𝑖 ∈ ℕ

Definition: Null Set, 𝜇-almost everywhere

𝐸 ⊆ 𝑋 is a null set of 𝜇 if 𝐸 ∈ ℳ︀ and 𝜇(𝐸) = 0

We say a property holds 𝜇-almost everywhere if the set of points where it fails is a null set

Example: 𝜇-almost everywhere

Suppose we have some 𝑓 : 𝑋 → ℝ. Then 𝑓 = 0 almost everywhere if {𝑥 : 𝑓(𝑥) ≠ 0} ∈ ℳ︀ and 𝜇({𝑥 : 𝑓(𝑥) ≠ 0}) =
0, (that is, if {𝑓 ≠ 0} is a null set).

2.D Limit Inferior and Limit Superior for Sets

Definition: Limit Inferior and Limit Superior for Sets

Given a collection of sets {𝐸𝑖}
∞
𝑖=1, define

lim sup
𝑖→+∞

𝐸𝑖 ≔ ∩∞
𝑘=1 ∪∞

𝑖=𝑘 𝐸𝑖, lim inf
𝑖→+∞

𝐸𝑖 ≔ ∪∞
𝑘=1 ∩∞

𝑖=𝑘 𝐸𝑖.

Proposition: Characterization of lim sup and lim inf on Sets

We can characterize the lim sup and lim inf intuitively by the following:

lim inf
𝑖→+∞

𝐸𝑖 ≔ {𝑥 : 𝑥 ∈ 𝐸𝑖 for all but finitely many 𝑖}

lim sup
𝑖→+∞

𝐸𝑖 ≔ {𝑥 : 𝑥 ∈ 𝐸𝑖 for infinitely many 𝑖}.

Proof: Notice

𝑥 ∈ lim sup
𝑖→+∞

𝐸𝑖 ⟺ 𝑥 ∈ ∩∞
𝑘=1 ∪∞

𝑖=𝑘 𝐸𝑖

⟺ 𝑥 ∈ ∪∞
𝑖=𝑘 𝐸𝑖∀𝑘 ≥ 1

⟺ 𝑥 ∈ 𝐸𝑗 for some 𝑗 ≥ 𝑘∀𝑘 ≥ 1

⟺ 𝑥 ∈ 𝐸𝑖 for infinitely many 𝑖

and

𝑥 ∈ lim inf
𝑖→+∞

⟺ 𝑥 ∈ ∪∞
𝑘=1 ∩∞

𝑖=𝑘 𝐸𝑖

⟺ ∃𝑘 ∈ ℕ such that 𝑥 ∈ ∩∞
𝑖=𝑘 𝐸𝑖

⟺ ∃𝑘 ∈ ℕ such that 𝑥 ∈ 𝐸𝑖∀𝑖 ≥ 𝑘
⟺ 𝑥 ∈ 𝐸𝑖 for all but finitely many 𝑖.

⬜︎
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Exercise

Suppose (𝑋, ℳ︀, 𝜇) is a measure space with 𝜇(𝑋) < +∞. Suppose 𝐴1, 𝐴2, … are sets in ℳ︀ with 𝜇(𝐴𝑖) ≥ 𝑐 > 0 for 

all 𝑖. Let 𝑍 be the set of elements 𝑥 ∈ 𝑋 that belong to infinitely many of the 𝐴𝑖’s. Prove that 𝜇(𝑍) ≥ 𝑐.

Proof: From the previous proposition, we can write 𝑍 = lim sup𝑖→+∞ 𝐴𝑖. Now define 𝐵𝑘 = ∪∞
𝑖=𝑘 𝐴𝑖 so that 𝑍 =

∩∞
𝑘=1 𝐵𝑘. Observe that 𝐵𝑘+1 ⊆ 𝐵𝑘, so by continuity from above (which is justified since 𝜇(𝑋) < +∞), we have

𝜇(𝑍) = 𝜇(∩∞
𝑘=1 𝐵𝑘) = lim

𝑘→+∞
𝜇(𝐵𝑘).

Now since 𝐴𝑘 ⊆ 𝐵𝑘, by monotonicity we have

𝜇(𝐵𝑘) ≥ 𝜇(𝐴𝑘) ≥ 𝑐.

Now take 𝑘 → +∞. Thus we have 𝜇(𝑍) ≥ 𝑐 as desired.

⬜︎
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3.A Outer Measures

Now, we have a good definition for a measure, since we restricted to thinking about the individual “building blocks” rather 

than every possible subset of 𝑋. We also introduced some basic measures.

The key now is to show this notion solves our original difficulty: finding a measure that properly assigns lengths to closed 

intervals [𝑎, 𝑏], and find an associated 𝜎-algebra. In fact, we’ll do this in a general way: given a notion of size, how can we 

find an associated 𝜎-algebra and measure?

Our general plan will be as follows:

(i) Start with a collection of sets containing all sets we want to know how to measure (like 2𝑋)

(ii) Define a way to approximate the measure from the outside (called the outer measure)

(iii) Construct a 𝜎-algebra using the outer measure (this can be done Carathéodory’s criterion, shown later on)

(iv) Obtain an actual measure on that 𝜎-algebra

Assuming our initial collection of sets is 2𝑋 , we proceed with step 2.

Definition: Outer Measure

An outer measure on 𝑋 is a function 𝜇∗ : 2𝑋 → [0, +∞] such that

(i) 𝜇∗(∅) = 0
(ii) 𝐴 ⊆ 𝐵 ⇒ 𝜇∗(𝐴) ≤ 𝜇∗(𝐵)  (monotonicity)

(iii) 𝜇∗(∪∞
𝑖=1 𝐴𝑖) ≤ ∑

∞

𝑖=1
𝜇∗(𝐴𝑖)  (countable subadditivity)

The idea behind property (iii) is that we get a covering of the sets we want, even if there is some wasteful overlap. Then, 

we can make the bound tight and get equality, producing a measure. Also, property (ii) is needed because while it follows 

from countable additivity, it does not follow from countable subadditivity.

Remark

From (ii) and (iii), we have that 𝐸 ⊆ ∪∞
𝑖=1 𝐴𝑖 then 𝜇∗(𝐸) ≤ ∑

∞

𝑖=1
𝜇∗(𝐴𝑖).

In fact, showing this plus (i) is enough to show a function is an outer measure.

Proposition

If 𝜇∗ : 2𝑋 → [0, +∞] satisfies

(i) 𝜇∗(∅) = 0 and

(ii) 𝐸 ⊆ ∪∞
𝑖=1 𝐴𝑖 ⇒ 𝜇∗(𝐸) ≤ ∑

∞

𝑖=1
𝜇∗(𝐴𝑖),

then 𝜇∗ is an outer measure.

Now comes the outer measure for the measure we have been trying to construct:

Example: Lebesgue Outer Measure

Define 𝜇∗ : 2ℝ → [0, +∞] by 𝜇∗(𝐴) = inf{∑
∞

𝑖=1
|𝑏𝑖 − 𝑎𝑖| : 𝐴 ⊆ ∪∞

𝑖=1 (𝑎𝑖, 𝑏𝑖]} with 𝑎𝑖 ≤ 𝑏𝑖.
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We will show that 𝜇∗ has many of the properties we wanted:

• 𝜇∗ is an outer measure

• 𝜇∗ is translation invariant

• 𝜇∗((𝑎, 𝑏]) = 𝑏 − 𝑎∀𝑎 ≤ 𝑏

and it will become a measure when it is restricted to the relevant 𝜎-algebra. Again, how do we actually do this? The 

answer is Caratheodory’s Theorem, which we will now build up to.

3.B Caratheodory’s Theorem

Definition: 𝜇∗ measurable

Given an outer measure 𝜇∗ on 𝑋, 𝐴 ⊆ 𝑋 is 𝜇∗-measurable if

𝜇∗(𝐸) = 𝜇∗(𝐸 ∩ 𝐴) + 𝜇∗(𝐸 ∩ 𝐴𝑐)

for all 𝐸 ⊆ 𝑋.

We can read this as “𝐴 is measurable we can break any set 𝐸 apart nicely.” We use the notation ℳ︀𝜇∗ ≔ {𝐴 ⊆ 𝑋 :
𝐴 is 𝜇∗ measurable}. This is also called Caratheodory’s criterion.

Remark

Suppose we want to show 𝐴 ∈ ℳ︀𝜇∗  By countable subadditivity, we always have

𝜇∗(𝐸) ≤ 𝜇∗(𝐸 ∩ 𝐴) + 𝜇∗(𝐸 ∩ 𝐴𝑐),

so all we need to do is show the ≥ direction.

Note

ℳ︀𝜇∗  is not the “largest” 𝜎-algebra on which 𝜇∗ is a measure. (Update with details later.)

Proposition

For any outer measure 𝜇∗, if 𝜇∗(𝐵) = 0, then 𝐵 ∈ ℳ︀𝜇∗ .

Proof: For any 𝐸 ⊆ 𝑋, by monotonicity we have

𝜇∗(𝐸) ≥ 0 + 𝜇∗(𝐸 ∩ 𝐵𝑐)
= 𝜇∗(𝐸 ∩ 𝐵) + 𝜇∗(𝐸 ∩ 𝐵𝑐)

Thus, 𝐵 ∈ ℳ︀𝜇∗ .

⬜︎

Proposition

(i) ℳ︀𝜇∗  is an algebra

(ii) Given {𝐵𝑖}
𝑛
𝑖=1 ⊆ ℳ︀𝜇∗  disjoint, we have 𝜇∗(𝐸 ∩ (∪𝑛

𝑖=1 𝐵𝑖)) = ∑
𝑛

𝑖=1
𝜇∗(𝐸 ∩ 𝐵𝑖)∀𝐸 ⊆ 𝑋

(iii) 𝜇∗ is finitely additive
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Proof:

(i) Since 𝜇∗(∅) = 0, by the previous proposition we have ∅ ∈ ℳ︀𝜇∗ , so ℳ︀𝜇∗  is nonempty. Further, ℳ︀𝜇∗  is closed under 

complements, since we can just replace 𝐸 with 𝐸𝑐 in the definition.

To see that ℳ︀𝜇∗  is closed under finite unions, it suffices to show that 𝐴, 𝐵 ∈ ℳ︀𝜇∗ ⇒ 𝐴 ∪ 𝐵 ∈ ℳ︀𝜇∗ . Suppose 

𝐴, 𝐵 ∈ ℳ︀𝜇∗ . Fix 𝐸 ⊆ 𝑋.

Then

𝜇∗(𝐸) = 𝜇∗(𝐸 ∩ 𝐴) + 𝜇∗(𝐸 ∩ 𝐴𝑐)
= 𝜇∗(𝐸 ∩ 𝐴) + 𝜇∗(𝐸 ∩ 𝐴𝑐 ∩ 𝐵) + 𝜇∗(𝐸 ∩ 𝐴𝑐 ∩ 𝐵𝑐)
≥ 𝜇∗((𝐸 ∩ 𝐴) ∪ (𝐸 ∩ 𝐴𝑐 ∩ 𝐵)) + 𝜇∗(𝐸 ∩ (𝐴 ∪ 𝐵)𝑐)
= 𝜇∗(𝐸 ∩ (𝐴 ∪ 𝐴𝑐 ∪ 𝐵)) + 𝜇∗(𝐸 ∩ (𝐴 ∪ 𝐵)𝑐)
≥ 𝜇∗(𝐸 ∩ (𝐴 ∪ 𝐵)) + 𝜇∗(𝐸 ∩ (𝐴 ∪ 𝐵)𝑐).

(ii) Suppose {𝐵𝑖}
𝑛
𝑖=1 ⊆ ℳ︀𝜇∗  disjoint. Fix 𝐸 ⊆ 𝑋. Proceed by induction. The base case 𝑛 = 1 is trivial, and now 

suppose it holds for 𝑛 − 1. Then

𝜇∗(𝐸 ∩ (∪𝑛
𝑖=1 𝐵𝑖)) = 𝜇∗(𝐸 ∩ (∪𝑛

𝑖=1 𝐵𝑖) ∩ 𝐵𝑛) + 𝜇∗(𝐸 ∩ (∪𝑛
𝑖=1 𝐵𝑖) ∩ 𝐵𝑐

𝑛)

= 𝜇∗(𝐸 ∩ 𝐵𝑛) + 𝜇∗(𝐸 ∩ ((∪𝑛−1
𝑖=1 𝐵𝑖 ∩ 𝐵𝑐

𝑛) ∪ (𝐵𝑛 ∩ 𝐵𝑐
𝑛)))

= 𝜇∗(𝐸 ∩ 𝐵𝑛) + 𝜇∗(𝐸 ∩ (∪𝑛−1
𝑖=1 𝐵𝑖))

= ∑
𝑛

𝑖=1
𝜇∗(𝐸 ∩ 𝐵𝑖).

(iii) Take 𝐸 = 𝐵𝑖 in (ii).

⬜︎

Proposition

Given {𝐵𝑖}
∞
𝑖=1 ⊆ ℳ︀𝜇∗  disjoint,

𝜇∗(𝐸) = ∑
∞

𝑖=1
𝜇∗(𝐸 ∩ 𝐵𝑖) + 𝜇∗(𝐸 ∩ (∪∞

𝑖=1 𝐵𝑖)
𝑐)

for all 𝐸 ⊆ 𝑋.

Proof: (≤) By subadditivity we have

𝜇∗(𝐸) ≤ 𝜇∗(𝐸 ∩ 𝐵𝑖) + 𝜇∗(𝐸 ∩ 𝐵𝑐
𝑖 )

≤ 𝜇∗(𝐸 ∩ 𝐵𝑖) + 𝜇∗(𝐸 ∩ (∪∞
𝑖=1 𝐵𝑖)

𝑐)

≤ ∑
∞

𝑖=1
𝜇∗(𝐸 ∩ 𝐵𝑖) + 𝜇∗(𝐸 ∩ (∪∞

𝑖=1 𝐵𝑖)
𝑐).

(≥) By (i) of the previous proposition, ℳ︀𝜇∗  is closed under finite unions, so for any 𝑛 ∈ ℕ we have

⋃
𝑛

𝑖=1
𝐵𝑖 ∈ ℳ︀𝜇∗ .

Thus we have
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𝜇∗(𝐸) = 𝜇∗(𝐸 ∩ (∪𝑛
𝑖=1 𝐵𝑖)) + 𝜇∗(𝐸 ∩ (∪𝑛

𝑖=1 𝐵𝑖)
𝑐)

= ∑
𝑛

𝑖=1
𝜇∗(𝐸 ∩ 𝐵𝑖) + 𝜇∗(𝐸 ∩ (∪𝑛

𝑖=1 𝐵𝑖)
𝑐)

where we used part (ii) of the previous proposition. Now take 𝑛 → +∞ and we get the result.

⬜︎

Lecture 4 Oct 7

Theorem: Caratheodory’s Theorem

Given an outer measure 𝜇∗,

(i) ℳ︀𝜇∗  is a 𝜎-algebra

(ii) 𝜇∗ is a measure on ℳ︀𝜇∗

Proof:

(i) Note that we proved ℳ︀𝜇∗  is an algebra two propositions ago, so we need only show that it is closed under 

countable unions. In fact, from this lemma, it is sufficient to show closure under countable disjoint unions.

Thus suppose {𝐵𝑖}
∞
𝑖=1 ⊆ ℳ︀𝜇∗  disjoint. Fix 𝐸 ⊆ 𝑋. Then from the previous proposition we have

𝜇∗(𝐸) = ∑
∞

𝑖=1
𝜇∗(𝐸 ∩ 𝐵𝑖) + 𝜇∗(𝐸 ∩ (∪∞

𝑖=1 𝐵𝑖)
𝑐)

≥ 𝜇∗(𝐸 ∩ (∪∞
𝑖=1 𝐵𝑖)) + 𝜇∗(𝐸 ∩ (∪∞

𝑖=1 𝐵𝑖)
𝑐)

where the second line follows from subadditivity.

