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1. Physical Preliminaries
We review some fundamental concepts from Newtonian Mechanics.

1.1. Time and Space
Probably the two most fundamental ideas of physics are time and space. These are things we have an intuitive
understanding of by observing the world around us—an exact definition is outside the realm of physics, and probably best
left to philosophy. What is important to note, however, is that we can only measure time and space with respect to some
reference point. I.e., we must define a coordinate system, with some reference point in space, or some reference time,
before we can talk about distance or time taken. This is the idea behind a reference frame: some set of reference points
and coordinate axes such that space and time can be defined precisely.

Define position to be a particular point in space within some reference frame. Now, supposing we have a coordinate
system giving us a concrete notion of time and space, suppose we have a ball at position 𝐏 at time 𝑡, and suppose at
another instant, we measure that the ball has moved to position 𝐏 + Δ𝐏 at time 𝑡 + Δ𝑡. We may wonder how fast the ball
is going, and in which direction. This is the idea of velocity. In particular, we might say that in the time in between our
measurements, the ball moved Δ𝐏 in time Δ𝑡, so its rate of change of position per unit time is

Δ𝐏
Δ𝑡

.

Yet, this is not particularly precise—it gives us an approximate idea of how fast the ball was moving at time 𝑡, but the ball
could have sped up or slowed down within the time interval Δ𝑡—we have no way of knowing. To ensure a more accurate
sample, we can try shrinking Δ𝑡, so there’s less chance of fluctuations in the rate of change of position. We finally make
this precise when Δ𝑡 becomes infinitely small; this is how we formally define velocity:

𝐯 = lim
Δ𝑡→0

Δ𝑃
Δ𝑡

= d𝐏
d𝑡

This general process is called finding the instantaneous rate of change, known as a derivative. Finally, we define
acceleration to be the derivative of velocity, i.e., it’s the rate of change of the rate of change of position:

𝐚 = lim
Δ𝑡→0

Δ𝐯
Δ𝑡

= d𝐯
d𝑡

.

1.2. Galilean Transformations

1.3. Newton’s Laws
The foundation of classical mechanics is comprised of Newton’s Three Laws, which we present out of order.

1. Through observation of the world, physicists found that in general, objects do not accelerate, a tendency we call inertia.
By “in general”, we specifically are operating under the assumption that objects are not interacting with other objects
outside a given system. Newton’s First Law states that there are special reference frames where this assumption holds,
called inertial reference frames (IRFs).

An important point of emphasis: Newton’s First Law only tells us that these reference frames exist, not that every
possible frame of reference is inertial. So, the logical statement
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Physical Preliminaries Newton’s Laws — 1.3

no interaction ⟹ no acceleration

and the logically equivalent statement

acceleration ⟹ interaction,

only hold true when we are in an inertial reference frame. Further, we say nothing about the converse; if there is an
interaction in an inertial frame, there may or may not be acceleration.

3. Another observation physicists made is that in an isolated system consisting of two objects, the objects interact in a
particular way: they accelerate towards each other. That is, suppose we are in an inertial reference frame consisting of
two isolated objects. Newton’s Third Law states that the objects will accelerate, subject to:
1. Their accelerations will be opposite in direction (toward one another)
2. The ratio of their accelerations will be constant over time

Suppose we have Object 0 and Object 1 given as above. According to our law, the ratio of their accelerations is some
constant

𝐚0
𝐚1

= 𝑐.

Since the accelerations are opposite in direction, notice 𝑐 will be negative. Now define the mass of Object 0 to be 𝑚0,
some arbitrary reference point.

Then define the mass of Object 1 to be

𝑚1 ≡ −𝑐𝑚0 = −𝐚0
𝐚1

𝑚0

Notice that this definition implies mass is large when the other object is accelerating more quickly than the current
object, and it’s small when the current object accelerates more quickly. Thus, we can naturally interpret mass as a
measure of resistance to acceleration, that is, inertia. Further, for every object whose mass we might want to measure,
we can repeat this same process, as long as we can find a proper inertial reference frame. In other words, by doing these
experiments with two isolated bodies, we can define a mass for every object we want.

The next step is to be more precise about the idea of “interactions”. Since we observed that in this interaction, Object 0 is
accelerating, and we found that mass is some resistance to acceleration, it is natural to define a new concept, called
force, to be the product of the two.

𝐅 ≡ 𝑚𝐚.

We are also motivated by a desire to write the equation defining mass more simply; by defining 𝐅0 = 𝑚0𝐚0 and 𝐅1 =
𝑚1𝐚1, the equation becomes

𝐅1 = −𝐅0.

Notice the logical chain here: we started with empirical observations, wrote down a law, and then some definitions
naturally followed to make it easier to describe the phenomena. In particular, it is essential to realize that force and mass
are ways to concisely describe what Newton’s laws are saying, and are not necessarily more fundamental concepts.

2. The Second Law states that if an object of mass 𝑚 in an inertial frame experiences some forces {𝐅𝑖}𝑖∈𝐼 , where each
𝐅𝑖 represents the force exerted in an isolated system with no other forces, then the acceleration 𝐚 of the object
satisfies

𝐅tot = ∑ 𝐅𝑖 = 𝑚𝐚;

that is, we have a superposition law: the total force exerted on an object with many interactions is the same as if
considered each pair of objects as an isolated system.

Page 4 of 35



Physical Preliminaries Newton’s Laws — 1.3

The most important thing to remember about these laws is that, while they may appear similar to mathematical axioms,
the key difference is that they are based on empirical observation. It is at all not self-evident that inertial reference frames
exist, for example; careful observation of real-world phenomena suggests that it is so. Unlike mathematics, we cannot do
physics by writing whatever definitions wherever we please. They must come from experiment.

1.4. Energy
Suppose we wish to determine the motion of a generic particle due to the action of particular force. By Newton’s Laws, we
merely need to solve the differential equation

𝐅 = 𝑚𝐚.

Path integrating both sides with respect to position gives

∫ 𝐅 ⋅ d𝐫 = 𝑚 ∫ 𝐚 ⋅ d𝐫

= 𝑚 ∫ d𝐯
d𝑡

⋅ (d𝐫
d𝑡

d𝑡)

= 𝑚 ∫ d𝐫
d𝑡

⋅ (d𝐯
d𝑡

d𝑡)

= 𝑚 ∫ 𝐯 ⋅ d𝐯

= 1
2
𝑚𝑣2

We define this new quantity on the right to be kinetic energy, and call the quantity on the left work. The reason we
specify this energy as “kinetic” is that it is fundamentally coming from the motion caused by the object’s acceleration, as
opposed to another type of energy, called potential energy, that comes from work. While we can loosey describe energy
as some measure of motion or potential motion of a particle, it is perhaps best to think of energy as some mysterious
quantity that proves to be extraordinarily useful in doing physics. Work then, can be thought of as a change in energy
resulting from the action of a force over a distance.

Thus, we have just found a key result:

Theorem: Work-energy theorem

The work 𝑊  done by a force is equal to the change in an object’s kinetic energy:

𝑊 = Δ𝐾.

It initially seems like we are making these definitions for no reason: why do we care about these quantities, when we
alreadd(y) understand forces? The reason that energy is useful is that for particular systems, it is conserved, i.e., invariant
with respect to time. This means that at each point in a physical system, we can calculate the total energy, and make
deductions about quantities based on that. This, of course, leaves an important question: why is it conserved? The
fundamental reason is temporal symmetry, which will be explained later on in our coverage of Noether’s Theorem.
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Physical Preliminaries Energy — 1.4

1.5. Conservative Forces
It turns out that the key property of forces that make energy calculations easy is that the work done by the force is
independent of the path taken. Forces that satisfy this are called conservative.

By the Fundamental Theorem of Calculus for Line Integrals, we then have

∫
𝐫1

𝐫0

𝐅 ⋅ d𝐫 = −𝑈(𝐫1) + 𝑈(𝐫0).

or equivalently,

𝐅 = −𝛁𝐔.

where 𝑈  is some potential function. Combining this with the work-energy theorem gives

𝐾𝑎 + 𝑈𝑎 = 𝐾𝑏 + 𝑈𝑏,

for a system subject to a conservative force, a particularly simple statement of the conservation of energy. Note the reason
for the sign convention on 𝑈  is so that we have sums in the above equation.

1.6. Momentum and Angular Momentum

1.7. Harmonic Oscillator
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2. Mathematical Preliminaries

2.1. Coordinate Systems
We very often want to choose a coordinate system that makes a particular problem as easy as possible. While Cartesian
coordinates 𝒙̂, 𝒚, 𝒛 are comfortable and familiar, they are not well-suited to every task. We thus discuss the other most
commonly used coordinate systems in physics.

Definition: Polar Coordinates

Consider an arbitrary vector. We want to define unit vectors 𝒓 and 𝜽 in such a way that

𝐫 = 𝑥𝒙̂ + 𝑦𝒚 = 𝑟𝒓.