(ii) Since 𝜇∗ is an outer measure, we already know 𝜇(∅) = 0. To show countable additivity, we can take 𝐸 = ∪∞
𝑖=1 𝐵𝑖 

in the previous proposition.

⬜︎

Remark

Although Caratheodory’s Thoerem tells us that any outer measure 𝜇∗ gives us a measure when we restrict it to the 

collection of 𝜇∗ measurable sets, it turns out that this is not, in general, the largest 𝜎-algebra on which 𝜇∗ becomes a 

measure. The following exercise shows this.

Exercise

Consider the set 𝑋 = {1, 2, 3}. Define an outer measure as follows:

𝜇∗(𝐴) =
{

0  if |𝐴| = 0

1  if |𝐴| = 1, 2
2  if |𝐴| = 3.

(a) Prove that 𝜇∗ is an outer measure on 𝑋.

(b) Prove that the collection of 𝜇∗ measurable sets is {∅, 𝑋}.

(c) Prove that 𝒜︀ ≔ {∅, {1}, {2, 3}, 𝑋} is a 𝜎-algebra.
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(d) Prove that 𝜇∗ |𝒜︀ is a measure.

This shows that the Caratheodory 𝜎-algebra ℳ︀𝜇∗  is not, in general, the largest 𝜎-algebra on which 𝜎∗ can be 

restricted to be a measure.

Proof:

(i) We confirm each property of an outer measure:

• 𝜇∗(∅) = 0 since |∅| = 0

• Let 𝐴 ⊆ 𝐵. Observe that 𝜇∗(𝐴) is clearly nondecreasing as a function of |𝐴|, meaning that

𝐴 ⊆ 𝐵 ⇒ |𝐴| ≤ |𝐵| ⇒ 𝜇(𝐴) ≤ 𝜇(𝐵).

• Let {𝐴𝑖}
∞
𝑖=1 ⊆ 𝑋. Let 𝐴 ≔ ∪∞

𝑖=1 𝐴𝑖. Clearly we have 𝜇∗(𝐴) ≤ |𝐴|.
‣ If |𝐴| = 0, we have 𝜇∗(𝐴) = 0 ≤ ∑

∞

𝑖=1
𝜇∗(𝐴𝑖), just from nonnegativity of the outer measure.

‣ Suppose |𝐴| ∈ {1, 2}. Notice that if all 𝐴𝑖 = ∅ then we would have 𝐴 = ∅, a contradiction. So at least one 𝐴𝑖 

is nonempty, meaning ∃𝑗 such that 𝜇∗(𝐴𝑗) ≥ 1. Thus 𝜇∗(𝐴) = 1 ≤ 𝜇∗(𝐴𝑖) ≤ ∑
∞

𝑖=1
𝜇∗(𝐴𝑖).

‣ Suppose |𝐴| = 3, in which case 𝜇∗(𝐴) = 2. Then the 𝐴𝑖’s must collectively cover each of {1, 2, 3}.

– If any 𝐴𝑖 has |𝐴𝑖| = 3, then ∑
∞

𝑛=1
𝜇∗(𝐴𝑛) ≥ 𝜇∗(𝐴𝑖) ≥ 2 and we’re done.

– If any 𝐴𝑖 has |𝐴𝑖| = 2, then there must be another set 𝐴𝑗 covering the last element, with |𝐴𝑗| ≥ 1. Thus we 

would have ∑
∞

𝑛=1
𝜇∗(𝐴𝑛) ≥ 𝜇∗(𝐴𝑖) + 𝜇∗(𝐴𝑗) ≥ 1 + 1 = 2, and we’re done.

– If all nonempty 𝐴𝑖 have |𝐴𝑖| = 1, we need at least three of them to cover 𝐴. Thus there exist 𝐴𝑖, 𝐴𝑗, 𝐴𝑘, 

each with outer measure 1 that cover 𝐴, meaning that ∑
∞

𝑖=1
𝜇∗(𝐴𝑖) ≥ 3 and we’re done.

(ii) (⊇) Notice that 𝜇∗(𝐸) = 𝜇∗(𝐸 ∩ ∅) + 𝜇∗(𝐸 ∩ 𝑋), so {∅, 𝑋} are both trivially 𝜇∗ measurable.

(⊆) Let 𝐴 ⊆ 𝑋 be a 𝜇∗ measurable set.

• First suppose that |𝐴| = 1. Without loss of generality take 𝐴 = {1}, and consider 𝐸 = {1, 2}. Then 1 =
𝜇∗({1, 2}) ≠ 𝜇∗({1}) + 𝜇∗({2}) = 2, so this doesn’t work.

• Now suppose that |𝐴| = 2. Without loss of generality take 𝐴 = {1, 2}, and consider 𝐸 = {2, 3}. Then 1 =
𝜇∗({2, 3}) ≠ 𝜇∗({2}) + 𝜇∗({3}) = 2, so this also doesn’t work.

Thus we must have that |𝐴| ∈ {0, 3}, showing that 𝐴 ⊆ {∅, 𝑋}.

(iii) First notice that ∅𝑐 = 𝑋 and {1}𝑐 = {2, 3}, showing closure under complement. Next notice that the only 

nontrivial union is {1} ∪ {2, 3} = 𝑋, showing closure under countable unions.

(iv) Notice that ∅ ∈ 𝒜︀ so 𝜇∗ |𝒜︀ (∅) = 0. For the trivial disjoint sets, notice

𝜇∗ |𝒜︀ (∅ ∪ ∅) = 𝜇∗ |𝒜︀ (∅) = 0 = 0 + 0 = 𝜇∗ |𝒜︀ (∅) + 𝜇∗ |𝒜︀ (∅)
𝜇∗ |𝒜︀ (∅ ∪ 𝐴) = 𝜇∗ |𝒜︀ (𝐴) = 𝜇∗ |𝒜︀ (𝐴) + 0 = 𝜇∗ |𝒜︀ (𝐴) + 𝜇∗ |𝒜︀ (∅)

The only nontrivial disjoint sets in 𝒜︀ are {1} and {2, 3}, and we have

𝜇∗ |𝒜︀ ({1} ∪ {2, 3}) = 𝜇∗ |𝒜︀ (𝑋) = 2 = 𝜇∗ |𝒜︀ ({1}) + 𝜇∗ |𝒜︀ ({2, 3})

which shows that 𝜇∗ |𝒜︀ is indeed closed under disjoint unions, so it is indeed a measure.

⬜︎
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Regardless, now we can take 𝜇∗ in Caratheodory’s Theorem to be the Lebesgue outer measure, as discussed previously. 

This gives us the Lebesgue measure, which has our desired properties.

Instead of proving that those properties hold directly though, it turns out that they hold for a larger class of outer 

measures, and the properties of the Lebesgue measure will become apparent as a special case. Thus, we generalize first.

3.C Lebesgue-Stieltjes Outer Measure

We can generalize the Lebesgue outer measure to the Lebesgue-Stieltjes Outer Measure, which concerns itself with 

nondecreasing, right continuous functions. We briefly review the definition of right continuity:

Definition: Right continuous

A function 𝐹 : ℝ → ℝ ∪ {+∞} is right continuous if ∀𝑥 ∈ ℝ we have lim𝑦→𝑥+ 𝐹(𝑦) = lim𝑦↘︎𝑥 𝐹(𝑦) = 𝐹(𝑥).

Definition: Lebesgue-Stieltjes Outer Measure

Given 𝐹 : ℝ → ℝ nondecreasing and right continuous, define the Lebesgue-Stieltjes Outer Measure 𝜇∗
𝐹 : 2ℝ →

[0, +∞] by

𝜇∗
𝐹 (𝐴) = inf{∑

∞

𝑖=1
|𝐹 (𝑏𝑖) − 𝐹(𝑎𝑖)|} = inf{∑

∞

𝑖=1
|𝐼𝑖|𝐹 }

where 𝐴 ⊆ ∪∞
𝑖=1 (𝑎𝑖, 𝑏𝑖] and 𝑎𝑖 ≤ 𝑏𝑖.

Note that the Lebesgue Outer Measure from before is the case where 𝐹(𝑥) = 𝑥.

Theorem

For any 𝐹 : ℝ → ℝ nondecreasing and right continuous, 𝜇∗
𝐹  is an outer measure on ℝ.

Proof: By definition, 𝜇∗
𝐹 ≥ 0. Since ∅ ⊆ ∪∞

𝑖=1 (0, 0], 𝜇∗
𝐹 (∅) ≤ ∑

∞

𝑖=1
0 = 0, we have 𝜇∗

𝐹 (∅) ≤ 0, so 𝜇∗
𝐹 (∅) = 0.

It remains to show 𝐴 ⊆ ∪∞
𝑖=1 𝐵𝑖 ⇒ 𝜇∗

𝐹 (𝐴) ≤ ∑
∞

𝑖=1
𝜇∗

𝐹 (𝐵𝑖) (which sufficient to prove 𝜇∗
𝐹  is an outer measure via this 

proposition).

Now fix 𝐴 ⊆ ∪∞
𝑖=1 𝐵𝑖. Without loss of generality, ∑

∞

𝑖=1
𝜇∗

𝐹 (𝐵𝑖) < +∞ (because otherwise this is trivially true). Thus 

𝜇∗
𝐹 (𝐵𝑖) < +∞∀𝑖 ∈ ℕ.

Then let 𝜀 > 0 be fixed. Since the outer measure of each 𝐵𝑖 is finite, for each 𝐵𝑖 there exists {𝐼𝑗,𝜀
𝑖 }

∞

𝑗=1
 such that 𝐵𝑖 ⊆

∪∞
𝑗=1 𝐼𝑗,𝜀

𝑖 . Then we have (using the characterization of the infimum in ℝ),

𝜇∗
𝐹 (𝐵𝑖) ≤ ∑

∞

𝑗=1
|𝐼𝑗,𝜀

𝑖 |
𝐹

≤ 𝜇∗
𝐹 (𝐵𝑖) + 𝜀

2𝑖 .

Furthermore,

𝐴 ⊆ ∪∞
𝑖,𝑗=1 |𝐼𝑗,𝜀

𝑖 |
𝐹
.

Thus
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𝜇∗(𝐴) ≤ ∑
∞

𝑖,𝑗=1
|𝐼𝑗,𝜀

𝑖 |
𝐹

≤ (∑
∞

𝑖=1
𝜇∗

𝐹 (𝐵𝑖)) + 𝜀

Now taking 𝜀 → 0 gives the result.

⬜︎

Theorem

For 𝐹 : ℝ → ℝ nondecreasing, right continuous and all 𝑎, 𝑏 ∈ ℝ with 𝑎 ≤ 𝑏, we have

𝜇∗
𝐹 ((𝑎, 𝑏]) = 𝐹(𝑏) − 𝐹(𝑎).

Proof: (≤): Notice that (𝑎, 𝑏] ⊆ (𝑎, 𝑏] ∪ ∅ ∪ ∅ ∪ ⋅ ⋅ ⋅ is a valid covering, immediately giving us 𝜇∗
𝐹 ((𝑎, 𝑏]) ≤ 𝐹(𝑏) −

𝐹(𝑎).

(≥): Without loss of generality let 𝑎 < 𝑏. Suppose (𝑎, 𝑏] ⊆ ∪∞
𝑖=1 (𝑎𝑖, 𝑏𝑖] with 𝑎𝑖 ≤ 𝑏𝑖. Fix 𝜀 > 0. Since 𝐹  is right 

continuous, ∃𝛿𝑖 > 0 such that

𝑏𝑖 ≤ 𝑥 ≤ 𝑏𝑖 + 𝛿𝑖 ⇒ |𝐹(𝑥) − 𝐹(𝑏𝑖)| < 𝜀
2𝑖 .

In particular, take 𝑥 = 𝑏𝑖 + 𝛿𝑖 and observe 𝐹(𝑏𝑖 + 𝛿𝑖) ≥ 𝐹(𝑏𝑖) since it is nondecreasing,

0 ≤ 𝐹(𝑏𝑖 + 𝛿𝑖) − 𝐹(𝑏𝑖) < 𝜀
2𝑖 .

Further,

(𝑎, 𝑏] ⊆ ∪∞
𝑖=1 (𝑎𝑖, 𝑏𝑖] ⊆ ∪∞

𝑖=1 (𝑎𝑖, 𝑏𝑖 + 𝛿𝑖).

Thus we have an open cover for (𝑎, 𝑏], and since [𝑎 + 𝜀, 𝑏] is compact, there exists a finite subcover, meaning that after 

reindexing we have

[𝑎 + 𝜀, 𝑏] ⊆ ∪𝑁
𝑖=1 (𝑎𝑖, 𝑏𝑖 + 𝛿𝑖).

Thus up to reindexing again we have 𝑏1 + 𝛿1 <⋅ ⋅ ⋅< 𝑏𝑁 + 𝛿𝑁 .

Further, for each 𝑖 = 1, …, 𝑁  we have 𝑏𝑖 + 𝛿𝑖 ∈ (𝑎𝑖+1, 𝑏𝑖+1 + 𝛿𝑖+1), since we would have a gap in the cover otherwise. 

Now since 𝐹  is nonincreasing, we have

𝐹(𝑏) − 𝐹(𝑎 + 𝜀) ≤ 𝐹(𝑏𝑁 + 𝛿𝑁) − 𝐹(𝑎1)

= 𝐹(𝑏𝑁 + 𝛿𝑁) − 𝐹(𝑎𝑁) + ∑
𝑁−1

𝑖=1
𝐹(𝑎𝑖+1) − 𝐹(𝑎𝑖)

≤ 𝐹(𝑏𝑁 + 𝛿𝑁) − 𝐹(𝑎𝑁) + ∑
𝑁−1

𝑖=1
𝐹(𝑏𝑖 + 𝛿𝑖) − 𝐹(𝑎𝑖)

= ∑
𝑁

𝑖=1
𝐹(𝑏𝑖 + 𝛿𝑖) − 𝐹(𝑎𝑖)

≤ ∑
𝑁

𝑖=1
𝐹(𝑏𝑖) − 𝐹(𝑎𝑖) + 𝜀

2𝑖

≤ ∑
∞

𝑖=1
𝐹(𝑏𝑖) − 𝐹(𝑎𝑖) + 𝜀

2𝑖
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= 𝜀 + ∑
∞

𝑖=1
𝐹(𝑏𝑖) − 𝐹(𝑎𝑖)

Now sending 𝜀 → 0 gives the result, noting again that 𝐹  is nondecreasing.

⬜︎

Lecture 5 Oct 9

Definition: Lebesgue Measure

In the previous two theorems, taking 𝐹(𝑥) = 𝑥 gives us that

(i) 𝜇∗ is an outer measure

(ii) 𝜇∗((𝑎, 𝑏]) = 𝑏 − 𝑎

And from Caratheodory’s Theorem, (i) gives us that 𝜇∗ is a measure on the 𝜎-algebra ℳ︀𝜇∗ . We call this measure the 

Lebesgue measure; it’s what we were originally after. Since it’s a measure, we can see it satifies countable additivity, 

and by definition, it gives the “right length” to intervals. It remains to show the translation invariance property, which 

we will do shortly.

Notation: Lebesgue Measure

When 𝐹(𝑥) = 𝑥, write

𝜆∗ ≔ 𝜇∗
𝐹 (the Lebesgue outer measure)

ℳ︀𝜆∗ ≔ ℳ︀𝜇∗
𝐹

(the Lebesgue measurable sets)

𝜆 ≔ 𝜆∗ |ℳ︀𝜆∗ (the Lebesgue measure)

Definition: Lebesgue-Stieltjes Measure

Generalizing the above, we now know we can take any 𝐹 : ℝ → ℝ nondecreasing and right continuous and produce 

a measure:

𝜇𝐹 ≔ 𝜇∗
𝐹 |ℳ︀𝜇∗

𝐹
.

We call this the Lebesgue-Stieltjes Measure.

Theorem

For any nondecreasing, right continuous function 𝐹 : ℝ → ℝ, we have ℬ︀ℝ ⊆ ℳ︀𝜇∗
𝐹

.

Proof: Since (−∞, 𝑏] generates the Borel 𝜎-algebra, it suffices to show that (−∞, 𝑏] ∈ ℳ︀𝜇∗
𝐹
∀𝑏 ∈ ℝ, that is, we must 

show that ∀𝐸 ⊆ ℝ, 𝑏 ∈ ℝ, we have

𝜇∗
𝐹 (𝐸) ≥ 𝜇∗

𝐹 (𝐸 ∩ (−∞, 𝑏]) + 𝜇∗
𝐹 (𝐸 ∩ (−∞, 𝑏]𝑐).

Take 𝐸 ⊆ ℝ. Without loss of generality, 𝜇∗
𝐹 (𝐸) < +∞. Fix 𝜀 > 0. By definition, ∃{(𝑎𝑖, 𝑏𝑖]}

∞
𝑖=1 such that 𝐸 ⊆ ∪∞

𝑖=1

(𝑎𝑖, 𝑏𝑖] and ∑
∞

𝑖=1
𝐹(𝑏𝑖) − 𝐹(𝑎𝑖) < 𝜇∗

𝐹 (𝐸) + 𝜀. Observe

(𝑎𝑖, 𝑏𝑖] ∩ (−∞, 𝑏] ⊆ (𝑎𝑖, min{𝑏𝑖, 𝑏})
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(𝑎𝑖, 𝑏𝑖] ∩ (𝑏, +∞) ⊆ (max{𝑎𝑖, 𝑏}, 𝑏𝑖)

so

𝐸 ∩ (−∞, 𝑏] ⊆ ⋃
∞

𝑖=1
(𝑎𝑖, min{𝑏𝑖, 𝑏})

𝐸 ∩ (𝑏, +∞) ⊆ ⋃
∞

𝑖=1
(max{𝑎𝑖, 𝑏}, 𝑏𝑖).

Thus

𝜇∗
𝐹 (𝐸 ∩ (−∞, 𝑏]) + 𝜇∗

𝐹 (𝐸 ∩ (−∞, 𝑏]𝑐) ≤ ∑
∞

𝑖=1
𝐹(min{𝑏𝑖, 𝑏}) − 𝐹(𝑎𝑖)⏟

(I)𝑖

+ ∑
∞

𝑖=1
𝐹(𝑏𝑖) − 𝐹(max{𝑎𝑖, 𝑏})⏟

(II)𝑖

.

Consider the 𝑖th term of the sum:

(i) If 𝑏 ≤ 𝑎𝑖, then (I)𝑖 = 0 and (II)𝑖 = 𝐹(𝑏𝑖) − 𝐹(𝑎𝑖)
(ii) If 𝑏 > 𝑏𝑖, then (I)𝑖 = 𝐹(𝑏𝑖) − 𝐹(𝑎𝑖) and (II)𝑖 = 0

(iii) If 𝑏 ∈ (𝑎𝑖, 𝑏𝑖], then (I) + (II) = 𝐹(𝑏) − 𝐹(𝑎𝑖) + 𝐹(𝑏𝑖) − 𝐹(𝑏) = 𝐹(𝑏𝑖) − 𝐹(𝑎𝑖)

So in general we have

𝜇∗
𝐹 (𝐸 ∩ (−∞, 𝑏]) + 𝜇∗

𝐹 (𝐸 ∩ (−∞, 𝑏]𝑐) ≤ ∑
∞

𝑖=1
𝐹(𝑏𝑖) − 𝐹(𝑎𝑖)

≤ 𝜇∗
𝐹 (𝐸) + 𝜀.

Now taking 𝜀 → 0 gives the result.

⬜︎

Theorem: Translation Invariance of the Lebesgue Measure

The Lebesgue Outer Measure 𝜆∗ is translation invariant on 2ℝ, and 𝜆 is translation invariant on ℳ︀𝜆∗ .

Proof: For any 𝑎 ∈ ℝ and 𝐴 ⊆ ℝ, we have 𝐴 ⊆ ∪∞
𝑖=1 (𝑎𝑖, 𝑏𝑖] ⇔ 𝐴 + 𝑎 ⊆ ∪∞

𝑖=1 (𝑎𝑖 + 𝑎, 𝑏𝑖 + 𝑎], and both have the same 

“length” for 𝐹(𝑥) = 𝑥. Thus 𝜆∗(𝐴) = 𝜆∗(𝐴 + 𝑎), so we have established translation invariance on 2ℝ.

Now we show translation invariance when we restrict to ℳ︀∗
𝜆. Suppose 𝐴 ∈ ℳ︀𝜆∗ . Fix 𝑎 ∈ ℝ. We want to show 𝐴 + 𝑎 ∈

ℳ︀𝜆∗ .

Fix 𝐸 ⊆ ℝ. Note that for any 𝑆 ⊆ ℝ, we have (𝐸 − 𝑎) ∩ 𝑆 = [𝐸 ∩ (𝑆 + 𝑎)] − 𝑎 and (𝑆 + 𝑎)𝑐 = 𝑆𝑐 + 𝑎. Since 𝐴 ∈
ℳ︀𝜆∗ ,

𝜆∗(𝐸) = 𝜆∗(𝐸 − 𝑎)
≥ 𝜆∗((𝐸 − 𝑎) ∩ 𝐴) + 𝜆∗((𝐸 − 𝑎) ∩ 𝐴𝑐)
= 𝜆∗([𝐸 ∩ (𝐴 + 𝑎)] − 𝑎) + 𝜆∗([𝐸 ∩ (𝐴𝑐 + 𝑎)] − 𝑎)
= 𝜆∗(𝐸 ∩ (𝐴 + 𝑎)) + 𝜆∗(𝐸 ∩ (𝐴𝑐 + 𝑎))
= 𝜆∗(𝐸 ∩ (𝐴 + 𝑎)) + 𝜆∗(𝐸 ∩ (𝐴 + 𝑎)𝑐).

⬜︎

Thus, we have shown at last that the Lebesgue Measure solves our initial question.
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Theorem: Characterization of the Cumulative Distribution Function

Suppose 𝜇 is a finite Borel measure on ℝ. Define 𝐹 : ℝ → ℝ by 𝐹(𝑥) ≔ 𝜇([−∞, 𝑥]) (this is called a Cumulative 

Distribution Function. Then

(i) 𝐹  is nondecreasing and right continuous

(ii) 𝜇 = 𝜇𝐹

Proof:

(i) To see that it is nondecreasing, notice 𝑥 ≤ 𝑦 ⇒ 𝐹(𝑥) = 𝜇((−∞, 𝑥]) ≤ 𝜇((−∞, 𝑦]) = 𝐹(𝑦). To see that 𝐹  is right 

continuous, notice that for any sequence {𝑥𝑛}∞
𝑛=1 ↘︎ 𝑥, we have lim𝑛→+∞ 𝐹(𝑥𝑛) = lim𝑛→+∞ 𝜇((−∞, 𝑥𝑛]) =

lim𝑛→+∞ 𝜇(∩∞
𝑛=1 (−∞, 𝑥𝑛]) = 𝜇((−∞, 𝑥𝑛]), where we used continuity from above

(ii) Fix 𝑎 ≤ 𝑏. Then

𝜇((𝑎, 𝑏]) = 𝜇((−∞, 𝑏] \ (−∞, 𝑎]) = 𝜇((−∞, 𝑏]) − 𝜇((−∞, 𝑎]) = 𝐹(𝑏) − 𝐹(𝑎) = 𝜇𝐹 ((𝑎, 𝑏]).

(≤) Now fix 𝐸 ∈ ℬ︀ℝ and consider {(𝑎𝑖, 𝑏𝑖]}
∞
𝑖=1 with 𝑎𝑖 ≤ 𝑏𝑖 and 𝐸 ⊆ ∪∞

𝑖=1 (𝑎𝑖, 𝑏𝑖]. By subadditivity and 

monotonicity, we have

𝜇(𝐸) ≤ 𝜇(∪∞
𝑖=1 (𝑎𝑖, 𝑏𝑖]) ≤ ∑

∞

𝑖=1
𝜇((𝑎𝑖, 𝑏𝑖]) ≤ ∑

∞

𝑖=1
𝐹(𝑏𝑖) − 𝐹(𝑎𝑖).

Now taking the infimum over all covers on the right hand side, we see 𝜇(𝐸) ≤ 𝜇∗
𝐹 (𝐸) = 𝜇𝐹 (𝐸).

(≥) Observe that 𝜇(ℝ) = lim𝑛→∞ 𝜇((−𝑛, 𝑛]) = lim𝑛→∞ 𝜇𝐹 ((−𝑛, 𝑛]) = 𝜇𝐹 (ℝ), where we used continuity from 

below. Thus we can say

𝜇(𝐸) = 𝜇(ℝ) − 𝜇(𝐸𝑐) ≥ 𝜇𝐹 (ℝ) − 𝜇𝐹 (𝐸𝑐) = 𝜇𝐹 (𝐸),

where we used the argument we made in the (≤) direction.

⬜︎

Remark: Optimization Terminology

Given a nonempty set 𝑋, and a function 𝑓 : 𝑋 → ℝ ∪ {+∞}, with 𝐶 ⊆ 𝑋 and 𝐶 ≠ ∅, consider the optimization 

problem

𝑀 ≔ inf
𝑥∈𝐶

𝑓(𝑥) = inf{𝑓(𝑥) : 𝑥 ∈ 𝐶}.

We call

• 𝐶 the constraint set

• 𝑓  the objective function

• 𝑀  the optimum

By definition of the infimum, there exists a minimizing sequence 𝑥𝑛, that is, a sequence {𝑥𝑛}∞
𝑛=1 ⊆ 𝐶 such that 

lim𝑛→+∞ 𝑓(𝑥𝑛) = 𝑀 .

If ∃𝑥 ∈ 𝐶 such that 𝑓(𝑥) = 𝑀 , then we call 𝑥 an optimizer (since it obtains the optimum).

Lecture 6 Oct 14
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Proposition

𝜇𝐹 (𝐸) = inf{∑
∞

𝑖=1
𝜇𝐹 (𝐴𝑖) : 𝐸 ⊆ ∪∞

𝑖=1 𝐴𝑖; 𝐴𝑖 ∈ ℳ︀𝜇∗
𝐹
}

Proof: HW3 Q2

⬜︎

Lemma

Given 𝐹 : ℝ → ℝ nondecreasing and right continuous, ∀𝐸 ⊆ ℳ︀𝜇∗
𝐹

,

𝜇∗
𝐹 (𝐸) = 𝜇𝐹 (𝐸) = inf{∑

∞

𝑖=1
𝜇𝐹 ((𝑎𝑖, 𝑏𝑖)) : 𝐸 ⊆ ∪∞

𝑖=1 (𝑎𝑖, 𝑏𝑖)}.

Proof: (≤) We have this by the previous proposition, since there we are taking the inf over a larger set.

(≥) Without loss of generality assume 𝜇𝐹 (𝐸) < +∞. Fix 𝜀 > 0. By definition of 𝜇∗
𝐹 , ∃{(𝑎𝑖, 𝑏𝑖]}

∞
𝑖=1 with 𝑎𝑖 ≤ 𝑏𝑖 and 

𝐸 ⊆ ∪∞
𝑖=1 (𝑎𝑖, 𝑏𝑖] such that

𝜇𝐹 (𝐸) + 𝜀 = 𝜇∗
𝐹 (𝐸) + 𝜀 ≥ ∑

∞

𝑖=1
𝐹(𝑏𝑖) − 𝐹(𝑎𝑖) = ∑

∞

𝑖=1
𝜇𝐹 ((𝑎𝑖, 𝑏𝑖]).

By continuity from above, we have

lim
𝑛→∞

𝜇𝐹 ((𝑎𝑖, 𝑏𝑖 + 1
𝑛

)) = 𝜇𝐹 ((𝑎𝑖, 𝑏𝑖]).

Notice that 𝜇𝐹 ((𝑎𝑖, 𝑏𝑖 + 1)) ≤ 𝜇𝐹 ((𝑎𝑖, 𝑏𝑖 + 1]) = 𝐹(𝑏𝑖 + 1) − 𝐹(𝑎𝑖) < +∞. Further, since 𝐹  is right continuous at 𝑏𝑖, 

we have 𝐹(𝑏𝑖 + 𝛿) → 𝐹(𝑏𝑖) as 𝛿 → 0+. So

𝜇𝐹 ((𝑎𝑖, 𝑏𝑖 + 𝛿)) = 𝐹(𝑏𝑖 + 𝛿) − 𝐹(𝑎𝑖) → 𝐹(𝑏𝑖) − 𝐹(𝑎𝑖) = 𝜇((𝑎𝑖, 𝑏𝑖])

as 𝛿 → 0+.

So ∀𝑖 ∈ ℕ∃𝛿𝑖 > 0 such that

𝜇𝐹 ((𝑎𝑖, 𝑏𝑖 + 𝛿𝑖)) = 𝜇𝐹 ((𝑎𝑖, 𝑏𝑖]) + 𝜇𝐹 ((𝑏𝑖, 𝑏𝑖 + 𝛿𝑖])
= 𝜇𝐹 ((𝑎𝑖, 𝑏𝑖]) + 𝐹(𝑏𝑖 + 𝛿𝑖) − 𝐹(𝑏𝑖)

≤ 𝜇𝐹 ((𝑎𝑖, 𝑏𝑖]) + 𝜀
2𝑖 .

Thus 𝐸 ⊆ ∪∞
𝑖=1 (𝑎𝑖, 𝑏𝑖 + 𝛿𝑖) and

𝜇𝐹 (𝐸) + 𝜀 ≥ ∑
∞

𝑖=1
[𝜇𝐹 ((𝑎𝑖, 𝑏𝑖 + 𝛿𝑖)) − 𝜀

2𝑖 ]

= ∑
∞

𝑖=1
𝜇𝐹 ((𝑎𝑖, 𝑏𝑖 + 𝛿𝑖)) − 𝜀.

So,
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𝜇𝐹 (𝐸) + 2𝜀 ≥ inf{∑
∞

𝑖=1
𝜇𝐹 ((𝑎𝑖, 𝑏𝑖)) : 𝐸 ⊆ ∪∞

𝑖=1 (𝑎𝑖, 𝑏𝑖), 𝑎𝑖 ≤ 𝑏𝑖}

Sending 𝜀 → 0 gives the result.

⬜︎

Definition: Outer Regular and Inner Regular Measures

Let (𝑋, 𝜏) be a topological space and let Σ be a 𝜎-algebra on 𝑋. Let 𝜇 be a measure on (𝑋, Σ). A measurable subset 

𝐸 ⊆ 𝑋 is called inner regular if

𝜇(𝐴) = sup{𝜇𝐹 (𝐾) : 𝐾 ⊆ 𝐸, 𝐾 compact and measurable}.

It’s called inner regular because we are “approximating from within.” A measurable subset 𝐸 ⊆ 𝑋 is called outer 

regular if

𝜇(𝐴) = inf{𝜇𝐹 (𝑈) : 𝐸 ⊆ 𝑈, 𝑈 open and measurable}

If a measure is both inner regular and outer regular, it is called regular.

Definition: Radon Measure

A measure 𝜇 on (𝑋, ℬ︀(𝑋)) is a Radon measure if it is

(i) Finite on compact sets

(ii) Outer regular

(iii) Inner regular

Theorem: Regularity of the Lebesgue-Stieltjes Measure

Suppose 𝐹 : ℝ → ℝ is a nondecreasing, right continuous function. For 𝐸 ∈ ℳ︀𝜇∗
𝐹

, we have

(*) 𝜇𝐹 (𝐸) = inf{𝜇𝐹 (𝑈) : 𝐸 ⊆ 𝑈, 𝑈 open}
(**) = sup{𝜇𝐹 (𝐾) : 𝐾 ⊆ 𝐸, 𝐾 compact}.