In particular, from geometry we want

𝐫 = √𝑥2 + 𝑦2𝒓 = 𝑟 cos 𝜃𝒙̂ + 𝑟 sin 𝜃𝒚.

with 𝜃 = atan2(𝑦
𝑥). Thus in Cartesian coordinates, 𝒓 should be

1
𝑟
(𝑟 cos 𝜃

𝑟 sin 𝜃) = (cos 𝜃
sin 𝜃)

and being orthonormal in a right-handed coordinate system, we have 𝜽 = (− sin 𝜃, cos 𝜃).

We now wish to determine the Euclidean line element in polar coordinates. Recall the Euclidean metric in Cartesian
coordinates:

d𝑡2 = d𝑥2 + d𝑦2 .

From the definition of polar coordinates in terms of Cartesian coordinates, we see that

d𝐱 = cos 𝜃d𝐫 − 𝑟 sin 𝜃d𝛉; d𝐲 = sin 𝜃d𝐫 + 𝑟 cos 𝜃d𝛉

so that our line element becomes

d𝑠2 = (cos 𝜃d𝐫 − 𝑟 sin 𝜃d𝛉)2 + (sin 𝜃d𝐫 + 𝑟 cos 𝜃d𝛉)2

= cos2 𝜃 d𝑟2 +𝑟2 sin2 𝜃 d𝜃2 + sin2 𝜃 d𝑟2 +𝑟2 cos2 d𝜃2

= d𝑟2 +𝑟2 d𝜃2 .

Finally, we now want to express a generic position vector and its derivatives in polar coordinates. We have

𝐫 = (𝑥, 𝑦) = 𝑟(cos 𝜃, sin 𝜃) = 𝑟𝒓

̇𝐫 = ( ̇𝑥, ̇𝑦) = ̇𝑟(cos 𝜃, sin 𝜃) + 𝑟 ̇𝜃(− sin 𝜃, cos 𝜃) = ̇𝑟𝒓 + 𝑟 ̇𝜃𝜽

̈𝐫 = ( ̈𝑥, ̈𝑦) = ̈𝑟(cos 𝜃, sin 𝜃) + 2 ̇𝑟 ̇𝜃(− sin 𝜃, cos 𝜃) + 𝑟 ̈𝜃(− sin 𝜃, cos 𝜃) − 𝑟 ̇𝜃2(cos 𝜃, sin 𝜃)

= ( ̈𝑟 − 𝑟 ̇𝜃2)𝒓 + (𝑟 ̈𝜃 + 2 ̇𝑟 ̇𝜃)𝜽.

Note this equation for ̈𝐫 will be expanded upon in the later section on non-IRFs.
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Mathematical Preliminaries Coordinate Systems — 2.1

2.1.1. Cylindrical Coordinates

2.1.2. Spherical Coordinates

2.2. Multivariable Differentiation
Let 𝐟 : ℝ𝑛 → ℝ𝑚 be a function such that each of its first order partial derivatives exists on ℝ𝑛. Then the Jacobian matrix
of 𝐟 , denoted 𝐉𝐟 , is the 𝑚 × 𝑛 matrix whose (𝑖, 𝑗) entry is 𝜕𝑓𝑖

𝜕𝑥𝑗
:

𝐉𝐟 = ( 𝜕𝐟
𝜕𝑥1

⋅ ⋅ ⋅ 𝜕𝐟
𝜕𝑥𝑛

) =
(
((
(𝛁𝑇 𝑓1

⋮
𝛁𝑇 𝑓𝑚)

))
) =

(
((
((
(

𝜕𝑓1
𝜕𝑥1

⋮
𝜕𝑓𝑚
𝜕𝑥1

⋅ ⋅ ⋅
⋱
…

𝜕𝑓1
𝜕𝑥𝑛

⋮
𝜕𝑓𝑚
𝜕𝑥𝑛 )

))
))
)

.

Then, the Jacobian is the best linear approximation to 𝐟  at 𝐱; the linear map 𝐡 → 𝐉(𝐱) ⋅ 𝐡 is called the total derivative of
𝐟  at 𝐱.

In our case, we will frequently be dealing with scalar-valued multivariable functions, meaning 𝑚 = 1. In particular, it will
often be the case that each 𝑣 ∈ ℝ𝑛 is can be written as functions of a single variable, 𝑡. That is, we write 𝑓 =
𝑓(𝑥1(𝑡), …, 𝑥𝑛(𝑡)). Thus, for 𝐟 : ℝ𝑛 → ℝ, we have

𝐉𝐟 = 𝛁𝑇 𝑓 = ( 𝜕𝑓
𝜕𝑥1

⋅ ⋅ ⋅ 𝜕𝑓
𝜕𝑥𝑛

) ⟹ d𝑓 = ∑
𝑛

𝑖=1

𝜕𝑓
𝜕𝑥𝑖

d𝑥𝑖

is our total derivative, with 𝐡 = (d𝑥1, …, d𝑥𝑛). Thus we have

d𝑓
d𝑡

= ∑
𝑛

𝑖=1

𝜕𝑓
𝜕𝑥𝑖

d𝑥𝑖
d𝑡

.

We also want to deal with the case where we have a composition of functions.

Theorem: Multivariable Chain Rule

In single variable, calculus, recall we had

d
d𝑥

(𝑓(𝑔(𝑥))) = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥).

For general differentiable functions 𝐟 : ℝ𝑚 → ℝ𝑘 and 𝐠 : ℝ𝑛 → ℝ𝑚, the total derivative is

𝐉𝐟∘𝐠(𝐱) = 𝐉𝐟 (𝐠(𝐱))𝐉𝐠(𝐱).

Here, we are taking the product of a 𝑘 × 𝑚 matrix with an 𝑚 × 𝑛 matrix, so our result is a 𝑘 × 𝑛 matrix.

Again, the case that will be important for us in the future is the 𝑘 = 1 case. Suppose 𝑓 = 𝑓(𝑥1, …, 𝑥𝑚) is a differentiable
function of 𝑚 independent variables, where each 𝑥𝑖 = 𝑥𝑖(𝑡1, …, 𝑡𝑛) is a differentiable function of 𝑛 independent variables.
Then

𝐉𝐟∘𝐠 = ( 𝜕𝑓
𝜕𝑥1

⋅ ⋅ ⋅ 𝜕𝑓
𝜕𝑥𝑛

) = 𝐉𝐟 (𝐠)𝐉𝐠 = ( 𝜕𝑓
𝜕𝑥1

⋅ ⋅ ⋅ 𝜕𝑓
𝜕𝑥𝑚

)

(
((
((
(

𝜕𝑥1
𝜕𝑡1

⋮
𝜕𝑥𝑚
𝜕𝑡1

⋅ ⋅ ⋅
⋱
…

𝜕𝑥1
𝜕𝑡𝑛

⋮
𝜕𝑥𝑚
𝜕𝑡𝑛 )

))
))
)

= (∑
𝑚

𝑘=1

𝜕𝑓
𝜕𝑥𝑘

𝜕𝑥𝑘
𝜕𝑡1

⋅ ⋅ ⋅ ∑
𝑚

𝑘=1

𝜕𝑓
𝜕𝑥𝑘

𝜕𝑥𝑘
𝜕𝑡𝑛

).
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In particular, the general result is

𝜕𝑓
𝜕𝑡𝑗

= ∑
𝑚

𝑘=1

𝜕𝑓
𝜕𝑥𝑘

𝜕𝑥𝑘
𝜕𝑡𝑗

.

2.3. Calculus of Variations
Define a functional 𝐹  to be a map 𝐹 : 𝑋 → 𝐹 , where 𝑋 is some function space and the field 𝐹  is either ℝ or ℂ. Define
an operator 𝑓  to be a map 𝑓 : 𝑋 → 𝑋, a mapping from a set of functions to itself.

A typical example of a functional is a definite integral

𝐹[𝑥] = ∫
𝑡1

𝑡0

𝑥(𝑡) d𝑡

for some 𝑥 ∈ 𝑋. In particular, we are often interested in functionals which act as a metric on our space, such as the path
length function in ℝ2:

ℓ[𝑦] = ∫
𝑥=𝑥𝑏

𝑥=𝑥𝑎

√d𝑥2 + d𝑦2 = ∫
𝑥𝑏

𝑥𝑎

√1 + 𝑦′(𝑥)2 d𝑥 .

Lemma: Fundamental Lemma of the Calculus of Variations

If a continuous function 𝑓  on an open interval (𝑎, 𝑏) satisfies the equality

∫
𝑏

𝑎
𝑓(𝑥)ℎ(𝑥) d𝑥 = 0

for all compactly supported smooth functions ℎ on (𝑎, 𝑏), then 𝑓  is identically zero.