That is, the Lebesgue-Stieltjes Measure is regular.

Proof: We begin with (*). Fix 𝐸 ∈ ℳ︀𝜇∗
𝐹

.

(≤) If we take 𝑈  open such that 𝐸 ⊆ 𝑈 , we have 𝜇𝐹 (𝐸) ≤ 𝜇𝐹 (𝑈) by monotonicity, so

𝜇𝐹 (𝐸) ≤ inf{𝜇𝐹 (𝑈) : 𝐸 ⊆ 𝑈, 𝑈 open}.

(≥) Without loss of generality, assume 𝜇𝐹 (𝐸) < +∞. Fix 𝜀 > 0. By the previous lemma, we have ∃{(𝑎𝑖, 𝑏𝑖)}
∞
𝑖=1 with 

𝑎𝑖 ≤ 𝑏𝑖 and 𝐸 ⊆ ∪∞
𝑖=1 such that

𝜇𝐹 (𝐸) + 𝜀 ≥ ∑
∞

𝑖=1
𝜇𝐹 ((𝑎𝑖, 𝑏𝑖)) ≥ 𝜇𝐹 (∪∞

𝑖=1 (𝑎𝑖, 𝑏𝑖)) ≥ inf{𝜇𝐹 (𝑈) : 𝐸 ⊆ 𝑈, 𝑈 open}.

Now take 𝜀 → 0 and we’re done.

Now we do (**). By monotonicity again, (≥) is trivial, so we need only show (≤).

• Case 1: Assume 𝐸 ⊆ ℝ is bounded. Fix 𝜀 > 0. By (*), ∃𝑈 ⊇ 𝐸 \ 𝐸, with 𝑈  open such that
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𝜇𝐹 (𝑈) ≤ 𝜇𝐹 (𝐸 \ 𝐸) + 𝜀.

Let 𝐾 ≔ 𝐸 \ 𝑈 = 𝐸 ∩ 𝑈𝑐, so 𝐾 is closed. Notice since 𝐸 is bounded, then 𝐾 is bounded. Now by the Heine-Borel 

Theorem, 𝐾 is compact. Also, 𝐾 ⊆ 𝐸 since

𝐾 ≔ 𝐸 ∩ 𝑈𝑐 ⊆ 𝐸 ∩ (𝐸 \ 𝐸)𝑐 = 𝐸 ∩ (𝐸 ∩ 𝐸𝑐)𝑐 = 𝐸 ∩ (𝐸𝑐 ∪ 𝐸) = 𝐸.

Further,

𝜇𝐹 (𝐸) = 𝜇𝐹 (𝐸 ∩ 𝑈) + 𝜇𝐹 (𝐸 \ 𝑈) ≤ 𝜇𝐹 (𝐸 ∩ 𝑈) + 𝜇𝐹 (𝐾).

Thus

𝜇𝐹 (𝐾) ≥ 𝜇𝐹 (𝐸) − 𝜇𝐹 (𝐸 ∩ 𝑈)
= 𝜇𝐹 (𝐸) − [𝜇𝐹 (𝑈) − 𝜇𝐹 (𝑈 \ 𝐸)]

≥ 𝜇𝐹 (𝐸) − 𝜇𝐹 (𝑈) + 𝜇𝐹 (𝐸 \ 𝐸)

≥ 𝜇𝐹 (𝐸) − 𝜀.

Sending 𝜀 → 0 we obtain (≤), showing 𝐸 is inner regular.

• Case 2: Assume 𝐸 ⊆ ℝ is unbounded. Define 𝐸𝑗 = 𝐸 ∩ (𝑗, 𝑗 + 1] with 𝑗 ∈ ℤ. By what we’ve already shown, ∃𝐾𝑗 ⊆
𝐸𝑗 with 𝐾𝑗 compact such that

𝜇𝐹 (𝐾𝑗) ≥ 𝜇𝐹 (𝐸𝑗) − 𝜀
2|𝑗| .

Now let 𝐻𝑛 ≔ ∪𝑛
𝑗=−𝑛 𝐾𝑗, which we note is a disjoint union. Observe 𝐻𝑛 is compact and 𝐻𝑛 ⊆ 𝐸. For all 𝑛 ∈ ℕ,

𝜇𝐹 (𝐻𝑛) = ∑
𝑛

𝑗=−𝑛
𝜇𝐹 (𝐾𝑗) ≥ ∑

𝑛

𝑗=−𝑛
[𝜇𝐹 (𝐸𝑗) − 𝜀

2|𝑗| ] ≥ 𝜇𝐹 (∪𝑛
𝑗=−𝑛 𝐸𝑗) − 3𝜀.

By continuity from below,

lim
𝑛→+∞

𝜇𝐹 ( ⋃
𝑛

𝑗=−𝑛
𝐸𝑗) = 𝜇𝐹 (𝐸).

Now if 𝜇𝐹 (𝐸) < +∞, ∃𝑁 ∈ ℕ such that 𝑛 ≥ 𝑁  gives

sup{𝜇𝐹 (𝐾) : 𝐾 ⊆ 𝐸, 𝐾 compact} ≥ 𝜇(𝐻𝑛)

≥ 𝜇𝐹 (∪𝑛
𝑗=−𝑛 𝐸𝑗) − 3𝜀

≥ 𝜇𝐹 (𝐸) − 4𝜀.

On the other hand if 𝜇𝐹 (𝐸) = +∞,

lim
𝑛→+∞

𝜇𝐹 ( ⋃
𝑛

𝑗=−𝑛
𝐸𝑗) = +∞ ⟹ sup{𝜇𝐹 (𝐾) : 𝐾 ⊆ 𝐸, 𝐾 compact} = +∞ ≥ 𝜇𝐹 (𝐸).

So either way we get the result.

⬜︎

Page 32 of 56



4 Integration

4.A Measurable Functions

Lecture 7 Oct 16

Proposition

Suppose (𝑋, ℳ︀) and (𝑌 , 𝒩︀) are measurable spaces. Then the following are 𝜎-algebras:

• {𝑓−1(𝐸) : 𝐸 ∈ 𝒩︀}, which we call the pullback of 𝒩︀
• {𝐸 : 𝑓−1(𝐸) ∈ ℳ︀}, which we call the push forward of ℳ︀

Definition: (ℳ︀, 𝒩︀)-measurable

𝑓 : 𝑋 → 𝑌  is (ℳ︀, 𝒩︀)-measurable if, for all 𝐸 ∈ 𝒩︀, we have 𝑓−1(𝐸) ∈ ℳ︀, i.e., the preimage of every measurable set 

is measurable. Note that, we can also write this in terms of the pullback and push forward:

𝑓 : 𝑋 → 𝑌 is (ℳ︀, 𝒩︀)-measurable ⟺ {𝑓−1(𝐸) : 𝐸 ∈ 𝒩︀} ⊆ ℳ︀

⟺ {𝐸 : 𝑓−1(𝐸) ∈ ℳ︀} ⊇ 𝒩︀

Importantly, when 𝑓 : 𝑋 → ℝ (resp ℝ), we can assume the codomain is endowed with ℬ︀ℝ (resp ℬ︀ℝ).

Definition: Lebesgue and Borel Measurable Function

We call 𝑓 : ℝ → ℝ Lebesgue measurable if it is (ℳ︀𝜆∗ , ℬ︀ℝ)-measurable.

Given 𝑋, 𝑌  topological spaces, 𝑓 : 𝑋 → 𝑌  is called Borel measurable if it is (ℬ︀𝑋, ℬ︀𝑌 )-measurable.

Remark

Given 𝑓 : ℝ → ℝ, note that 𝑓  is Borel measurable ⟹ 𝑓  is Lebesgue measurable.

However, ℬ︀ℝ ⊊ ℳ︀𝜆∗ , so the reverse is not true. Thus to be more general, we’ll consider 𝑓  to be Lebesgue measurable 

in the general case in many of the following results.

Proposition

Given measurable spaces (𝑋, ℳ︀), (𝑌 , 𝒩︀) where 𝒩︀ is generated by ℰ︀, then 𝑓 : 𝑋 → 𝑌  is (ℳ︀, 𝒩︀)-measurable if and 

only if ∀𝐸 ∈ ℰ︀, 𝑓−1(𝐸) ∈ ℳ︀.

Proof: (⟹) is immediate since ℰ︀ ⊆ 𝒩︀.

(⟸): Note that ℰ︀ ⊆ {𝐸 : 𝑓−1(𝐸) ∈ ℳ︀}. Since 𝒩︀ is the smallest 𝜎-algebra containing ℰ︀, we have 𝒩︀ ⊆ {𝐸 :
𝑓−1(𝐸) ∈ ℳ︀}.

⬜︎
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Corollary

If 𝑋, 𝑌  topological spaces, then every continuous function 𝑓 : 𝑋 → 𝑌  is Borel measurable.

Proof: Since 𝑓  is continuous, ∀𝑈 ⊆ 𝑌 , 𝑓−1(𝑈) is open, so 𝑓−1(𝑈) ∈ ℬ︀𝑋 .

⬜︎

Corollary

If (𝑋, ℳ︀) is a measure space and 𝑓 : 𝑋 → ℝ then

𝑓 is (ℳ︀, ℬ︀ℝ)-measurable ⟺ 𝑓−1((𝑎, +∞]) ∈ ℳ︀∀𝑎 ∈ ℝ.

Proof: We showed {(𝑎, +∞] : 𝑎 ∈ ℝ} generate ℬ︀ℝ. Then this follows from the proposition.

⬜︎

Proposition

Suppose (𝑋, ℳ︀) is a measure space and let 𝑓 : 𝑋 → ℝ be given by 𝑓(𝑥) = 𝑐∀𝑥 ∈ 𝑋 for some 𝑐 ∈ ℝ. Then 𝑓  is 

(ℳ︀, ℬ︀ℝ)-measurable.

Proof: Given 𝐸 ∈ ℬ︀ℝ, we have

𝑓−1(𝐸) = {∅ if 𝑐 ∉ 𝐸
𝑋 if 𝑐 ∈ 𝐸

Now the result follows from the fact that any 𝜎-algebra contains ∅ and 𝑋.

⬜︎

Theorem

Fix a measurable space (𝑋, ℳ︀) and a sequence {𝑓𝑖 : 𝑋 → ℝ}
∞

𝑖=1
 with each 𝑓𝑖 being (ℳ︀, ℬ︀ℝ)-measurable. Then the 

following are also (ℳ︀, ℬ︀ℝ)-measurable:

(i) 𝑓1 + 𝑓2
(ii) 𝑓1𝑓2

(iii) 𝑓1 ∨ 𝑓2, where (𝑓1 ∨ 𝑓2)(𝑥) = max{𝑓1(𝑥), 𝑓2(𝑥)}
(iv) 𝑓1 ∧ 𝑓2, where (𝑓1 ∧ 𝑓2)(𝑥) = min{𝑓1(𝑥), 𝑓2(𝑥)}
(v) sup𝑖 𝑓𝑖

(vi) inf𝑖 𝑓𝑖
(vii) lim sup𝑖→+∞ 𝑓𝑖

(viii) lim inf𝑖→+∞ 𝑓𝑖
(ix) lim𝑖→+∞ 𝑓𝑖 (assuming the limit exists)

Page 34 of 56



Integration Measurable Functions — 4.1

Proof:

(i) HW 4

(ii) HW4

(iii) Note that

(𝑓1 ∨ 𝑓2)
−1((𝑎, +∞]) = {𝑥 ∈ 𝑋 : (𝑓1 ∨ 𝑓2)(𝑥)}

= {𝑥 ∈ 𝑋 : 𝑓1(𝑥) > 𝑎} ∪ {𝑥 : 𝑋 : 𝑓2(𝑥) > 𝑎}

= 𝑓−1
1 ((𝑎, +∞]) ∪ 𝑓−1

2 ((𝑎, +∞]) ∈ ℳ︀
(iv) We have 𝑓1 ∧ 𝑓2 = −((−𝑓1) ∨ (−𝑓2)), so this reduces to (iii)

(v) We have

(sup
𝑖

𝑓𝑖)
−1

((𝑎, +∞]) = {𝑥 ∈ 𝑋 : sup
𝑖

𝑓𝑖(𝑥) > 𝑎}

= {𝑥 ∈ 𝑋 : ∃𝑖 such that 𝑓𝑖(𝑥) > 𝑎}
= ∪∞

𝑖=1 {𝑥 ∈ 𝑋 : 𝑓𝑖(𝑥) > 𝑎}

= ∪∞
𝑖=1 𝑓−1

𝑖 ((𝑎, +∞]) ∈ ℳ︀
(vi) Follows from (v)

(vii) Note lim sup𝑖→+∞ = inf𝑛∈ℕ sup𝑖≥𝑁 𝑓𝑖
(viii) Follows from (vii)

(ix) lim𝑖→+∞ = lim sup 𝑓𝑖 whenever the limit exists

⬜︎

Remark

Consider 𝑓 : ℝ → ℝ and 𝑔 : ℝ → ℝ. Then if both are Borel measurable, notice 𝑓 ∘ 𝑔 is Borel measurable. Also if 𝑓  is 

Lebesgue measurable and 𝑔 is Borel measurable, then 𝑓 ∘ 𝑔 is Lebesgue measurable, but 𝑔 ∘ 𝑓  isn’t.

4.B Simple Functions

Definition

For any 𝐴 ⊆ 𝑋, define the indicator function of that set 𝐴 by

1𝐴(𝑥) ≔ {1 if 𝑥 ∈ 𝐴
0 otherwise

Note that for any 𝐵 in the codomain,

1−1
𝐴 (𝐵) =

{


𝐴 if 1 ∈ 𝐵, 0 ∉ 𝐵

𝐴𝑐 if 1 ∉ 𝐵, 0 ∈ 𝐵
∅ if 0, 1 ∉ 𝐵
𝑋 if 0, 1 ∈ 𝐵

Note if 𝐴 ∈ ℳ︀, 1𝐴 is a (ℳ︀, ℬ︀ℝ)-measurable function.
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Definition: Simple Function and Standard Representation

A (ℳ︀, ℬ︀ℝ)-measurable function 𝑓 : 𝑋 → ℝ is a simple function if 𝑓(𝑋) is a finite set.

In particular, this means we can represent a simple function 𝑓  by

𝑓(𝑥) = ∑
𝑛

𝑖=1
𝑐𝑖𝟙𝐸𝑖

(𝑥)

where 𝑓(𝑋) = {𝑐1, …, 𝑐𝑛} and 𝐸𝑖 = 𝑓−1(𝑐𝑖). This is called the standard representation of that function.

Lecture 8 Oct 21

Remark

In the above, notice {𝐸𝑖}
∞
𝑖=1 are disjoint and form a partition of the domain.

Example

Consider 𝑓(𝑥) = 2 and 𝑋 = ℝ. Then 𝑓(𝑥) = 2 ⋅ 𝟙ℝ(𝑥).

Definition: Integral of a Simple Function

For a measure space (𝑋, ℳ︀, 𝜇) and nonnegative simple function 𝑓  with standard representation

𝑓(𝑥) = ∑
𝑛

𝑖=1
𝑐𝑖𝟙𝐸𝑖

(𝑥)

we define ∫ 𝑓d𝜇 ≔ ∑
𝑛

𝑖=1
𝑐𝑖𝜇(𝐸𝑖).

Remark

Suppose for a moment that we allowed negative simple functions. Consider

𝑓(𝑥) = {1 if 𝑥 ∈ [0, +∞)
−1 if 𝑥 ∈ (−∞, 0)

Then ∫ 𝑓 d𝜆 = 1 ⋅ 𝜆([0, +∞)) + (−1)𝜆((−∞, 0)) = ∞ − ∞.

Note the problem this presents! It’s unclear how to define ∞ − ∞. Thus for now, we will ignore negative functions.

Notation

We will use the following notation for integrals:

∫
𝑋

𝑓 d𝜇 = ∫
𝑋

𝑓(𝑥)d𝜇(𝑥) = ∫ 𝑓(𝑥)𝟙𝑋d𝜇(𝑥).

We call this integrating with respect to the measure 𝜇 on a set 𝑋.
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Proposition

Given a measure space (𝑋, ℳ︀, 𝜇) and simple functions 𝑓, 𝑔 : 𝑋 → [0, +∞),
(i) If 𝑐 ≥ 0, ∫ 𝑐𝑓d𝜇 = 𝑐 ∫ 𝑓d𝜇

(ii) ∫(𝑓 + 𝑔)d𝜇 = ∫ 𝑓d𝜇 + ∫ 𝑔d𝜇
(iii) 𝑓 ≤ 𝑔 ⇒ ∫ 𝑓d𝜇 ≤ ∫ 𝑔d𝜇
(iv) The function 𝐴 ↦ ∫

𝐴
𝑓d𝜇 is a measure on (𝑋, ℳ︀)

Proof:

(i) Without loss of generality, suppose 𝑐 > 0. Then 𝑐𝑓 = ∑
𝑛

𝑖=1
𝑐𝑎𝑖𝟙𝐸𝑖

, so we have

∫ 𝑐𝑓d𝜇 = ∑
𝑛

𝑖=1
𝑐𝑎𝑖𝜇(𝐸𝑖) = 𝑐 ∑

𝑛

𝑖=1
𝑎𝑖𝜇(𝐸𝑖) = 𝑐 ∫ 𝑓d𝜇.

(ii) Suppose {𝐸𝑖}
𝑛
𝑖=1 and {𝐹𝑗}

𝑚
𝑗=1

 are disjoint partitions of 𝑋 with

∫ 𝑓d𝜇 = ∑
𝑛

𝑖=1
𝑎𝑖𝜇(𝐸𝑖) and ∫ 𝑔d𝜇 = ∑

𝑚

𝑗=1
𝑏𝑗𝜇(𝐹𝑗).

Observe we can write

𝐸𝑖 = ⋃
𝑚

𝑗=1
𝐸𝑖 ∩ 𝐹𝑗 𝐹𝑗 = ⋃

𝑛

𝑖=1
𝐹𝑗 ∩ 𝐸𝑖

where these are both disjoint unions (which will allow us to get measure equality). Also, observe (𝑓 + 𝑔)(𝑋) =
{𝑐1, …, 𝑐ℓ}, and we must have 𝑐𝑘 = 𝑎𝑖 + 𝑏𝑗 for some 𝑖, 𝑗. Therefore, we can say

∫ 𝑓d𝜇 + ∫ 𝑔d𝜇 = ∑
𝑛

𝑖=1
𝑎𝑖𝜇(𝐸𝑖) + ∑

𝑚

𝑗=1
𝑏𝑗𝜇(𝐹𝑗)

= ∑
𝑖,𝑗

𝑎𝑖𝜇(𝐸𝑖 ∩ 𝐹𝑗) + ∑
𝑖,𝑗

𝑏𝑗𝜇(𝐸𝑖 ∩ 𝐹𝑗)

= ∑
𝑖,𝑗

(𝑎𝑖 + 𝑏𝑗)𝜇(𝐸𝑖 ∩ 𝐹𝑗)

= ∑
ℓ

𝑘=1
∑

𝑖,𝑗:𝑎𝑖+𝑏𝑗=𝑐𝑘

(𝑎𝑖 + 𝑏𝑗)𝜇(𝐸𝑖 ∩ 𝐹𝑗)

= ∑
ℓ

𝑘=1
𝑐𝑘𝜇

(
 ⋃

𝑖,𝑗:𝑎𝑖+𝑏𝑗=𝑐𝑘

𝐸𝑖 ∩ 𝐹𝑗
)


= ∑
ℓ

𝑘=1
𝑐𝑘𝜇(𝐺𝑘) where 𝐺𝑘 ≔ (𝑓 + 𝑔)−1(𝑐𝑘)

= ∫(𝑓 + 𝑔)d𝜇.

(iii) Suppose 𝑓 ≤ 𝑔. Then whenever 𝐸𝑖 ∩ 𝐹𝑗 ≠ ∅, we have 𝑎𝑖 ≤ 𝑏𝑗. Therefore,

∫ 𝑓d𝜇 = ∑
𝑛

𝑖=1
𝑎𝑖𝜇(𝐸𝑖) = ∑

𝑖,𝑗
𝑎𝑖𝜇(𝐸𝑖 ∩ 𝐹𝑗) ≤ ∑

𝑖,𝑗
𝑏𝑗𝜇(𝐸𝑖 ∩ 𝐹𝑗) = ∑

𝑚

𝑗=1
𝑏𝑗𝜇(𝐹𝑗) = ∫ 𝑔d𝜇.
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(iv) Define 𝜈(𝐴) ≔ ∫
𝐴

𝑓d𝜇. Notice this is a nonnegative function on ℳ︀. Now we show 𝜈 is a measure.

First, observe 𝜈(∅) = ∫
∅
𝑓d𝜇 = ∫ 𝑓 ⋅ 𝟙∅d𝜇 = 0.

Now let {𝐴𝑘}∞
𝑘=1 ⊆ ℳ︀ be disjoint, and let 𝐴 ≔ ∪∞

𝑘=1 𝐴𝑘. Then we have that

𝜈(𝐴) = ∫
𝐴

𝑓d𝜇

= ∫ 𝑓𝟙𝐴d𝜇

= ∫(∑
𝑛

𝑖=1
𝑎𝑖𝟙𝐸𝑖

)𝟙𝐴d𝜇

= ∑
𝑛

𝑖=1
𝑎𝑖 ∫ 𝟙𝐸𝑖

𝟙𝐴d𝜇

= ∑
𝑛

𝑖=1
𝑎𝑖𝜇(𝐸𝑖 ∩ 𝐴)

= ∑
𝑛

𝑖=1
𝑎𝑖 ∑

∞

𝑘=1
𝜇(𝐸𝑖 ∩ 𝐴𝑘)

= ∑
∞

𝑘=1
∑

𝑛

𝑖=1
𝑎𝑖𝜇(𝐸𝑖 ∩ 𝐴𝑘)

= ∑
∞

𝑘=1
∫ ∑

𝑛

𝑖=1
𝑎𝑖𝟙𝐸𝑖∩𝐴𝑘

d𝜇

= ∑
∞

𝑘=1
∫

𝐴𝑘

𝑓d𝜇

= ∑
∞

𝑖=1
𝜈(𝐴𝑘).

⬜︎
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Remark

Note that (i) and (ii) ensure that the definition of ∫ 𝑓d𝜇 is independent of the representation of 𝑓  as a nonnegative 

linear combination of simple functions.

That is, if

𝑓 = ∑
𝑛

𝑖=1
𝑐𝑖𝟙𝐸𝑖

⏟
representation 1

= ∑
𝑚

𝑗=1
𝑑𝑗𝟙𝐹𝑗

⏟
representation 2

,

then we have

∫(∑
𝑛

𝑖=1
𝑐𝑖𝟙𝐸𝑖

− ∑
𝑚

𝑗=1
𝑑𝑗𝟙𝐹𝑗

)d𝜇 = ∫(𝑓 − 𝑓)d𝜇 = 0

⟹ ∑
𝑛

𝑖=1
𝑐𝑖 ∫ 𝟙𝐸𝑖

d𝜇 = ∑
𝑚

𝑗=1
𝑑𝑗 ∫ 𝟙𝐹𝑗

d𝜇

⟹ ∑
𝑛

𝑖=1
𝑐𝑖𝜇(𝐸𝑖) = ∑

𝑚

𝑗=1
𝑑𝑗𝜇(𝐹𝑗).

4.C Integration of Nonnegative Measurable Functions

Definition: Integral of Nonnegative Measurable Function

Let (𝑋, ℳ︀, 𝜇) be a measure space and suppose 𝑓 : 𝑋 → [0, +∞] is a measurable function. Then we define

∫ 𝑓d𝜇 ≔ sup{∫ 𝜑d𝜇 : 0 ≤ 𝜑 ≤ 𝑓; 𝜑 simple}

as the integral of 𝑓  with respect to 𝜇.
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Remark

(i) Note that if 𝑓  is simple, this is the same as the previous definition.

(ii) If 𝑐 = 0, then 𝑐𝑓d𝜇 = 𝑐 ∫ 𝑓d𝜇. If 𝑐 > 0, then

∫ 𝑐𝑓d𝜇 = sup{∫ 𝜑d𝜇 : 0 ≤ 𝜑 ≤ 𝑐𝑓; 𝜑 simple}

= sup{∫ 𝜑d𝜇 : 0 ≤ 𝜑
𝑐

≤ 𝑓; 𝜑 simple}

= sup{𝑐 ∫ 𝜓d𝜇 : 0 ≤ 𝜓 ≤ 𝑓; 𝜓 simple}

= 𝑐 sup{∫ 𝜓d𝜇 : 0 ≤ 𝜓 ≤ 𝑓; 𝜓 simple}

= 𝑐 ∫ 𝑓d𝜇.

(iii) If 𝑓 ≤ 𝑔, then ∫ 𝑓d𝜇 ≤ ∫ 𝑔d𝜇.

Lecture 9 Oct 28

Theorem: Monotone Convergence Theorem

Given {𝑓𝑛}∞
𝑛=1 : 𝑋 → [0, +∞] measurable such that 𝑓𝑛 ≤ 𝑓𝑛+1∀𝑛, then

lim
𝑛→∞

∫ 𝑓𝑛d𝜇 = ∫ lim
𝑛→∞

𝑓𝑛d𝜇.

Proof: Note that both limits exist by monotonicity.

(≤) By hypothesis, 𝑓𝑛 ≤ lim𝑛→∞ 𝑓𝑛, so ∫ 𝑓𝑛d𝜇 ≤ ∫ lim𝑛→∞ 𝑓𝑛d𝜇.

(≥) Let 𝜑 : 𝑋 → [0, +∞) be a simple function such that 0 ≤ 𝜑 ≤ lim𝑛→∞ 𝑓𝑛. Without loss of generality take 

lim𝑛→+∞ ∫ 𝑓𝑛d𝜇 < +∞. Take 𝑎 ∈ (0, 1). Note that if 𝜑(𝑥) ≠ 0, then 𝑎𝜑(𝑥) < lim𝑛→∞ 𝑓𝑛(𝑥). Now define 𝐸𝑛 ≔ {𝑥 :
𝑓𝑛(𝑥) ≥ 𝑎𝜑(𝑥)}. Note this is measurable since it is the preimage of the Borel measurable set [0, +∞).

Since 𝑓𝑛 ≤ 𝑓𝑛+1, we have 𝐸1 ⊆ 𝐸2 ⊆⋅ ⋅ ⋅⊆ 𝐸𝑛 ⊆⋅ ⋅ ⋅ Further, ∪∞
𝑛=1 𝐸𝑛 = 𝑋 because

• if 𝜑(𝑥) = 0, then 𝑥 ∈ 𝐸𝑛∀𝑛 ∈ ℕ
• if 𝜑(𝑥) > 0 then ∃𝑁  such that 𝑛 ≥ 𝑁 ⇒ 𝑥 ∈ 𝐸𝑛

Therefore,

∫ 𝑓𝑛d𝜇 ≥ ∫
𝐸𝑛

𝑓𝑛d𝜇 ≥ ∫
𝐸𝑛

𝑎𝜑d𝜇 = 𝑎 ∫
𝐸𝑛

𝜑d𝜇.

Now since we showed in the previous proposition that 𝐴 ↦ ∫
𝐴

𝜑d𝜇 is a measure, by continuity from below we have

lim
𝑛→∞

∫ 𝑓𝑛d𝜇 ≥ 𝑎 lim
𝑛→∞

∫
𝐸𝑛

𝜑d𝜇 = 𝑎 ∫ 𝜑d𝜇.

Now take 𝑎 → 1.

⬜︎
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Theorem

Given 𝑓 : 𝑋 → [0, +∞] measurable, there exists a seqeunce 𝑓𝑛 of nonnegative simple functions such that 𝑓𝑛 ↗︎ 𝑓  

pointwise.

Proof: For 𝑛 ∈ {0} ∪ ℕ, we chop up the range of 𝑓 , up to height 2𝑛, in increments of height 2−𝑛. In particular, define

𝐸𝑘
𝑛 = 𝑓−1((𝑘2−𝑛, (𝑘 + 1)2−𝑛]); 𝐹𝑛 = 𝑓−1((2𝑛, +∞]); 𝑘 = 0, …, 22𝑛−1

and

𝑓𝑛 = ∑
22𝑛−1

𝑘=0
𝑘2−𝑛𝟙𝐸𝑘

𝑛
+ 2𝑛𝟙𝐹𝑛

.

Some important properties are that:

• 𝑓𝑛(𝑥) ≤ 𝑓𝑛+1(𝑥)∀𝑥 ∈ 𝑋
• 0 ≤ 𝑓(𝑥) − 𝑓𝑛(𝑥)∀𝑥 ∈ 𝑋
• 0 ≤ 𝑓(𝑥) − 𝑓𝑛(𝑥) ≤ 2−𝑛∀𝑥 ∈ 𝐹 𝑐

𝑛

Notice that if 𝑥 ∈ ∪∞
𝑖=1 𝐹 𝑐

𝑛  then ∃𝑁 ∈ ℕ such that 𝑥 ∈ 𝐹 𝑐
𝑛 ∀𝑛 ≥ 𝑁  we have

0 ≤ 𝑓(𝑥) − 𝑓𝑛(𝑥) ≤ 2−𝑛∀𝑛 ≥ 𝑁

so lim𝑛→∞ 𝑓𝑛(𝑥) = 𝑓(𝑥). On the other hand, if 𝑥 ∈ ∩∞
𝑛=1 𝐹𝑛 then 𝑓(𝑥) = +∞ and lim𝑛→∞ 𝑓𝑛(𝑥) = lim𝑛→∞ 2𝑛 =

+∞ = 𝑓(𝑥)

⬜︎

Theorem: Beppo-Levi

Given {𝑓𝑛}∞
𝑛=1 : 𝑋 → [0, +∞] measurable functions, then

∑
∞

𝑛=1
∫ 𝑓𝑛d𝜇 = ∫ ∑

∞

𝑛=1
𝑓𝑛d𝜇.

Proof: First, fix 𝑓, 𝑔 : 𝑋 → [0, +∞] measurable. By the previous theorem, ∃{𝜑𝑖}
∞
𝑖=1, {𝜓𝑖}

∞
𝑖=1 such that 𝜑𝑖 ↗︎ 𝑓 , 𝜓𝑖 ↗︎

𝑔 pointwise. So 𝜑𝑖 + 𝜓𝑖 ↗︎ 𝑓 + 𝑔 pointwise. Therefore

∫(𝑓 + 𝑔)d𝜇 = lim
𝑖→∞

𝜑𝑖 + 𝜓𝑖d𝜇

= lim
𝑖→∞

∫ 𝜑𝑖 + 𝜓𝑖d𝜇 (by MCT)

= lim
𝑖→∞

∫ 𝜑𝑖d𝜇 + ∫ 𝜓𝑖d𝜇

= lim
𝑖→∞

∫ 𝜑𝑖d𝜇 + lim
𝑖→∞

∫ 𝜓𝑖d𝜇

= ∫ 𝑓d𝜇 + ∫ 𝑔d𝜇.