Proof: Suppose 𝑓(𝜉) ≠ 0 for some 𝜉 ∈ (𝑎, 𝑏). Since 𝑓  is nonzero, it is nonzero with the same sign for some 𝑐, 𝑑 with
𝑎 < 𝑐 < 𝜉 < 𝑑 < 𝑏. Without loss of generality take 𝑓(𝜉) > 0. Then we can find an ℎ that is positive on (𝑐, 𝑑) and zero
elsewhere, so that the integral is nonzero, a contradiction.

⬜

2.4. Euler-Lagrange Equation
We want to find extrema of a general functional 𝐽[𝑓] with respect to 𝑓 . We are particularly interested in an integrand of
the form 𝐿(𝑥, 𝑓(𝑥), 𝑓 ′(𝑥)), where we assume 𝐿 is twice continuously differentiable.

Consider that if 𝑓  is maximal, then any boundary-preserving perturbation to 𝑓0 increases 𝐽  (if 𝑓0 is a minimizer) or
decreases 𝐽  (if 𝑓0 is a maximizer).

Let our perturbation be given by

𝑓𝜀 = 𝑓 + 𝜀𝜂

where 𝜀 > 0, 𝑓 : ℝ → ℝ is fixed, and we can vary the compactly supported smooth function 𝜂 : ℝ → ℝ. Note that we
impose the condition 𝜂(𝑎) = 𝜂(𝑏) = 0 so that we only consider paths which go between the endpoints. Now define
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Φ(𝜀) = 𝐽[𝑓 + 𝜀𝜂] = ∫
𝑏

𝑎
𝐿(𝑥, 𝑓(𝑥) + 𝜀𝜂(𝑥), 𝑓 ′(𝑥) + 𝜀𝜂′(𝑥)) d𝑥 .

We want to find a sufficient condition for 𝑓  being an extremum. Thus, assume 𝑓  is an extremum of 𝐽[𝑓]; that is, Φ(0) is an
extremum. Thus 𝜀 = 0 ⟹ dΦ

d𝜀 = 0∀𝜂.

Following our characterization of extrema, differentiate with respect to 𝜀:

dΦ
d𝜀

= d
d𝜀

∫
𝑏

𝑎
𝐿(𝑥, 𝑓(𝑥) + 𝜀𝜂(𝑥), 𝑓 ′(𝑥) + 𝜀𝜂′(𝑥)) d𝑥

= ∫
𝑏

𝑎

𝜕
𝜕𝜀

𝐿(𝑥, 𝑓(𝑥) + 𝜀𝜂(𝑥), 𝑓 ′(𝑥) + 𝜀𝜂′(𝑥)) d𝑥

where in the previous step, we used Leibniz’s Integral Rule to interchange limits. To evaluate this partial derivative, recall
the final result in the previous section:

𝜕𝐿
𝜕𝜀

= 𝜕𝐿
𝜕𝑥

𝜕𝑥
𝜕𝜀

+ 𝜕𝐿
𝜕(𝑓(𝑥) + 𝜀𝜂(𝑥))

𝜕(𝑓(𝑥) + 𝜀𝜂(𝑥))
𝜕𝜀

+ 𝜕𝐿
𝜕(𝑓 ′(𝑥) + 𝜀𝜂′(𝑥))

𝜕(𝑓 ′(𝑥) + 𝜀𝜂′(𝑥))
𝜕𝜀

= 𝜂(𝑥) 𝜕𝐿
𝜕(𝑓(𝑥) + 𝜀𝜂(𝑥))

+ 𝜂′(𝑥) 𝜕𝐿
𝜕(𝑓 ′(𝑥) + 𝜀𝜂′(𝑥))

so our integral becomes

dΦ
d𝜀

= ∫
𝑏

𝑎
[𝜂(𝑥) 𝜕𝐿

𝜕(⋅ ⋅ ⋅)
(𝑥, 𝑓(𝑥) + 𝜀𝜂(𝑥), 𝑓 ′(𝑥) + 𝜀𝜂′(𝑥)) + 𝜂′(𝑥) 𝜕𝐿

𝜕(⋅ ⋅ ⋅)
(𝑥, 𝑓(𝑥) + 𝜀𝜂(𝑥), 𝑓 ′(𝑥) + 𝜀𝜂′(𝑥))] d𝑥 .

By our assumption, an extremum is achieved when 𝜀 vanishes. Now we integrate the second term by parts and apply the
boundary conditions:

0 = ∫
𝑏

𝑎
[𝜕𝐿

𝜕𝑓
(𝑥, 𝑓(𝑥), 𝑓 ′(𝑥)) − d

d𝑥
𝜕𝐿
𝜕𝑓 ′ (𝑥, 𝑓(𝑥), 𝑓 ′(𝑥))]𝜂(𝑥) d𝑥 +[𝜂(𝑥) 𝜕𝐿

𝜕𝑓 ′ (𝑥, 𝑓(𝑥), 𝑓 ′(𝑥))]
𝑏

𝑎

= ∫
𝑏

𝑎
[𝜕𝐿

𝜕𝑓
(𝑥, 𝑓(𝑥), 𝑓 ′(𝑥)) − d

d𝑥
𝜕𝐿
𝜕𝑓 ′ (𝑥, 𝑓(𝑥), 𝑓 ′(𝑥))]𝜂(𝑥) d𝑥

which, by the Fundamental Lemma, yields the Euler-Lagrange Equation:

𝜕𝐿
𝜕𝑓

(𝑥, 𝑓(𝑥), 𝑓 ′(𝑥)) = d
d𝑥

𝜕𝐿
𝜕𝑓 ′ (𝑥, 𝑓(𝑥), 𝑓 ′(𝑥)).

Note for a given extremum, satisfying the Euler-Lagrange Equation is necessary but not sufficient. I.e., every extremum
satisfies Euler-Lagrange, but the converse is false.

Remark

Because it will be important later on, we wonder what happens if 𝐿 depends on additional variables; consider
𝐿(𝑥, 𝑓1(𝑥), 𝑓 ′

1(𝑥), …, 𝑓𝑛(𝑥), 𝑓 ′
𝑛(𝑥))). Now, consider a perturbation in one of the coordinates,

𝐽[𝑓1, …, 𝑓𝑖 + 𝜀𝜂, …, 𝑓𝑛] = ∫
𝑏

𝑎
𝐿(𝑥, 𝑓1, …, 𝑓𝑖 + 𝜀𝜂, 𝑓 ′

𝑖 + 𝜀𝜂′, …, 𝑓 ′
𝑛) d𝑥 .
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Following the logic, we see the same equation holds for the new 𝐿—but crucially, this is predicated upon the
assumption that it is possible to vary 𝑓𝑖 independently in the first place. If there were a relationship between the 𝑓𝑖’s,
we would get a more complicated equation.

2.5. Geodesics
Armed with the Euler-Lagrange equation, we now wish to tackle general shortest path problems.

Definition: Geodesic

A geodesic is a curve representing the locally shortest path between two points on a Riemannian manifold.

Formally, a curve 𝛾 : 𝐼 → 𝑀  from an interval 𝐼 ⊆ ℝ to a metric space 𝑀  is a geodesic if ∃𝑣 ≥ 0 such that ∀𝑡 ∈ 𝐼∃ a
neighborhood 𝐽  of 𝑡 in 𝐼 such that ∀𝑡1, 𝑡2 ∈ 𝐽  we have

𝑑(𝛾(𝑡1), 𝛾(𝑡2))
|𝑡1 − 𝑡2|

= 𝑣.

We interpret this as follows: For every 𝑡, if we zoom in far enough, the path 𝛾 becomes a straight line up to some
constant factor. In fact, if we zoom in so that Δ𝑡 becomes infinitesimal, we see what is effectively a derivative, albeit
with respect to two different metrics in the general case. Thus, the curve has constant velocity, which should make
sense, as a curve that speeds up or slows down should not be optimal.

In general, geodesics can be found by using Euler-Lagrange and identifying local minima.

Example

Suppose we want to find the shortest path between two points on the surface of a sphere.

Take a polar angle 𝜃 and azimuthal angle 𝜑 as the coordinates, with constant radius 𝑅. The infinitesimal distances are
d𝑠𝜃 = 𝑅 d𝜃 and d𝑠𝜑 = 𝑅 sin 𝜃 d𝜑, implying

d𝑠2 = 𝑅2 d𝜃2 +𝑅2 sin2 𝜃 d𝜑2 .

It turns out to be easier to use 𝜃 as a variable of integration, since the first term in the Euler-Lagrange equation
vanishes. In particular we write

𝑠 = 𝑅 ∫
𝑏

𝑎
√1 + sin2 𝜃𝜑′2 d𝜃

with corresponding Euler-Lagrange equation

𝜕𝐹
𝜕𝜑

− d
d𝜃

𝜕𝐹
𝜕𝜑′ = 0 with 𝐹 = √1 + sin2 𝜃𝜑′2.

We could solve this for a particular

2.6. Fourier Transform

2.7. Legendre Transform
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3. Lagrangian Mechanics

3.1. The Lagrangian
We want to now use the Euler-Lagrange equation to solve mechanics problems. To do this, we want to find some function
𝐿(𝑡, 𝑥, ̇𝑥) such that evaluating the Euler-Lagrange equation gives Newton’s Second Law for a particle subject to
conservative forces,

d
d𝑡

(𝑚 ̇𝑥) = −d𝑈
d𝑥

.

Comparing with the form of Euler-Lagrange, we see we must have

𝜕𝐿
𝜕 ̇𝑥

= 𝑚 ̇𝑥; 𝜕𝐿
𝜕𝑥

= −d𝑈
d𝑥

.

Solving the first equation by separation of variables gives

𝐿 = 1
2
𝑚 ̇𝑥2 + 𝑔(𝑡, 𝑥).

Now since 𝑈  is purely a function of 𝑥, our second PDE means we do not have to consider 𝑡 dependence in our solution,
meaning without loss of generality let 𝑔 be a function of 𝑥 alone. From here we deduce

𝜕𝑔
𝜕𝑥

= −d𝑈
d𝑥

⇒ 𝑔(𝑥) = −𝑈(𝑥),

implying that

𝐿 = 𝑇 − 𝑈

works. This is called the Lagrangian of our system, and it gives us a powerful new formulation of mechanics. Importantly,
because we did not consider our PDE solution in full generality, it is not unique in its implication of Newton’s Second Law.

Definition: Least Action Principle

Given a mechanical system described by 𝑁  dynamical generalized coordinates 𝑞𝑘(𝑡), with 𝑘 = 1, 2, …, 𝑁 , define its
action by

𝑆[𝑞𝑘(𝑡)] = ∫
𝑡𝑏

𝑡𝑎

d𝑡 𝐿(𝑡, 𝑞1, 𝑞2, …, ̇𝑞1, ̇𝑞2, …).

(We assume the particle begins at some position (𝑞1, 𝑞2, …)𝑎 at time 𝑡𝑎 and ends at position (𝑞1, 𝑞2, …)𝑏 at time 𝑡𝑏.)
Also note that this is a generalized version of the function 𝐽[𝑓] shown previously.

Now the least action principle states that, for trajectories 𝑞𝑘(𝑡) where 𝑆 is stationary, i.e.,

𝛿𝑆 = 𝛿 ∫
𝑡𝑏

𝑡𝑎

𝐿(𝑡, 𝑞𝑘 ̇𝑞𝑘) d𝑡 = 0,

then the 𝑞𝑘(𝑡)’s satisfy the equations of motions for the system with the given boundary conditions. Note this is just
the proof we did earlier a—if to first order 𝛿𝑆 = 0, then 𝑆 is an extrema, and thus the Euler-Lagrange equations apply.
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3.2. Cyclic Coordinates
When deriving the form of 𝐿, recall we assigned

𝜕𝐿
𝜕 ̇𝑥

= 𝑚 ̇𝑥,

which is the particle’s momentum. This inspires us to define

𝑝𝑘 ≡ 𝜕𝐿
𝜕 ̇𝑞𝑘

to be the generalized momentum of the particle.

Now, consider the situation in which 𝑞𝑘 is not present in the Lagrangian. Then 𝑞𝑘 is called a cyclic coordinate. This is
important because we observe that in the Euler-Lagrange equation,

0 = 𝜕𝐿
𝜕𝑞𝑘

− d
d𝑡

𝜕𝐿
𝜕 ̇𝑞𝑘

that if

𝜕𝐿
𝜕𝑞𝑘

= 0

we must have

d𝑝𝑘
d𝑡

= 𝜕𝐿
𝜕 ̇𝑞𝑘

= 0.

so 𝑝𝑘 is constant through time, i.e., it’s a conserved quantity.

3.3. The Hamiltonian
Take the total derivative of the Lagrangian with respect to 𝑡:

d𝐿(𝑞𝑘, ̇𝑞𝑘, 𝑡)
d𝑡

= 𝜕𝐿
𝜕𝑡

+ 𝜕𝐿
𝜕𝑞𝑘

̇𝑞𝑘 + 𝜕𝐿
𝜕 ̇𝑞𝑘

̈𝑞𝑘

Note we are using Eisenstein summation convention; i.e., a sum over 𝑘 is implied for each term. Notice it shares two terms
in common with

d
d𝑡

( ̇𝑞𝑘
𝜕𝐿
𝜕 ̇𝑞𝑘

) = ̈𝑞𝑘
𝜕𝐿
𝜕 ̇𝑞𝑘

+ ̇𝑞𝑘
d
d𝑡

( 𝜕𝐿
𝜕 ̇𝑞𝑘

) = ̈𝑞𝑘
𝜕𝐿
𝜕 ̇𝑞𝑘

+ ̇𝑞𝑘
𝜕𝐿
𝜕𝑞𝑘

.

The difference of the equations is

d𝐿(𝑞𝑘, ̇𝑞𝑘, 𝑡)
d𝑡

− d
d𝑡

( ̇𝑞𝑘
𝜕𝐿
𝜕 ̇𝑞𝑘

) = 𝜕𝐿
𝜕𝑡

⟹ 𝜕𝐿
𝜕𝑡

− d
d𝑡

(𝐿 − ̇𝑞𝑘
𝜕𝐿
𝜕 ̇𝑞𝑘

) = 0.

This inspires us to define the Hamiltonian 𝐻  of the particle to be
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𝐻 ≡ ̇𝑞𝑘𝑝𝑘 − 𝐿

so that we can rewrite our previous equation as

𝜕𝐿
𝜕𝑡

= −d𝐻
d𝑡

.

Importantly, if 𝐿 is not a function of time, then the Hamiltonian is conserved.

What does the quantity actually mean? Observe

𝐻 = ∑
𝑘

̇𝑞𝑘
𝜕(𝑇 − 𝑈)

𝜕 ̇𝑞𝑘
− (𝑇 − 𝑈) = ∑

𝑘
̇𝑞𝑘
𝜕𝑇
𝜕 ̇𝑞𝑘

− 𝑇 + 𝑈.

Now, let 𝐫(𝑞𝑘, 𝑡) be a position vector of a particle in an inertial frame. We can say that

𝐯 = d𝐫(𝑞1, …𝑞𝑛, 𝑡)
d𝑡

= 𝜕𝐫
𝜕𝑡

+ ∑
𝑘

𝜕𝐫
𝜕𝑞𝑘

̇𝑞𝑘

so

𝑇 = 1
2
𝑚𝑣2 = 1

2
𝑚𝐯 ⋅ 𝐯 = 1

2
𝑚[𝜕𝐫

𝜕𝑡
⋅ 𝜕𝐫
𝜕𝑡

+ 2𝜕𝐫
𝜕𝑡

⋅ ∑
𝑘

𝜕𝐫
𝜕𝑞𝑘

̇𝑞𝑘 + ∑
𝑘

𝜕𝐫
𝜕𝑞𝑘

̇𝑞𝑘 ∑
𝑙

𝜕𝐫
𝜕𝑞𝑙

̇𝑞𝑙]

which we rewrite as

2𝑇 − 𝑚[𝜕𝐫
𝜕𝑡

⋅ 𝜕𝐫
𝜕𝑡

− 𝜕𝐫
𝜕𝑡

∑
𝑘

𝜕𝐫
𝜕𝑞𝑘

̇𝑞𝑘] = 𝑚[𝜕𝐫
𝜕𝑡

⋅ ∑
𝑘

𝜕𝐫
𝜕𝑞𝑘

̇𝑞𝑘 + ∑
𝑘

𝜕𝐫
𝜕𝑞𝑘

̇𝑞𝑘 ∑
𝑙

𝜕𝐫
𝜕𝑞𝑙

̇𝑞𝑙].

Now, indexing over the terms in the original expression by 𝑖, we find

∑
𝑖

̇𝑞𝑖
𝜕𝑇
𝜕 ̇𝑞𝑖

= ∑
𝑖

̇𝑞𝑖
1
2
𝑚[2𝜕𝐫

𝜕𝑡
⋅ 𝜕𝐫
𝜕𝑞𝑖

+ 2 ∑
𝑘

𝜕𝐫
𝜕𝑞𝑖

⋅ 𝜕𝐫
𝜕𝑞𝑘

̇𝑞𝑘]

= 𝑚[𝜕𝐫
𝜕𝑡

⋅ ∑
𝑖

𝜕𝐫
𝜕𝑞𝑖

̇𝑞𝑖 + ∑
𝑖

𝜕𝐫
𝜕𝑞𝑖

̇𝑞𝑖 ∑
𝑘

⋅ 𝜕𝐫
𝜕𝑞𝑘

̇𝑞𝑘]

= 2𝑇 − 𝑚𝜕𝐫
𝜕𝑡

⋅ 𝜕𝐫
𝜕𝑡

− 𝑚𝜕𝐫
𝜕𝑡

∑
𝑘

𝜕𝐫
𝜕𝑞𝑘

̇𝑞𝑘

= 2𝑇 − 𝑚𝜕𝐫
𝜕𝑡

⋅ [𝜕𝐫
𝜕𝑡

+ ∑
𝑘

𝜕𝐫
𝜕𝑞𝑘

̇𝑞𝑘]

= 2𝑇 − 𝑚𝐯 ⋅ 𝜕𝐫
𝜕𝑡

.