By induction, ∀𝑁 ∈ ℕ, we have
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∫ ∑
𝑁

𝑖=1
𝑓𝑛d𝜇 = ∑

𝑁

𝑛=1
∫ 𝑓𝑛d𝜇.

By the Monotone Convergence Theorem,

∑
∞

𝑛=1
∫ 𝑓𝑛d𝜇 = lim

𝑁→∞
∫ ∑

𝑁

𝑛=1
𝑓𝑛d𝜇 =MCT ∫ ∑

∞

𝑛=1
𝑓𝑛d𝜇.

⬜︎

Now, we introduce one more theorem on interchanging limits and integrals without the monotonicity requirement.

Theorem: Fatou’s Lemma

Given {𝑓𝑛}∞
𝑛=1 : 𝑋 → [0, +∞] measurable,

lim inf
𝑛→∞

∫ 𝑓𝑛d𝜇 ≥ ∫ lim inf
𝑛→∞

𝑓𝑛d𝜇.

Proof: By definition, lim inf𝑛→∞ 𝑓𝑛 = lim𝑘→∞ inf𝑛≥𝑘 𝑓𝑛 = lim𝑘→∞ 𝑔𝑘. Then by the MCT,

lim
𝑘→∞

∫ 𝑔𝑘d𝜇 =MCT ∫ lim
𝑘→∞

𝑔𝑘d𝜇 = ∫ lim inf
𝑛→∞

𝑓𝑛d𝜇.

By definition, 𝑔𝑘 ≤ 𝑓𝑘∀𝑘 ∈ ℕ, so

lim inf
𝑛→∞

∫ 𝑓𝑛d𝜇 ≥ lim inf
𝑛→∞

∫ 𝑔𝑛d𝜇 = ∫ lim inf
𝑛→∞

𝑓𝑛d𝜇.

⬜︎

Example: Strict Inequality in Fatou’s Lemma

Take our measure space to be (𝑋, ℳ︀, 𝜇) = (ℝ, ℳ︀𝜆∗ , 𝜆).

(i) Run away to infinity: Suppose 𝑓𝑛 = 𝟙[𝑛,𝑛+1]. Observe lim𝑛→∞ 𝑓𝑛 = 0 pointwise. But

1 = lim
𝑛→∞

∫ 𝑓𝑛 d𝜆 > ∫ lim
𝑛→∞

𝑓𝑁 d𝜆 = 0.

(ii) Goes up the spout: Let

𝑓𝑛 = 𝑛𝟙[0, 1
𝑛]; lim

𝑛→∞
𝑓𝑛(𝑥) = {0 if ≠ 0

+∞ if 𝑥 = 0.

Then

1 = lim
𝑛→∞

∫ 𝑓𝑛 d𝜆 > ∫ lim
𝑛→∞

𝑓𝑛 d𝜆 = 0.

Lecture 10 Oct 30

Notice that we haven’t justified that last inequality yet. We do so in the following proposition:
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Proposition

Given 𝑓 : 𝑋 → [0, +∞] measurable, we have

∫ 𝑓d𝜇 = 0 ⟺ 𝑓 = 0 𝜇-almost everywhere, i.e. 𝜇({𝑥 : 𝑓(𝑥) ≠ 0}) = 0.

Proof: First suppose 𝑓  is simple, i.e.,

𝑓 = ∑
𝑛

𝑖=1
𝑎𝑖𝟙𝐸𝑖

, 𝑎𝑖 ≥ 0.

Then

∫ 𝑓d𝜇 = ∑
𝑛

𝑖=1
𝑎𝑖𝜇(𝐸𝑖) = 0 ⟺ ∀𝑖, either 𝑎𝑖 = 0 or 𝜇(𝐸𝑖) = 0

⟺ 𝑓 = 0 𝜇-a.e.

Now consider a general 𝑓 : 𝑋 → [0, +∞].

(⟸) By definition,

∫ 𝑓d𝜇 = sup{∫ 𝜑d𝜇 : 0 ≤ 𝜑 ≤ 𝑓, 𝜑 simple} = sup{0} = 0.

(⟹) We proceed by contraposition. Assume 𝑓 = 0 is not 𝜇-a.e. Note that {𝑥 : 𝑓(𝑥) > 0} = ∪∞
𝑛=1 {𝑥 : 𝑓(𝑥) > 1

𝑛}. By 

countable subadditivity,

0 < 𝜇({𝑥 : 𝑓(𝑥) > 0}) ≤ ∑
∞

𝑛=1
𝜇({𝑥 : 𝑓(𝑥) > 1

𝑛
}).

So ∃𝑛 ∈ ℕ such that 𝜇({𝑥 : 𝑓(𝑥) > 1
𝑛}) > 0. Let 𝜑 = 1

𝑛𝟙{𝑥:𝑓(𝑥)> 1
𝑛}. Then 𝜑 ≤ 𝑓 . By definition,

∫ 𝑓d𝜇 ≥ ∫ 𝜑d𝜇 = 1
𝑛

𝜇({𝑥 : 𝑓(𝑥) > 1
𝑛

}) > 0.

⬜︎

4.D Integration of Real-Valued Measurable Functions

Suppose we are in a measure space (𝑋, ℳ︀, 𝜇). Given 𝑓 : 𝑋 → ℝ, define the “positive part” to be 𝑓+ ≔ 𝑓 ∨ 0 and the 

“negative part” to be 𝑓− ≔ (−𝑓) ∨ 0. Therefore, 𝑓 = 𝑓+ − 𝑓− and |𝑓| = 𝑓+ + 𝑓−.

Definition: Integrable Real Valued Function

Given 𝑓 : 𝑋 → ℝ measurable, if either ∫ 𝑓+d𝜇 < +∞ or ∫ 𝑓−d𝜇 < +∞, then define

∫ 𝑓d𝜇 ≔ ∫ 𝑓+d𝜇 − ∫ 𝑓−d𝜇.

If both ∫ 𝑓+d𝜇 < +∞ and ∫ 𝑓−d𝜇 < +∞, then we say 𝑓  is integrable and write 𝑓 ∈ 𝐿1(𝜇). Note that this means 

the integral can be defined even if 𝑓  is not integrable.
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Remark

Observe that

𝑓 integrable ⟺ ∫ 𝑓+d𝜇 < +∞ and ∫ 𝑓−d𝜇 < +∞

⟺ ∫ 𝑓+d𝜇 + ∫ 𝑓−d𝜇 < +∞

⟺ ∫|𝑓|d𝜇 < +∞.

Proposition

𝐿1(𝜇) is a real vector space and 𝑓 ↦ ∫ 𝑓d𝜇 is a linear functional on 𝐿1(𝜇).

Proof: First we show this is a vector space. Let 𝑓, 𝑔 ∈ 𝐿1(𝜇) and 𝑎, 𝑏 ∈ ℝ. Then observe

∫|𝑎𝑓 + 𝑏𝑔|d𝜇 ≤ ∫|𝑎| ⋅ |𝑓| + |𝑏| ⋅ |𝑔|d𝜇 = |𝑎| ∫|𝑓|d𝜇 + |𝑏| ∫|𝑔|d𝜇 < +∞.

Now we check that integration is a linear functional. Fix 𝑓 ∈ 𝐿1(𝜇) with 𝑎 ≥ 0. Then ∫ 𝑎𝑓d𝜇 = 𝑎 ∫ 𝑓d𝜇. Now in the 

𝑎 < 0 case, note 𝑎𝑓 = (−𝑎)(−𝑓), so the result follows. Finally, for any 𝑓, 𝑔 ∈ 𝐿1(𝜇), we have

∫(𝑓 + 𝑔)d𝜇 = ∫ (𝑓 + 𝑔)+d𝜇 − ∫ (𝑓 + 𝑔)−d𝜇

= ∫ 𝑓+d𝜇 + ∫ 𝑔+d𝜇 − ∫ 𝑓−d𝜇 − ∫ 𝑔−d𝜇

= ∫ 𝑓d𝜇 + ∫ 𝑔d𝜇.

We justify the second equality by noting

(𝑓 + 𝑔)+ − (𝑓 + 𝑔)− = (𝑓+ − 𝑓−) + (𝑔+ − 𝑔−)
⟹ (𝑓 + 𝑔)+ + 𝑓− + 𝑔− = 𝑓+ + 𝑔+ + (𝑓 + 𝑔)−

so by Beppo-Levi,

∫ (𝑓 + 𝑔)+d𝜇 + ∫ 𝑓−d𝜇 + ∫ 𝑔−d𝜇 = ∫ (𝑓 + 𝑔)−d𝜇 + ∫ 𝑓+d𝜇 + ∫ 𝑔+d𝜇.

⬜︎

Remark

Note that some steps in the preceding proof were not properly justified, since we haven’t yet shown 𝑓 ∈ 𝐿1(𝜇) 
implies

𝜇({𝑥 : 𝑓(𝑥) ∈ {−∞, +∞}}) = 0,

so that the values of the function don’t affect the integral value. Thus, we could have some ∞ − ∞ expressions above. 

We will show this shortly.
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Proposition

If 𝑓 ∈ 𝐿1(𝜇), then |∫ 𝑓d𝜇| ≤ ∫|𝑓|d𝜇.

Proof: Simply observe

|∫ 𝑓d𝜇| ≤ ∫ 𝑓+d𝜇 + ∫ 𝑓−d𝜇 = ∫|𝑓|d𝜇.

⬜︎

Now, it would be nice if we could show 𝐿1(𝜇) is a normed vector space, with norm

‖𝑓 − 𝑔‖𝐿1(𝜇) ≔ ∫|𝑓 − 𝑔|d𝜇.

The problem is that based on the theory laid out thus far, the norm would be degenerate, meaning ∃𝑓, 𝑔 with 𝑓 ≠ 𝑔 such 

that ‖𝑓 − 𝑔‖𝐿1(𝜇) = 0.

Corollary

If 𝑓, 𝑔 ∈ 𝐿1(𝜇) then ∫|𝑓 − 𝑔|d𝜇 = 0 ⇔ 𝑓 = 𝑔 𝜇-a.e.

Proof: (⟸) If 𝑓 = 𝑔 𝜇-a.e., then |𝑓 − 𝑔| = 0 𝜇-a.e., so

∫|𝑓 − 𝑔|d𝜇 = 0.

(⟹) Suppose ∫|𝑓 − 𝑔|d𝜇 = 0. Since |𝑓 − 𝑔| ≥ 0, we must have |𝑓 − 𝑔| = 0 𝜇-a.e, and thus 𝑓 = 𝑔 𝜇-a.e.

⬜︎

Importantly, this corollary tells us that if an integrable function is modified on a null set, then it doesn’t change the 

integral. Further, even if a function 𝑓  is only defined 𝜇-.a.e, ∫ 𝑓d𝜇 is still well-defined. This motivates an improved 

definition for 𝐿1(𝜇).

Definition: 𝐿1(𝜇)

We define

𝐿1(𝜇) ≔ {𝑓 : 𝑋 → ℝ measurable, ∫|𝑓| < +∞}/ ∼

where 𝑓 ∼ 𝑔 if 𝑓 = 𝑔 𝜇-a.e.

Remark

By abuse of notation, we will let 𝑓 ∈ 𝐿1(𝜇) denote

• the equivalence class

• a representative of the equivalence class

• a representative that is only defined 𝜇-a.e.
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Proposition

‖𝑓‖𝐿1(𝜇) ≔ ∫|𝑓|d𝜇 is a norm on 𝐿1(𝜇).

Proof: nondegeneracy, triangle inequality, positive homogeneity

⬜︎

4.E Dominated Convergence Theorem

Now, we move onto results that allow us to interchange limits and integrals for real valued functions.

Theorem: Dominated Convergence Theorem

Given {𝑓𝑛}∞
𝑛=1 ⊆ 𝐿1(𝜇) such that lim𝑛→∞ 𝑓𝑛 exists 𝜇-a.e., if ∃𝑔 ∈ 𝐿1(𝜇) such that |𝑓𝑛| ≤ 𝑔∀𝑛 ∈ ℕ 𝜇-a.e., then

lim
𝑛→∞

∫ 𝑓𝑛d𝜇 = ∫ lim
𝑛→∞

𝑓𝑛d𝜇

Proof: Since lim𝑛→∞ 𝑓𝑛 exists 𝜇-a.e. and |𝑓𝑛| ≤ 𝑔 𝜇-a.e. ∀𝑛 ∈ ℕ, we have lim𝑛→∞ 𝑓𝑛 ∈ 𝐿1(𝜇). (Note there is a 

subtlety in that the 𝑓𝑛’s may be 𝜇-a.e. in different places, but this is irrelevant because we can just take the countable 

union of those sets.)

Since 𝑔 − 𝑓𝑛 ≥ 0, 𝑔 + 𝑓𝑛 ≥ 0 𝜇-a.e., by Fatou’s Lemma (can be invoked due to nonnegativity) we have

∫ 𝑔d𝜇 + lim inf
𝑛→∞

∫ 𝑓𝑛 = lim inf
𝑛→∞

∫ 𝑔 + 𝑓𝑛d𝜇 ≥ ∫ lim inf
𝑛→∞

𝑔 + 𝑓𝑛d𝜇

= ∫ 𝑔d𝜇 + ∫ lim inf
𝑛→∞

𝑓𝑛d𝜇.

Likewise,

∫ 𝑔d𝜇 − lim sup
𝑛→∞

∫ 𝑓𝑛d𝜇 = lim sup
𝑛→∞

∫ 𝑔d𝜇 − ∫ 𝑓𝑛d𝜇

≥ lim inf
𝑛→∞

∫ 𝑔 − 𝑓𝑛d𝜇

≥ ∫ lim inf
𝑛→∞

𝑔 − 𝑓𝑛d𝜇

= ∫ 𝑔d𝜇 + ∫[lim inf
𝑛→∞

(−𝑓𝑛)]d𝜇

= ∫ 𝑔d𝜇 − ∫[lim sup
𝑛→∞

𝑓𝑛]d𝜇.

Since ∫ 𝑔 < +∞, this gives

∫ lim
𝑛→∞

𝑓𝑛d𝜇 = ∫ lim sup
𝑛→∞

𝑓𝑛d𝜇 ≥ lim sup
𝑛→∞

∫ 𝑓𝑛d𝜇 ≥ lim inf
𝑛→∞

∫ 𝑓𝑛d𝜇 ≥ ∫ lim inf
𝑛→∞

𝑓𝑛d𝜇 = ∫ lim
𝑛→∞

𝑓𝑛d𝜇.

Thus lim𝑛→∞ ∫ 𝑓𝑛 exists and in fact,
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lim
𝑛→∞

∫ 𝑓𝑛d𝜇 = ∫ lim
𝑛→∞

𝑓𝑛d𝜇.

as desired.

⬜︎

Remark

Note that the Dominated Convergence Theorem does not require that 𝑔 is bounded.

In fact, 𝑔 bounded ⇏ 𝑔 ∈ 𝐿1(𝜇), since we can take 𝑔(𝑥) = 1 for example, and 𝑔 ∈ 𝐿1(𝜇) ⇏ 𝑔 bounded, since we can 

for example take

𝑔(𝑥) = {
1√
𝑥 if 𝑥 ∈ (0, 1]

0 otherwise

Then

∫
ℝ

𝑔(𝑥) d𝜆 = ∫
(0,1]

1√
𝑥

d𝜆(𝑥) = ∫
1

0

1√
𝑥

= 2 < +∞

Lecture 11 Nov 4

Definition: Support

Define the support of a function 𝑓  to be the closure of the set on which 𝑓  is nonzero:

supp 𝑓 = {𝑥 : 𝑓(𝑥) ≠ 0}.

Now we apply the DCT to two useful subsets of functions that are dense in 𝐿1(𝜇).

Theorem

For any measure space (𝑋, ℳ︀, 𝜇), simple functions are dense in 𝐿1(𝜇).