Thus overall,

𝐻 = 𝑇 + 𝑈 − 𝑚𝐯 ⋅ 𝜕𝐫
𝜕𝑡

.

So, we see that the Hamiltonian is really the total energy, minus the dot product of momentum and some change in
position with respect to time. This term becomes zero when, for example, there are fixed constraints on the problem.
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4. Symmetry and Noether’s Theorem

4.1. Constraint Forces
Consider a mechanical system parameterized by 𝑁  coordinates 𝑞𝑘, with 𝑃  algebraic relations between the coordinates (due
to constraint forces), given by

𝐶𝑙(𝑞1, 𝑞2, …, 𝑞𝑁 , 𝑡) = 0,

with 𝑙 ∈ {1, …, 𝑃}. These are called holonomic constraints. Notice we effectively have 𝑁 − 𝑃  degrees of freedom,
rather than 𝑁 .

Example

For example, suppose we have a block on a table. With the height at the table defined to be 𝑧 = 0, we introduce the
constraint that the block always lies on the table, i.e. 𝐶(𝑧) = 𝑧 = 0. Thus the Lagrangian becomes

𝐿 = 1
2
𝑚( ̇𝑥2 + ̇𝑦2 + ̇𝑧2) − 𝑚𝑔𝑧 = 1

2
𝑚( ̇𝑥2 + ̇𝑦2),

leaving us with two unknowns.

However, immediately doing this is not necessarily great, for a few reasons:
1. It may be difficult to eliminate the coordinate from the Lagrangian if the relations are more complex;
2. We may be interested in finding the constraint force at play rather than discarding it. I.e., what if we wanted to know

the normal force magnitude for the block?

To get around this, we introduce a way to delay implementing the constraints. Recall from the section on the Calculus of
Variations that the Euler-Lagrange equation only holds if we are able to vary the equations independently, meaning that
we can not directly plug the new equations into the Lagrangian.

Instead, we consider a new Lagrangian defined by

𝐿′ = 𝐿 + ∑
𝑃

𝑙=1
𝜆𝑙𝐶𝑙

where we have introduced 𝑃  degrees of freedom labeled 𝜆𝑙 with 𝑙 = 1, …, 𝑃 . These are called Lagrange multipliers. In
the previous example, our Langrangian would become

𝐿 = 1
2
𝑚( ̇𝑥2 + ̇𝑦2 + ̇𝑧2) − 𝑚𝑔𝑧 + 𝜆1𝑧

Now assuming the constraint equations are not satisfied a priori, we have 𝑁 + 𝑃  degrees of freedom. The equations of
motion are thus:

d
d𝑡

(𝜕𝐿′

𝜕𝜆̇𝑙
) − 𝜕𝐿′

𝜕𝜆𝑙
= −𝐶𝑙 = 0 ⟹ 𝐶𝑙 = 0

d
d𝑡

(𝜕𝐿′

𝜕 ̇𝑞𝑘
) − 𝜕𝐿′

𝜕𝑞𝑘
= d

d𝑡
( 𝜕𝐿

𝜕 ̇𝑞𝑘
) − 𝜕𝐿

𝜕𝑞𝑘
− ∑

𝑝

𝑙=1
𝜆𝑙

𝜕𝐶𝑙
𝜕𝑞𝑘

= 0.

This last term can be written as
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Symmetry and Noether’s Theorem Constraint Forces — 4.1

d
d𝑡

( 𝜕𝐿
𝜕 ̇𝑞𝑘

) − 𝜕𝐿
𝜕𝑞𝑘

= ∑
𝑝

𝑙=1
𝜆𝑙

𝜕𝐶𝑙
𝜕𝑞𝑘

≡ ℱ𝑘

where we have defined the ℱ𝑘’s as the generalized constraint forces for our system. It turns out that this definition of 𝐿′

gives exactly the solutions we desire, but the details are out of scope.

4.2. Symmetry
Define a symmetry be to be transformation that leaves the action unchanged in time. Start with the typical action

𝑆 = ∫ d𝑡 𝐿(𝑞, ̇𝑞, 𝑡).

Now apply some transformation given by Δ𝑞𝑘(𝑡, 𝑞) and 𝛿𝑡(𝑡, 𝑞). This is very similar to our derivation of the Euler-
Lagrange equation, but slightly more general, since we consider variations in time as well as variations in 𝑞𝑘.

Being slightly less formal this time, the variation in the action is

𝛿𝑆 = 𝛿(∫ 𝐿 d𝑡) = ∫ 𝛿(𝐿 d𝑡) = ∫ d𝑡 𝛿(𝐿) + ∫ 𝛿(d𝑡)𝐿

Now we have that the variation in 𝐿 due to the step Δ𝑞𝑘 is

𝛿Δ𝑞𝑘
𝐿 = 𝜕𝐿

𝜕𝑡
⋅ 0 + 𝜕𝐿

𝜕𝑞
Δ𝑞𝑘 + 𝜕𝐿

𝜕 ̇𝑞
Δ ̇𝑞𝑘 = 𝜕𝐿

𝜕𝑞
Δ𝑞𝑘 + 𝜕𝐿

𝜕 ̇𝑞
d
d𝑡

Δ𝑞𝑘

while the variation in 𝐿 due to the step 𝛿𝑡 is

𝛿𝛿𝑡𝐿 = d𝐿
d𝑡

𝛿𝑡.

Then, the variation in d𝑡 due to the time step 𝛿𝑡 is

𝛿(d𝑡) = d𝑡 𝛿(d𝑡)
d𝑡

= d𝑡 d
d𝑡

(𝛿𝑡)

Thus overall we have

𝛿𝑆 = ∫ d𝑡[∑
𝑘

( 𝜕𝐿
𝜕𝑞𝑘

Δ𝑞𝑘 + 𝜕𝐿
𝜕 ̇𝑞𝑘

d
d𝑡

Δ𝑞𝑘) + 𝛿𝑡d𝐿
d𝑡

+ 𝐿 d
d𝑡

(𝛿𝑡)]

= ∫ d𝑡[∑
𝑘

( 𝜕𝐿
𝜕𝑞𝑘

Δ𝑞𝑘 + 𝜕𝐿
𝜕 ̇𝑞𝑘

d
d𝑡

Δ𝑞𝑘) + d
d𝑡

(𝐿𝛿𝑡)]

as a general variation in the action due to the transformations Δ𝑞𝑘(𝑡, 𝑞) and 𝛿𝑡(𝑡, 𝑞).

4.3. Noether’s Theorem
This leads to one of the most important results in mathematical physics.
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Symmetry and Noether’s Theorem Noether’s Theorem — 4.3

Theorem: Noether’s Theorem

For every symmetry, there exists a quantity that is conserved under time evolution.

Proof: Suppose we have a given symmetry {𝛿𝑡(𝑡, 𝑞), Δ𝑞𝑘(𝑡, 𝑞)}. Then we get

𝛿𝑆 = ∫ d𝑡[∑
𝑘

( 𝜕𝐿
𝜕𝑞𝑘

Δ𝑞𝑘 + 𝜕𝐿
𝜕 ̇𝑞𝑘

d
d𝑡

Δ𝑞𝑘) + d
d𝑡

(𝐿𝛿𝑡)] = 0.

Now pick the curves 𝑞𝑘 that satisfy the Euler-Lagrange equation:

d
d𝑡

𝜕𝐿
𝜕 ̇𝑞𝑘

= 𝜕𝐿
𝜕𝑞𝑘

.

Thus

𝛿𝑆 = ∫ d𝑡[∑
𝑘

( d
d𝑡

( 𝜕𝐿
𝜕 ̇𝑞𝑘

)Δ𝑞𝑘 + 𝜕𝐿
𝜕 ̇𝑞𝑘

d
d𝑡

Δ𝑞𝑘) + d
d𝑡

(𝐿𝛿𝑡)] = 0

= ∫ d𝑡[∑
𝑘

d
d𝑡

( 𝜕𝐿
𝜕 ̇𝑞𝑘

Δ𝑞𝑘) + d
d𝑡

(𝐿𝛿𝑡)] = 0

= ∫ d𝑡 d
d𝑡

[∑
𝑘

( 𝜕𝐿
𝜕 ̇𝑞𝑘

Δ𝑞𝑘) + 𝐿𝛿𝑡] = 0

Now since the integration interval is arbitrary, we must have

d
d𝑡

𝑄 = 0,

where

𝑄 ≡ 𝜕𝐿
𝜕 ̇𝑞𝑘

Δ𝑞𝑘 + 𝐿𝛿𝑡.

We call this quantity 𝑄 the Noether charge.

⬜

We also have the following partial converse:

Corollary: Noether’s Theorem Partial Converse

Suppose

𝛿𝑆 = ∫ d𝑡 d𝐾
d𝑡

for some 𝐾.

Then 𝛿𝑡(𝑡, 𝑞), 𝛿𝑞𝑘(𝑡, 𝑞) is a symmetry, and 𝑄 − 𝐾 is a conserved quantity.

Proof:

⬜
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5. Central Forces

5.1. Two Body Problem
A central force on a particle is directed away or toward a fixed point and is spherically symmetric about that point. Thus,
the force and potential have no dependence upon 𝜃 or 𝜑: we can write 𝐅 = 𝐅(𝑟) and 𝑈 = 𝑈(𝑟). A typical example is
gravitational attraction

𝐅 = −𝐺𝑚1𝑚2
𝑟2 𝒓.

Now consider a general two body central force problem. Define the coordinates 𝐫1 = (𝑥1, 𝑦1, 𝑧1) and 𝐫2 = (𝑥2, 𝑦2, 𝑧2) with
corresponding center of mass coordinates

𝐑cm = 𝑚1𝐫1 + 𝑚2𝐫2
𝑚1 + 𝑚2

.

Also define the relative coordinates

𝐫 ≡ 𝐫2 − 𝐫1.

Then we have

𝐫1 = 𝐑cm − 𝑚2
𝑀

𝐫 and 𝐫2 = 𝐑cm + 𝑚1
𝑀

𝐫,

with 𝑀 = 𝑚1 + 𝑚2. The total kinetic energy is

𝑇 = 1
2
𝑚1 ̇𝐫2

1 + 1
2
𝑚2 ̇𝐫𝟐

2

= 1
2
𝑚1(𝐑̇cm − 𝑚2

𝑀
̇𝐫)

2
+ 1

2
𝑚2(𝐑̇cm + 𝑚1

𝑀
̇𝐫)

2

= 1
2
𝑚1(𝐑̇2

cm − 2𝑚2
𝑀

̇𝐫 + 𝑚2
2

𝑀2 ̇𝐫2) + 1
2
𝑚2(𝐑̇2

cm + 2𝑚1
𝑀

̇𝐫 + 𝑚2
1

𝑀2 ̇𝐫2)

= 1
2
𝑀𝐑̇2

cm + 1
2
𝜇 ̇𝐫2

where

𝜇 = 𝑚1𝑚2
𝑀

is called the reduced mass of the system.
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6. Non-Inertial Reference Frames
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7. Coupled Oscillators

7.1. Introductory example
Consider a system of two masses with mass 𝑚, where we use 𝑥1 to measure the position of the first mass from the left and
𝑥2 to measure the position of the second mass from the left. The first mass is attached to the left wall by a spring with
constant 𝑘, the second mass is attached to the right wall by a spring with constant 𝑘, and they are attached to each other
with a third spring of constant 𝑘′. Suppose the distance between the walls is 𝐿, so that our Lagrangian becomes

ℒ = 1
2
𝑚 ̇𝑥1

2 + 1
2
𝑚 ̇𝑥2

2 − 1
2
𝑘(𝑥1 − 𝑎1)

2 − 1
2
(𝐿 − 𝑥2 − 𝑎2)

2 − 1
2
𝑘′(𝑥2 − 𝑥1 − 𝑎12)

2

where 𝑎1, 𝑎2, 𝑎12 are the rest lengths. Suppose the masses are at equilibrium. Then we can write

𝑘Δℓ1 + 𝑘′Δℓ12 = 0

as the horizontal force on mass 1. If we move mass 1 some Δ𝑥1 = 𝑞1 from equilibrium, we get

𝑘(Δℓ1 + 𝑞1) + 𝑘′(Δℓ12 + 𝑞1) = 𝐹1 = 𝑘𝑞1 + 𝑘′𝑞1

so we can treat the system more simply as offsets from equilibrium. (Note we could have also just done this from the
beginning, and chosen our coordinates so that displacements were relative to equilibrium points, but this illustrates why
doing this works.) With this new coordinate system in place, our Lagrangian becomes

ℒ = 1
2
𝑚 ̇𝑞2

1 + 1
2
𝑚 ̇𝑞2

2 − 1
2
𝑘𝑞2

1 − 1
2
𝑘𝑞2

2 − 1
2
𝑘′(𝑞2 − 𝑞1)

2

where we noted that ̇𝑥1 = ̇𝑞1 since 𝑥 and 𝑞 differ by a constant offset. Thus the Euler-Lagrange equation gives

0 = −𝑘𝑞1 + 𝑘′(𝑞2 − 𝑞1) − 𝑚 ̈𝑞2

0 = −𝑘𝑞2 − 𝑘′(𝑞2 − 𝑞1) − 𝑚 ̈𝑞1

This implies

0 = −𝑘(𝑞1 + 𝑞2) − 𝑚( ̈𝑞1 + ̈𝑞2).

If we define 𝜉1 ≡ 𝑞1 + 𝑞2, we get

0 = −𝑘𝜉1 − 𝑚 ̈𝜉1

which is finally tractable. Solving this ODE clearly gives

𝜉1 = 𝑐1𝑒𝑖√ 𝑘
𝑚𝑡 + 𝑐∗

1𝑒−𝑖√ 𝑘
𝑚𝑡 = 𝐴1 cos(√ 𝑘

𝑚
𝑡 + 𝛿1).

Now if we subtracted the equations instead of adding them, we should get

0 = −𝑘(𝑞2 − 𝑞1) − 2𝑘′(𝑞2 − 𝑞1) − 𝑚( ̈𝑞2 − ̈𝑞1)

= −𝑘𝜉2 − 2𝑘′𝜉2 − 𝑚 ̈𝜉2

where we assigned 𝜉2 ≡ 𝑞2 − 𝑞1. Then solving the ODE gives
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Coupled Oscillators Introductory example — 7.1

𝜉2 = 𝑐2𝑒
𝑖√𝑘+2𝑘′

𝑚 𝑡 + 𝑐∗
2𝑒

−𝑖√𝑘+2𝑘′
𝑚 𝑡 = 𝐴2 cos(√𝑘 + 2𝑘′

𝑚
𝑡 + 𝛿2).

Observe that we can now recover 𝑞1 and 𝑞2:

𝑞1 = 𝐴1
2

cos(𝜔1𝑡 + 𝛿1) − 𝐴2
2

cos(𝜔2𝑡 + 𝛿2)

𝑞2 = 𝐴2
2

cos(𝜔1𝑡 + 𝛿1) + 𝐴2
2

cos(𝜔2𝑡 + 𝛿2).

Note it turns out that 𝜉1 and 𝜉2, considering the system as an aggregate, are often easier to work with and interpret. I.e., we
can think of 𝜉1 as a center of mass coordinate and 𝜉2 as a relative motion coordinate.

7.2. Generic Lagrangian as an Oscillator
Suppose we have a Lagrangian

𝐿 = 𝑇 − 𝑈 = ∑
𝑖,𝑗

𝑓𝑖𝑗(𝑞1, …, 𝑞𝑁) ̇𝑞𝑖 ̇𝑞𝑗 − 𝑈eff(𝑞1, …, 𝑞𝑁)

We can Taylor expand around equilibrium (𝛁𝑈 = 0) as follows:

𝐿 ≈ 𝑓𝑖𝑗|eq.
̇𝑞𝑖 ̇𝑞𝑗 +

𝜕𝑓𝑖𝑗

𝜕𝑞𝑘
|
eq.

(𝑞𝑘 − 𝑞k, eq) ̇𝑞𝑖 ̇𝑞𝑗 + ⋅ ⋅ ⋅ −𝑈eff|eq. −
1
2

𝜕2𝑈eff
𝜕𝑞𝑖𝜕𝑞𝑗

|
eq.

(𝑞𝑖 − 𝑞𝑖, eq)(𝑞𝑗 − 𝑞𝑗, eq) + ⋅ ⋅ ⋅

= 1
2
𝑀𝑖𝑗 ̇𝑞𝑖 ̇𝑞𝑗 − 1

2
𝐾𝑖𝑗𝑞𝑖𝑞𝑗 with 𝑀𝑖𝑗 = 2𝑓𝑖𝑗|eq and 𝐾𝑖𝑗 = 𝜕2𝑈eff

𝜕𝑞𝑖𝜕𝑞𝑗

so we can treat this as a generic coupled oscillator. We call 𝑀𝑖𝑗 the “mass matrix” and 𝐾𝑖𝑗 the “spring constant matrix”.
With matrix notation, we write this

𝐿 = 1
2
𝐪̇𝑇 ⋅ 𝑀̂𝐪̇ − 1

2
𝐪̇𝑇 𝐾̂𝐪̇

with 𝐪̇𝑇 = (𝑞1, 𝑞2, …, 𝑞𝑁). In our previous example, we had

𝑀̂ = (𝑚
0

0
𝑚), 𝐾̂ = (𝑘 + 𝑘′

−𝑘′
−𝑘′

𝑘 + 𝑘′).