For Lebesgue-Stiltjes measures on ℝ, the following are also dense in 𝐿1(𝜇):
(i) Simple functions of the form 𝜉 = ∑

𝑁

𝑗=1
𝑎𝑗𝟙𝐹𝑗

, 𝐹𝑗 = ∪𝑚𝑗
𝑖=1 𝐼𝑖𝑗 for disjoint open intervals {𝐼𝑖,𝑗}

𝑚𝑗

𝑖=1
.

(ii) 𝐶𝑐(ℝ) = {𝑓 : ℝ → ℝ where 𝑓 is continuous and supp 𝑓 is compact}

Note that by definition, supp 𝑓  is closed, so by the Heine-Borel theorem, we mean by the above that the support is 

bounded.

Proof: Fix 𝑓 ∈ 𝐿1(𝜇). Since 𝑓+ and 𝑓− are nonnegative measurable functions, ∃ simple functions 𝜓𝑛, 𝜑𝑛 such that 

𝜓𝑛 ↗︎ 𝑓+ and 𝜑𝑛 ↗︎ 𝑓−. Further,

|(𝜓𝑛 − 𝜑𝑛) − 𝑓| →
𝑛→+∞

0 and |(𝜓𝑛 − 𝜑𝑛) − 𝑓| ≤ 𝜓𝑛 + 𝜑𝑛 + |𝑓| ≤ 2|𝑓|.

Thus by the Dominated Convergence Theorem,

lim
𝑛→+∞

∫||𝜓𝑛 − 𝜑𝑛| − 𝑓|d𝜇 = ∫ lim
𝑛→∞

|(𝜓𝑛 − 𝜑𝑛) − 𝑓|d𝜇 = ∫ 0d𝜇 = 0.
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Now suppose 𝜇 is a Lebesgue-Stieltjes measure on ℝ. We will show that simple functions can be approximated by a 

function of the form (i) and functions of the form (i) can be approximated by 𝐶𝑐(ℝ).

Fix a simple function 𝜑 ∈ 𝐿1(𝜇). We may express 𝜑 as

𝜑 = ∑
𝑛

𝑗=1
𝑎𝑗𝟙𝐸𝑗

where 𝑎𝑗 ≠ 0∀𝑗, {𝐸𝑗}
𝑛
𝑗=1

are disjoint

Thus ∀𝑗, we have |𝑎𝑗|𝜇(𝐸𝑗) ≤ ∫|𝜑|d𝜇 < +∞ so 𝜇(𝐸𝑗) < +∞∀𝑗.

Now by HW4 Q2, recall that for any 𝐸 ∈ ℳ︀𝜇∗
𝐹

 with 𝜇∗
𝐹 (𝐸) < +∞, for all 𝜀 > 0∃ disjoint open intervals {𝐼 𝑖}

𝑖=1
 such 

that

𝜇𝐹 (𝐸Δ ∪𝑚
𝑖=1 𝐼 𝑖) < 𝜀.

Thus for all 𝜀 > 0∃ disjoint open intervals {𝐼 𝑖
𝑗 }𝑚𝑗

𝑖=1
 such that

𝜇(𝐸𝑗Δ ∪𝑚𝑗
𝑖=1 𝐼 𝑖

𝑗 ) < 𝜀
𝑛 max𝑗|𝑎𝑗|

.

Therefore,

‖𝜑 − ∑
𝑛

𝑗=1
𝑎𝑗𝟙⋃𝑚𝑗

𝑖=1 𝐼𝑖
𝑗
‖

𝐿1(𝜇)

≤ ∑
𝑛

𝑗=1
|𝑎𝑗|‖𝟙𝐸𝑗

− 𝟙⋃𝑚𝑗
𝑖=1 𝐼𝑖

𝑗
‖

𝐿1(𝜇)
< 𝜀.

This shows functions of the form (i) are dense in 𝐿1(𝜇).

It remains to prove (ii). Fix a function of the form (i),

𝜉 = ∑
𝑛

𝑗=1
𝑎𝑗𝟙∪

𝑚𝑗
𝑖=1

𝐼 𝑖
𝑗 .

Let 𝜀 > 0. For any open interval 𝐼 𝑖
𝑗 , there exists 𝑓 𝑖

𝑗 ∈ 𝐶𝑐(ℝ) such that |𝑓 𝑖
𝑗 − 𝟙𝐼𝑗

|
𝐿1(𝜇)

< 𝜀. Now

‖𝑓𝑘 − 𝟙𝐼‖𝐿1(𝜇) = ∫
(𝑎−1

𝑘,𝑎)
𝑓𝑘d𝜇 + ∫

(𝑏,𝑏+1
𝑘)

𝑓𝑘d𝜇 ≤ 𝜇((𝑎 − 1
𝑘
, 𝑎)) + 𝜇((𝑏, 𝑏 + 1

𝑘
)) →

𝑘→∞
0

by continuity from above, using the fact that Lebesgue-Stieltjes measures are locally bounded. Thus ∀𝑖, 𝑗∃𝑓 𝑖
𝑗 ∈

𝐶𝑐(ℝ) such that

‖𝑓 𝑖
𝑗 − 𝟙𝐼𝑖

𝑗
‖

𝐿1(𝜇)
< 𝜀

𝑛 max𝑗|𝑎𝑗| max𝑗|𝑚𝑗|
.

Therefore,

‖∑
𝑛

𝑗=1
𝑎𝑗𝟙⋃𝑚𝑗

𝑖=1 𝐼𝑖
𝑗
− ∑

𝑛

𝑗=1
𝑎𝑗[∑

𝑚𝑗

𝑖=1
𝑓 𝑖

𝑗]‖
𝐿1(𝜇)

≤ ∑
𝑛

𝑗=1
|𝑎𝑗| ∑

𝑚𝑗

𝑖=1
‖𝟙𝐼𝑖

𝑗
− 𝑓 𝑖

𝑗‖
𝐿1(𝜇)

< 𝜀.

⬜︎

Now we proceed with one more theorem on interchanging limits and integrals:
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Theorem

Fix 𝑎 < 𝑏. Consider 𝑓 : 𝑋 × [𝑎, 𝑏] → ℝ with 𝑥, 𝑡) ↦ 𝑓(𝑥, 𝑡). Suppose

(i) 𝑓(⋅, 𝑡) ∈ 𝐿1(𝜇)∀𝑡 ∈ [𝑎, 𝑏]
(ii) 𝜕𝑓

𝜕𝑡 (𝑥, 𝑡) exists ∀(𝑥, 𝑡) ∈ 𝑋 × [𝑎, 𝑏]
(iii) ∃𝑔 ∈ 𝐿1(𝜇) such that |𝜕𝑓

𝜕𝑡 (𝑥, 𝑡)| ≤ 𝑔(𝑥)∀(𝑥, 𝑡) ∈ 𝑋 × [𝑎, 𝑏]

Then 𝑡 ↦ ∫
𝑋

𝑓(𝑥, 𝑡)d𝜇(𝑥) is differentiable and

d
d𝑡

∫
𝑋

𝑓(𝑥, 𝑡)d𝜇(𝑥) = ∫
𝑋

𝜕
𝜕𝑡

𝑓(𝑥, 𝑡)d𝜇(𝑥)

Proof: Fix 𝑡0 ∈ [𝑎, 𝑏] and suppose {𝑡𝑛}∞
𝑛=1 ⊆ [𝑎, 𝑏] \ {𝑡0} with 𝑡𝑛 ↦ 𝑡0. By (ii),

lim
𝑛→∞

ℎ𝑛(𝑥)

⏞𝑓(𝑥, 𝑡𝑛) − 𝑓(𝑥, 𝑡0)
𝑡𝑛 − 𝑡0

= 𝜕𝑓
𝜕𝑡

(𝑥, 𝑡0).

So 𝜕𝑓
𝜕𝑡 (⋅, 𝑡) is measurable. By the Mean Value Theorem,

|ℎ𝑛(𝑥)| ≤ sup
𝑡∈[𝑎,𝑏]

|𝜕𝑓
𝜕𝑡

(𝑥, 𝑡)| ≤
(iii)

𝑔(𝑥)

By the Dominated Convergence Theorem,

lim
𝑛→∞

∫ 𝑓(𝑥, 𝑡𝑛)d𝜇(𝑥) − ∫ 𝑓(𝑥, 𝑡0)d𝜇(𝑥)
𝑡𝑛 − 𝑡0

= lim
𝑛→∞

∫ ℎ𝑛(𝑥)d𝜇(𝑥)

= ∫ lim
𝑛→∞

ℎ𝑛(𝑥)d𝜇(𝑥)

= ∫ 𝜕𝑓
𝜕𝑡

(𝑥, 𝑡0)d𝜇(𝑥).

⬜︎
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5.A Modes of Convergence

Let (𝑋, ℳ︀, 𝜇) be a measure space where 𝑓𝑛, 𝑓 : 𝑋 → ℝ are measurable.

Recall from undergraduate analysis the idea of uniform convergence:

(1) sup
𝑥∈𝑋

|𝑓𝑛(𝑥) − 𝑓(𝑥)| ⟶
𝑛→∞

0

and pointwise convergence:

(2) 𝑓𝑛(𝑥) ⟶
𝑛→∞

𝑓(𝑥)∀𝑥 ∈ 𝑋.

We introduce the notion of pointwise 𝜇-a.e. convergence:

(3) 𝑓𝑛(𝑥) ⟶
𝑛→∞

𝑓(𝑥) 𝜇-a.e. ∀𝑥 ∈ 𝑋

and recall our prior notion of 𝐿1(𝜇) convergence:

(4) ‖𝑓𝑛 − 𝑓‖𝐿1(𝜇) ⟶
𝑛→∞

0 ⟺ lim
𝑛→+∞

∫|𝑓𝑛 − 𝑓|d𝜇(𝑥) = 0

We wish to understand exactly how these various modes of convergence are related. It is easy to see that (1) ⟹ (2) and 

(2) ⟹ (3). The following examples illustrate that other relations are less clear.

Example: Splat

Let 𝑓𝑛 = 1
𝑛𝟙[0,𝑛] and 𝑓 = 0. Then ‖𝑓𝑛 − 𝑓‖𝐿1(𝜇) = ‖𝑓𝑛‖𝐿1(𝜇) = 1 ↛ 0. But this converges uniformly, showing that (1) 

⇏ (4).

Example: Refining Wave

For 𝑛 ≥ 1, write 𝑛 = 2𝑘 + 𝑗 where 0 ≤ 𝑗 < 2𝑘. Then define

𝑓𝑛 = 𝟙[𝑗/2𝑘,(𝑗+1)/2𝑘].

Notice that 𝑓𝑛 does not converge pointwise, since there it infinitely oscillates between 0 and 1, and ‖𝑓𝑛‖𝐿1(𝜇) = 1
2𝑘 →

0, so it converges in 𝐿1(𝜇). Thus shows that (4) ⇏ (3).

Lecture 12 Nov 6

Thus, we need to modify our 𝐿1(𝜇) convergence definition so that we can relate it to the other modes of convergence. 

Inspired by our work with the DCT, we might try adding a dominating function to (3). It turns out that with this addition, 

we will have (3) ⇒ (4) In particular, suppose ∃𝑔 ∈ 𝐿1(𝜇) such that |𝑓𝑛(𝑥)| ≤ 𝑔(𝑥) 𝜇-a.e. Then we can notice |𝑓𝑛(𝑥) −
𝑓(𝑥)| ≤ 2𝑔(𝑥) 𝜇-a.e., so by the DCT,

lim
𝑛→∞

∫|𝑓𝑛(𝑥) − 𝑓(𝑥)|d𝜇(𝑥) = ∫ lim
𝑛→∞

|𝑓𝑛(𝑥) − 𝑓(𝑥)|d𝜇(𝑥) = 0.

What about the other direction?
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We will work to show (4) ⇒ (3) “up to a subsequence”, by which we mean ∃𝑓𝑛𝑘
 such that 𝑓𝑛𝑘

→ 𝑓  𝜇-a.e. Our strategy 

will invoke a new concept…

5.B Convergence in Measure

Definition: Converges / Cauchy in Measure

A sequence of measurable functions 𝑓𝑛 : 𝑋 → ℝ converges in measure to a limiting measurable function 𝑓 : 𝑋 →
ℝ if ∀𝜀 > 0,

lim
𝑛→∞

𝜇({𝑥 : |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀}) = 0.

Likewise, 𝑓𝑛 is Cauchy in measure if ∀𝜀 > 0,

lim
𝑛,𝑚→∞

𝜇({𝑥 : |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≥ 𝜀}) = 0.

Remark

On homework, we will show that when 𝜇(𝑋) < +∞, convergence in measure is metrizable.

Proposition

In fact, for arbitrary (𝑋, ℳ︀, 𝜇), convergence in measure ⇒ Cauchy in measure.

Proof: Fix 𝜀 > 0. Then

{𝑥 : |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≥ 𝜀} ⊆ {𝑥 : |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀
2
} ∪

{𝑥 : |𝑓𝑚(𝑥) − 𝑓(𝑥)| ≥ 𝜀
2
}

since otherwise |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≤ |𝑓𝑛(𝑥) − 𝑓(𝑥)| + |𝑓𝑚(𝑥) − 𝑓(𝑥)| < 𝜀
2 + 𝜀

2 = 𝜀, contradicting |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≥
𝜀. Now by subadditivity,

𝜇({𝑥 : |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≥ 𝜀}) ≤ 𝜇({𝑥 : |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀
2
}) +

= 𝜇({𝑥 : |𝑓𝑚(𝑥) − 𝑓(𝑥)| ≥ 𝜀
2
}).

As 𝑛, 𝑚 → +∞, the right hand side goes to zero, so 𝑓𝑛 is Cauchy in measure.

⬜︎

Theorem

Consider 𝑓𝑛 : 𝑋 → ℝ measurable.

(i) If 𝑓𝑛 is Cauchy in measure, then ∃𝑓 : 𝑋 → ℝ measurable such that

(a) 𝑓𝑛 → 𝑓  in measure

(b) ∃𝑓𝑛𝑘
 such that 𝑓𝑛𝑘

→ 𝑓  𝜇-a.e.

(ii) If in addition 𝑓𝑛 → 𝑔 in measure, then 𝑓 = 𝑔 𝜇-a.e.
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Proof: First, we must find our guess for 𝑓 . Since 𝑓𝑛 is Cauchy in measure, ∃𝑓𝑛𝑘
 such that ∀𝑘 ∈ ℕ we have

𝜇

(






{




𝑥 :

|



𝑓𝑛𝑘

(𝑥)⏟
𝑔𝑘(𝑥)

− 𝑓𝑛𝑘+1
(𝑥)

|



≥ 1

2𝑘

}




⏟
𝐸𝑘 )







≤ 1
2𝑘 .

By countable subadditivity, ∀ℓ ∈ ℕ we have

𝜇(⋃
∞

𝑘=ℓ
𝐸𝑘) ≤ ∑

∞

𝑘=ℓ
𝜇(𝐸𝑘) ≤ ∑

∞

𝑘=ℓ

1
2𝑘 ≤ 1

2ℓ−1 .

Define

𝐹ℓ ≔ ⋃
∞

𝑘=ℓ
𝐸𝑘 and 𝐺 ≔ ⋃

∞

ℓ=1
𝐹 𝑐

ℓ .

Note that if 𝑥 ∉ 𝐹ℓ ⇔ 𝑥 ∈ ∩∞
𝑘=ℓ 𝐸𝑘, then for 𝑖 ≥ 𝑗 ≥ ℓ,

|𝑔𝑖(𝑥) − 𝑔𝑗(𝑥)| ≤ ∑
𝑖

𝑘=𝑗
|𝑔𝑘(𝑥) − 𝑔𝑘+1(𝑥)| ≤ ∑

𝑖

𝑘=𝑗

1
2𝑘 ≤ 1

2𝑗−1 .