7.3. Continuum Limit
Consider a system of 𝑛 masses connected by springs, similar to the example in the previous section except arbitrarily large.
It seems like an interesting math problem to figure out what happens; physically, this is also interesting because we can
model a continuous material as a large number of tiny masses connected by springs. For example, a solid object is made up
of molecules held together by some forces we can model as springs. Explicitly, suppose we take a mass and continuously
split it into two half masses connected by a spring, and repeat recursively. This is the idea of the continuum limit.

Let’s consider the Lagrangian of the system. Indexing the masses by ℤ, it should be

𝐿 = ∑
𝑖

(1
2
𝑚 ̇𝑥2

𝑖 − 1
2
𝑘(𝑥𝑖+1 − 𝑥𝑖)

2)
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Now, make the replacement

{𝑥𝑖(𝑡)} → 𝜂(𝑡, 𝑥); 𝑥𝑛(𝑡) → 𝜂(𝑡, 𝑥 ≡ 𝑛𝑎),

so we rewriting our many functions in terms of a single multivariable function. Suppose 𝑥𝑖=0 = 0 at equilibrium, and 𝑥𝑛 =
𝑎𝑛 at equilibrium. Thus the Lagrangian becomes

𝐿 = ∑
rod

(1
2
𝑚 ̇𝜂2(𝑡, 𝑥)2 − 1

2
𝑘(𝜂(𝑡, 𝑥 + 𝑎) − 𝜂(𝑡, 𝑥))2).

Now Taylor expanding 𝜂, we have

𝜂(𝑡, 𝑥 + 𝑎) ≈ 𝜂(𝑡, 𝑥) + 𝜕𝜂
𝜕𝑥

(𝑡, 𝑥)𝑎 + ⋅ ⋅ ⋅

so

𝐿 = ∑
rod

(1
2
𝑚 ̇𝜂2 − 1

2
𝑘(𝜂′(𝑎))2)

= ∫ d𝑥(1
2

𝑚
𝑎 ̇𝜂2 − 1

2
𝑘𝑎𝜂′2)

where 𝑎 = d𝑥 and we define 𝜂′ ≡ 𝜕𝜂
𝜕𝑥 . Now define the mass density 𝜇 = 𝑚

𝑎  and the Young’s Modulus 𝑌 = 𝑘𝑎 (which is the
like the stiffness, making it so we have a fixed spring constant as we divide into smaller pieces.)

Thus the action is

𝑆 = ∬ d𝑡 d𝑥(1
2
𝜇 ̇𝜂2 − 1

2
𝑌 𝜂′2)

We call the integrand here the Lagrangian density. The Euler-Lagrange equation for a multivariable function is

0 = 𝜕ℒ
𝜕𝜂

− d
d𝑡

𝜕ℒ
𝜕 ̇𝜂

− d
d𝑥

𝜕ℒ
𝜕𝜂′ .

In our case we have

0 = 0 − 𝜇 ̈𝜂 + 𝑌 𝜂″

which becomes the wave equation

𝜕2𝜂
𝜕𝑥2 − 1

𝑣2
𝜕2𝜂
𝜕𝑡2

= 0

where 𝑣 = √ 𝑌
𝑚 . Note this has the general solution

𝜂(𝑡, 𝑥) = 𝑓(𝑥 − 𝑣𝑡) + 𝑔(𝑥 + 𝑣𝑡).

Using a finite difference method, we can approximate

𝜕2𝑡
𝜕𝑥2

0
≈ 𝜂(𝑡, 𝑥0 + 𝜀) + 𝜂(𝑡, 𝑥0 − 𝜀) − 2𝜂(𝑡, 𝑥0)

𝜀2

using a second order central difference. Now define

𝜉𝑖 = 𝑃𝑖𝑖′𝑞𝑖′

with some transformation
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Coupled Oscillators Continuum Limit — 7.3

𝜂(𝑘) = ∫ d𝑥 𝑓(𝑥, 𝑘)𝜂(𝑥),

where we are looking for a transformation that will simplify our system. Thus we have

0 = ∫ d𝑥 𝜕2𝑓
𝜕𝑥2 𝜂 − 1

𝑣2
̈𝜂.

This means we need

𝜕2𝑓
𝜕𝑥2 = 𝐴(𝑘)𝑓(𝑘, 𝑥)

The standard example that satisfies this is to choose

𝑓(𝑥, 𝑘) = 1√
2𝜋

𝑒−𝑖𝑘𝑥 (Fourier transform)

Thus our PDE becomes

0 = −𝑘2𝜂 − 1
𝑣2

̈𝜂,

which we note is exactly the harmonic oscillator. Thus

𝜂 = 𝐶𝑒−𝑖𝑘𝑣𝑡+𝑖𝜑.

Note this means that 𝜂’s are exactly the normal modes. Further, the inverse Fourier transform is

𝜂 = ∫ d𝑘 𝑖√
2𝜋

𝑒𝑖𝑘𝑥𝜂.
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8. Scattering
Consider a setup where we have some target, fire some particles at it, and we observe how the particles react. Then, we can
learn some information about the target. We call this general experiment scattering. For example, vision is a scattering
experiment, or even tossing a ball into a dark crevice to determine if it’s a hole.

Suppose we have some incident particles 𝑁inc with random initial conditions being fired at a target. Suppose the target is a
sheet covered in holes, with some number density of targets 𝑛tar. Our goal is to know how many particles were scattered
𝑁sc, versus the number that made it through the hole. Note this is a similar setup to the Rutherford gold foil experiment,
for example. The reason we use a sheet instead of a single hole is that practically speaking, we cannot isolate to a single
hole or object we’re interested in, so our best bet is to use a sheet and control for this.

Define the cross-section by

𝜎 = 1
𝑛tar

𝑁sc
𝑁inc

For a more specific experiment, suppose we have incident particles modeled by spheres with radius 𝑟1, and our sheet is
modeled by a sequence of vertical spheres with radius 𝑟2. Thus if we consider the particles as point particles, the effective
cross sectional area covered by the sheet is

𝑛tar𝜋(𝑟1 + 𝑟2)
2

Then let 𝐴 is the total area of the beam.

Now suppose 𝜎 is non-constant: we might have some 𝜎tot = ∑
𝑖

𝜎𝑖 in that case. Or, infinitesimally,

𝜎 = ∫ d𝜎
dΩ

dΩ = ∫
2𝜋

0
∫

1

−1

d𝜎
dΩ

d(cos 𝜃) d𝜑

where dΩ is the differential solid angle (a measurement of the field of view a given angle covers on a sphere). I.e., take the
cone generated by some square angle dΩ: the area of the spherical cap d𝐴 relates to dΩ by dΩ = d𝐴

𝑟2 . Solid angles are
measured in steradians, equal to one square radian.

Now consider a ring with radius 𝑏 and thickness d𝑏. Thus we have

d𝜎inc = 2𝜋𝑏 d𝑏

and

dΩ = 2𝜋 sin 𝜃 d𝜃

since we have symmetry in 𝜑. Now recall that from our work in central forces,

𝜀 = √1 + 2𝐸ℓ2

𝑘2𝜇

with

𝑟 = 𝑟0
1 + 𝜀 cos 𝜑

we can use the fact that ℓ = 𝜇𝑣0𝑏 and

d𝜎
dΩ

= 𝑏
sin 𝜃

d𝑏
d𝜃

.
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Scattering

Then we eventually get

𝑏 = 𝑘
2𝐸

cot 𝜃
2
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9. Hamiltonian Mechanics

9.1. Introduction
Consider the Euler-Lagrange equation

𝜕𝐿
𝜕𝑞𝑘

= d
d𝑡

( 𝜕𝐿
𝜕 ̇𝑞𝑘

).

Recall we called 𝜕𝐿
𝜕 ̇𝑞𝑘

 the generalized momentum, and 𝜕𝐿
𝜕𝑞𝑘

 the generalized force, giving us a direct analogue of Newton’s
Second Law. Now when we work with Cartesian coordinates, we can simply say 𝐩 = 𝑚𝐯, so working with momentum is
really the same as working with velocities. Thus, we could formulate mechanics in terms of forces causing accelerations;
from the chapter on non inertial frames, however, we know that when we don’t use Cartesian coordinates, or have a non-
inertial frames, then we get terms that aren’t necessarily accelerations.