Thus if 𝑥 ∉ 𝐹ℓ for some ℓ ∈ ℕ, then 𝑥 ∈ 𝐺 and {𝑔𝑖(𝑥)}∞
𝑖=1 is Cauchy, so it converges to lim𝑖→+∞ 𝑔𝑖(𝑥) ∈ ℝ.

Now define

𝑓(𝑥) = {lim𝑖→+∞ 𝑔𝑖(𝑥) if 𝑥 ∈ 𝐺
0 if 𝑥 ∈ 𝐺𝑐

Further,

𝜇(𝐺𝑐) = 𝜇(⋂
∞

ℓ=1
𝐹ℓ) ≤ 𝜇(𝐹ℓ) ≤ 1

2ℓ−1

so 𝜇(𝐺𝑐) = 0. So 𝑓𝑛𝑘
= 𝑔𝑘 → 𝑓  𝜇-a.e.

This shows (i)(b). Now we show (i)(a).

If 𝑥 ∈ 𝐹ℓ and 𝑗 ≥ ℓ then |𝑓(𝑥) − 𝑔𝑗(𝑥)| = lim𝑖→∞|𝑔𝑖(𝑥) − 𝑔𝑗(𝑥)| ≤ 1
2𝑗−1 . Therefore by contraposition, if |𝑓(𝑥) −

𝑔𝑗(𝑥)| ≥ 1
2𝑗−1  and 𝑗 ≥ ℓ we have 𝑥 ∈ 𝐹ℓ.

Thus for all 𝜀 > 0 and ℓ ∈ ℕ large enough so that 𝜀 > 1
2ℓ−1 , if 𝑗 ≥ ℓ, then

𝜇({𝑥 : |𝑓(𝑥) − 𝑔𝑗(𝑥)| ≥ 𝜀}) ≤ 𝜇({𝑥 : |𝑓(𝑥) − 𝑔𝑗(𝑥)| > 1
2ℓ−1 }) ≤ 𝜇(𝐹ℓ) ≤ 1

2ℓ−1

So 𝑓𝑛𝑗
= 𝑔𝑗 → 𝑓  in measure. Now applying the same argument as before,

{𝑥 : |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀} ⊆ {𝑥 : |𝑓𝑛(𝑥) − 𝑓𝑛𝑗
(𝑥)| ≥ 𝜀

2
} ∪ {𝑥 : |𝑓𝑛𝑗

(𝑥) − 𝑓(𝑥)| ≥ 𝜀
2
}

so

𝜇({𝑥 : |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀}) ≤ 𝜇({𝑥 : |𝑓𝑛(𝑥) − 𝑓𝑛𝑗
(𝑥)| ≥ 𝜀

2
}) + 𝜇({𝑥 : |𝑓𝑛𝑗

(𝑥) − 𝑓(𝑥)| ≥ 𝜀
2
}).
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Sending 𝑛, 𝑗 → +∞ shows 𝑓𝑛 → 𝑓  in measure.

Finally we show (ii). Suppose 𝑓𝑛 → 𝑔 in measure and fix 𝜀 > 0. By the same argument,

𝜇({𝑥 : |𝑓(𝑥) − 𝑔(𝑥)| ≥ 𝜀}) ≤ 𝜇({𝑥 : |𝑓(𝑥) − 𝑓𝑛(𝑥)| ≥ 𝜀
2
}) + 𝜇({𝑥 : |𝑓𝑛(𝑥) − 𝑔(𝑥)| ≥ 𝜀

2
}).

By (i) and the given, notice the right hand side goes to zero as 𝑛 → +∞, and the left hand side is independent of 𝑛 so

𝜇({𝑥 : |𝑔(𝑥) − 𝑓(𝑥)| ≥ 𝜀}) = 0

and

𝜇({𝑥 : |𝑔(𝑥) − 𝑓(𝑥)| > 0}) = 𝜇(⋃
∞

𝑘=1
{𝑥 : |𝑔(𝑥) − 𝑓(𝑥)| ≥ 1

𝑘
}) ≤ ∑

∞

𝑘=1
𝜇({𝑥 : |𝑔(𝑥) − 𝑓(𝑥)| ≥ 1

𝑘
}) = 0

so 𝑓 = 𝑔 𝜇-a.e.

⬜︎

We now apply these results to study convergence in 𝐿1(𝜇).

Proposition

(i) If 𝑓𝑛 is Cauchy in 𝐿1(𝜇), then it’s Cauchy in measure.

(ii) If 𝑓𝑛 is convergent in 𝐿1(𝜇), then it’s convergent in measure.

Proof: If 𝑓𝑛 is convergent in 𝐿1(𝜇), because 𝐿1(𝜇) is a metric space, we have that 𝑓𝑛 is Cauchy. Then (i) from the 

previous proposition implies 𝑓𝑛 is Cauchy in measure.

Define 𝐸𝑛,𝑚,𝜀 ≔ {𝑥 : |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≥ 𝜀}. Then

𝜀𝜇(𝐸𝑛,𝑚,𝜀) = ∫
𝐸𝑛,𝑚,𝜀

𝜀d𝜇 ≤ ∫
𝐸𝑛,𝑚,𝜀

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)|d𝜇(𝑥) ≤ ∫
𝑋

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)|d𝜇(𝑥) = ‖𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)‖𝐿1(𝜇).

Since 𝑓𝑛 is Cauchy in 𝐿1(𝜇), 𝑛, 𝑚 → +∞ means the right hand side goes to zero. So 𝑓𝑛 is convergent in measure.

⬜︎

Corollary

If 𝑓𝑛 is Cauchy in 𝐿1(𝜇), then 𝑓 ∈ 𝐿1(𝜇) and a subsequence 𝑓𝑛𝑘
 such that 𝑓𝑛𝑘

→ 𝑓  𝜇-a.e.

Proof: By the previous theorem, 𝑓𝑛 is Cauchy in measure. By previous proposition, ∃𝑓 : 𝑋 → ℝ measurable such that 

𝑓𝑛𝑘
→ 𝑓  𝜇-a.e. It remains to show 𝑓 ∈ 𝐿1(𝜇). By Fatou’s Lemma,

∫|𝑓|d𝜇 = ∫ lim inf
𝑘→+∞

|𝑓𝑛𝑘
|d𝜇 ≤ lim inf

𝑘→+∞
∫|𝑓𝑛𝑘

|d𝜇 = lim inf
𝑘→+∞

‖𝑓𝑛𝑘
‖

𝐿1(𝜇)
< +∞

⬜︎

Corollary

𝐿1(𝜇) is a Banach space, that is, a complete normed vector space.
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Proof: Let 𝑓𝑛 be Cauchy in 𝐿1(𝜇). By the previous corollary, ∃𝑓 ∈ 𝐿1(𝜇) and a subsequence 𝑓𝑛𝑘
 such that 𝑓𝑛𝑘

→ 𝑓  𝜇-

a.e. By Fatou’s Lemma,

∫|𝑓𝑛𝑘
− 𝑓|d𝜇 = ∫ lim inf

𝑗→∞
|𝑓𝑛𝑘

− 𝑓𝑛𝑗
|d𝜇 ≤ lim inf

𝑗→∞
‖𝑓𝑛𝑘

− 𝑓𝑛𝑗
‖

𝐿1(𝜇)
.

Thus the left hand side goes to zero as 𝑘 → +∞ so 𝑓𝑛𝑘
→ 𝑓  in 𝐿1(𝜇). Finally, on any metric space, if a subsequence of 

a Cauchy sequence converges to a limit, then the whole sequence must converge to the same limit.

⬜︎

So to summarize the modes of convergence:

𝑓𝑛 → 𝑓 in 𝐿1(𝜇) ⇒ 𝑓𝑛 ⇒ 𝑓 in measure ⇒ 𝑓𝑛𝑘
⇒

up to subseq
𝑓 𝜇-a.e.

5.C Product Measures

Lecture 14 Nov 13

Notation

Let

• {(𝑋𝛼, ℳ︀𝛼)}𝛼∈𝐴 a countable collection of measurable spaces

• 𝑋 = ∏
𝛼∈𝐴

𝑋𝛼

• Let 𝜋𝛼 denote the projection of 𝑋 onto 𝑋𝛼 so 𝜋𝛼 : 𝑋 → 𝑋𝛼

Definition

The product 𝜎-algebra is

⨂
𝛼∈𝐴

ℳ︀𝛼 = ℳ︀({∏
𝛼∈𝐴

𝐸𝛼 : 𝐸𝛼 ∈ ℳ︀𝛼})

For example, if each 𝐸𝛼 = [𝑎, 𝑏] ⊆ ℝ, then we define a rectanglar prism.

Our first goal is to show ⨂𝑑
𝑖=1 ℬ︀ℝ = ℬ︀ℝ𝑑 .

Proposition

Given ℰ︀𝛼 ⊆ 2𝑋𝛼  such that 𝑋𝛼 ∈ ℰ︀𝛼 and ℳ︀𝛼 = ℳ︀(ℰ︀𝛼) then

⨂
𝛼∈𝐴

ℳ︀𝛼 = ℳ︀({∏
𝛼∈𝐴

𝐸𝛼 : 𝐸𝛼 ∈ ℰ︀𝛼})

Proof: HW7

⬜︎

Recall the following facts, which will be useful in the following the following theorem:
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(i) {𝑋𝑖}
𝑛
𝑖=1 separable ⇒ 𝑋 = ∏

𝑛

𝑖=1
𝑋𝑖 separable

(ii) In a separable metric space, every open set can be written as a countable union of open balls

(iii) {𝐸𝑖}
𝑛
𝑖=1 open ⇒ ∏

𝑛

𝑖=1
𝐸𝑖 open

Theorem

Given metric spaces 𝑋1, 𝑋2, …, 𝑋 and ∏
𝑑

𝑖=1
𝑋𝑖 endowed with the metric 𝑑max((𝑥1, …, 𝑥𝑑), (𝑦1, …, 𝑦𝑑)) =

max1≤𝑖≤𝑑 𝑑𝑖(𝑥𝑖, 𝑦𝑖). Then ⨂𝑑
𝑖=1 ℬ︀𝑋𝑖

⊆ ℬ︀𝑋 . Further, if {𝑋𝑖}
𝑑
𝑖=1 is separable, then ℬ︀𝑋 = ⊗𝑑

𝑖=1 ℬ︀𝑋𝑖
.

Proof: By the proposition,

⨂
𝑑

𝑖=1
ℬ︀𝑋𝑖

= ℳ︀({∏
𝑛

𝑖=1
𝐸𝑖 : 𝐸𝑖 ⊆ 𝑋𝑖}) ⊆ ℳ︀({𝑈 : 𝑈 ⊆ 𝑋 open}) = ℬ︀𝑋.

Since 𝑋 is endowed with 𝑑max, we know 𝐵 = ∏
𝑑

𝑖=1
𝐵𝑖 for balls 𝐵𝑖 ⊆ 𝑋𝑖.

⬜︎

Remark

𝑑max is convenient because ℬ︀𝑟(𝑥1, …, 𝑥𝑛) = ∏
𝑑

𝑖=1
ℬ︀𝑟(𝑥𝑖).

Remark

Since the definition of ℬ︀𝑋 depends only on the topology of 𝑋, the result continues to hold if 𝑋 is endowed with any 

equivalent metric.

Suppose we have measure spaces (𝑋, ℳ︀, 𝜇) and (𝑌 , 𝒩︀, 𝜈) and rectangles 𝐴 × 𝐵 where 𝐴 ∈ ℳ︀, 𝐵 ∈ 𝒩︀. Then ℳ︀ ⊗ 𝒩︀ =
ℳ︀({𝐴 × 𝐵 : 𝐴 ∈ ℳ︀, 𝐵 ∈ 𝒩︀}). Our goal is to prove the existnce of a unique measure 𝜔 on the measure space (𝑋 ×
𝑌 , ℳ︀ ⊗ 𝒩︀) with the property

𝜔(𝐴 × 𝐵) = 𝜇(𝐴)𝜈(𝐵)∀𝐴 ∈ ℳ︀, 𝐵 ∈ 𝒩︀.

We will denote this measure by 𝜇 ⊗ 𝜈 ≔ 𝜔. To accomplish this goal, we will use the Monotone Class Theorem.

Definition: Monotone Class

𝐶 ⊆ 2𝑋 is called a monotone class if it is a nonempty collection such that

(i) {𝐸𝑖}
∞
𝑖=1 ⊆ 𝒞︀ and 𝐸1 ⊆ 𝐸2 ⊆⋅ ⋅ ⋅⇒ ∪∞

𝑖=1 𝐸𝑖 ∈ 𝒞︀.

(ii) {𝐸𝑖}
∞
𝑖=1 ⊆ 𝒞︀ and 𝐸1 ⊇ 𝐸2 ⊇⋅ ⋅ ⋅⇒ ∩∞

𝑖=1 𝐸𝑖 ∈ 𝒞︀.

Proposition

Given any ℰ︀ ⊆ 2𝑋 nonempty, ∃ a smallest monotone class containing ℰ︀ denoted 𝒞︀(ℰ︀).

Proof: HW

⬜︎
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Definition: X-section and Y-section

For any 𝐸 ∈ ℳ︀ ⊗ 𝒩︀, define the x-section 𝐸𝑥 and y-section 𝐸𝑦 by

𝐸𝑥 = {𝑦 : (𝑥, 𝑦) ∈ 𝐸}
𝐸𝑦 = {𝑥 : (𝑥, 𝑦) ∈ 𝐸}

Here are some basic properties of sections:

(i) If 𝐸 = 𝐴 × 𝐵, 𝐴 ∈ ℳ︀, 𝐵 ∈ 𝒩︀ then

𝐸𝑥 = {𝐵 if 𝑥 ∈ 𝐴
∅ if 𝑥 ∉ 𝐴

𝐸𝑦 = {𝐴 if 𝑦 ∈ 𝐵
∅ if 𝑦 ∉ 𝐵

(ii) Given {𝐸𝑖}
∞
𝑖=1 ⊆ ℳ︀ ⊗ 𝒩︀,

(⋃
∞

𝑖=1
𝐸𝑖)

𝑋

= {𝑦 : (𝑥, 𝑦) ∈ ⋃
∞

𝑖=1
𝐸𝑖}

= ⋃
∞

𝑖=1
{𝑦 : (𝑥, 𝑦) ∈ 𝐸𝑖}

= ⋃
∞

𝑖=1
(𝐸𝑖)𝑋

(iii) Given 𝐸 ∈ ℳ︀ ⊗ 𝒩︀,

(𝐸𝑐)𝑋 = {𝑦 : (𝑥, 𝑦) ∈ 𝐸𝑐}

= {𝑦 : (𝑥, 𝑦) ∈ 𝐸}𝑐

= (𝐸𝑥)𝑐.

(iv) If 𝐸 ∈ ℳ︀ ⊗ 𝒩︀ then

𝜈(𝐸𝑥) = ∫
𝑌

𝟙𝐸𝑥
(𝑦) d𝜈(𝑦) = ∫

𝑌
𝟙𝐸(𝑥, 𝑦) d𝜈(𝑦)

Proposition

If 𝐸 ∈ ℳ︀ ⊗ 𝒩︀ then 𝐸𝑥 ∈ 𝒩︀, 𝐸𝑦 ∈ ℳ︀, then ∀𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 .

Proof: Let ℰ︀ = {𝐸 ∈ ℳ︀ ⊗ 𝒩︀ : above holds}. By a, ℰ︀ contains all rectangles. By b and c, ℰ︀ is a 𝜎-algebra.

By definition, ℳ︀ ⊗ 𝒩︀ is the smallest 𝜎-algebra containing all rectangles. Thus ℳ︀ ⊗ 𝒩︀ ⊆ ℰ︀.

⬜︎

Lecture 15 Nov 20
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