Thus, it is better to think fundamentally as mechanics as forces causing changes in momentum. This is the core idea of
Hamiltonian mechanics–rather than consider a spring system Lagrangian

𝐿(𝑡, 𝑞𝑘, ̇𝑞𝑘) = 1
2
𝑚 ̇𝑞2 − 1

2
𝑘𝑞2

where velocity is one of our coordinates, we instead assign 𝑝 = 𝑚 ̇𝑞 ⇔ ̇𝑞 = 𝑝
𝑚 , so that the Hamiltonian becomes

𝐻 = 𝑝𝑘 ̇𝑞𝑘 − 𝐿 = 𝑝 𝑝
𝑚

− 1
2
𝑚( 𝑝

𝑚
)

2
+ 1

2
𝑘𝑞2 = 𝑝2

2𝑚
+ 1

2
𝑘𝑞2

This allows us to write the action as

𝑆[𝑞𝑘, 𝑝𝑘] = ∫
𝑡2

𝑡1

𝑝𝑘
d𝑞𝑘
d𝑡

− 𝐻 d𝑡

Thus the instantaneous action is

𝛿𝑆 = 𝑆[𝑞𝑘 + 𝛿𝑞𝑘, 𝑝𝑘 + 𝛿𝑝𝑘] − 𝑆[𝑞𝑘, 𝑝𝑘] ≈ ∫
𝑡2

𝑡1

d𝑞𝑘
d𝑡

𝛿𝑝𝑘 + 𝑝𝑘
d(𝛿𝑞𝑘)

d𝑡
− 𝜕𝐻

𝜕𝑞𝑘
𝛿𝑞𝑘 − 𝜕𝐻

𝜕𝑝𝑘
𝛿𝑝𝑘 d𝑡

= ∫
𝑡2

𝑡1

d𝑞𝑘
d𝑡

𝛿𝑝𝑘 − d𝑝𝑘
d𝑡

𝛿𝑞𝑘 − 𝜕𝐻
𝜕𝑞𝑘

𝛿𝑞𝑘 − 𝜕𝐻
𝜕𝑝𝑘

𝛿𝑝𝑘 d𝑡 +𝑝𝑘𝛿𝑞𝑘|𝑡2
𝑡1

Note as opposed to Lagrangian mechanics, saying that position and momentum are independent is more justified than
saying position and velocity are independent.

Note our boundary conditions are 𝛿𝑞𝑘(𝑡2) = 𝛿𝑞𝑘(𝑡1) = 0. By comparing coefficients, we find that

d𝑞𝑘
d𝑡

= 𝜕𝐻
𝜕𝑝𝑘

, d𝑝𝑘
d𝑡

= −𝜕𝐻
𝜕𝑞𝑘

These are called Hamilton’s Equations. Thus we think of 𝜕𝐻
𝜕𝑝𝑘

 as the velocity, and − 𝜕𝐻
𝜕𝑞𝑘

 as the force.

In our case, these equations become

̇𝑞 = 𝑝
𝑚

, ̇𝑝 = −𝑘𝑞
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Note in practice, we will usually determine the Hamiltonian based on the Lagrangian, since it is not always 𝑇 + 𝑈 .

Thus instead of one simple equation and one very complicated one, we have two moderately complicated equations.

This formulation gives us a key advantage: rather than having 𝑛 second order differential equations, Hamiltonian
mechanics gives us 2𝑛 first order differential equations. It is significantly easier to numerically solve first order ODEs than
second order ODEs.

Further, while in Lagrangian mechanics, we were working in configuration space, which is just position and velocities.
Meanwhile, when we are doing Hamiltonian mechanics, we work in phase space, meaning that our coordinates are
position and momentum. The reason that this is an advantage is that 𝑝 is not necessarily 𝑚 ̇𝑞 - it may be another term,
meaning that far more trajectories in phase space are possible than trajectories in configuration space.

Thus the tangent line to the physical trajectory in phase space is

(𝜕𝐻
𝜕𝑝𝑘

, −𝜕𝐻
𝜕𝑞𝑘

)

In the case of our old problem, we would plot the vector field

( 𝑝
𝑚

, −𝑘𝑞).

This gives an elliptical shape, implying that the motion is an ellipse. This tells us immediately that the motion of a spring
system is a harmonic oscillator.

𝑧 = 𝑥2

2𝑎
; 𝐿 = 1

2
𝑚(1 + (𝑥

𝑎
)

2
) ̇𝑥2 − 𝑚𝑔

2𝑎
𝑥2

⟹ 𝑝 = 𝑚(1 + (𝑥
𝑎
)

2
) ̇𝑥 𝐻 = 𝑝2

2𝑚(1 + (𝑥
𝑎)2)

+ 𝑚𝑔
2𝑎

𝑥2

(
((
(( 𝑝

2𝑚(1 + (𝑥
𝑎)2)

, −𝑚𝑔
𝑎

𝑥 + 𝑝2

2𝑚(1 + (𝑥
𝑎)2)

2 ⋅ 2𝑥
𝑎2

)
))
))

9.2. Coordinate Transformations in Phase Space
Notice that in the previous derivation, we used 𝑝 = 𝑚 ̇𝑞, which only applies in Cartesian coordinates. We often want to
make some coordinate transformation, transforming our equations of motion appropriately to account for the fact that
they’re no longer Cartesian.

In Lagrangian mechanics, if we made a change of coordinates

𝑄𝑘 = 𝑓𝑘(𝑞1, …, 𝑞𝑁); 𝑃𝑘 = 𝜕𝐿
𝜕𝑄̇𝑘

= ∑
𝑗

𝜕𝐿
𝜕 ̇𝑞𝑗

𝜕𝑞𝑗

𝜕𝑄𝑘
= ∑

𝑗

𝜕𝑞𝑗

𝜕𝑄𝑘
𝑃𝑗

Thus, we see the momentum is merely a function of the new coordinates, so that 𝑄𝑘 uniquely defines our system.
However, this is not the case in Hamiltonian mechanics—here, position and momentum are separate coordinates.

Thus, to make an arbitrary transformation in Hamiltonian mechanics, we first want to remove the distinction between
position and momentum in phase space, so that we can standardize notation.

Thus we develop unified coordinates. In particular, assign
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𝜉𝑘 = {𝑞𝑘 if 1 ≤ 𝑘 ≤ 𝑁
𝑝𝑘−𝑁 if 𝑁 + 1 ≤ 𝑘 ≤ 2𝑁

For example, in the 𝑁 = 2 case, we assign

𝜉1 = 𝑞1, 𝜉2 = 𝑞2, 𝜉3 = 𝑝1, 𝜉4 = 𝑝2

so that the equations of motion become

̇𝜉1 = 𝜕𝐻
𝜕𝜉3

, ̇𝜉2 = 𝜕𝐻
𝜕𝜉4

, ̇𝜉3 = −𝜕𝐻
𝜕𝜉1

, ̇𝜉4 = −𝜕𝐻
𝜕𝜉2

.

In general, the equations of motion are

̇𝜉𝛼 = 𝑤𝛼𝛽
𝜕𝐻
𝜕𝜉𝛽

with 𝜔𝛼𝛽 = ( 0𝑁×𝑁
−𝐼𝑁×𝑁

𝐼𝑁×𝑁
0𝑁×𝑁

).

For example for 𝑁 = 1, 𝜔̂ = ( 0
−1

1
0) and for 𝑁 = 2,

𝜔̂ =

(
((
((
((

0
0

−1
0

0
0
0

−1

1
0
0
0

0
1
0
0)
))
))
))

.

Now consider some change of coordinates

𝜂𝛼(𝜉1, …, 𝜉2𝑁)

and then applying the chain rule gives

̇𝜂𝛼 = ∑
𝛽

𝜕𝜂𝛼
𝜕𝜉𝛽

̇𝜉𝛽 = ∑
𝛽

𝜕𝜂𝛼
𝜕𝜉𝛽

∑
𝛾

𝜔𝛽𝛾
𝜕𝐻
𝜕𝜉𝛾

= ∑
𝛽

𝜕𝜂𝛼
𝜕𝜉𝛽

∑
𝛾

𝜔𝛽𝛾 ∑
𝛿

𝜕𝐻
𝜕𝜂𝛿

𝜕𝜂𝛿
𝜕𝜉𝛾

= ∑
𝛽,𝛾,𝛿

𝜔𝛽𝛾
𝜕𝜂𝛼
𝜕𝜉𝛽

𝜕𝜂𝛿
𝜕𝜉𝛾

𝜕𝐻
𝜕𝜂𝛿

≡ 𝜒̂𝛼𝛿
𝜕𝐻
𝜕𝜂𝛿

This is becoming an ungodly mess, so we restrict to transformations where 𝜒̂ = 𝜔̂. We call this the symplectic condition,
and corresponding transformations are called canonical transformations; the resulting coordinates are called canonical
coordinates.

Note that this is the same kind of thing we do in special relativity: there, we restrict to working in inertial frames, only
making Lorentz transformations, so that our equations of motion don’t look insanely complicated. We call 𝜔̂ the
symplectic matrix.
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Example: Simple Harmonic Oscillator

Consider the equations of motion

𝐻 = 𝑝2

2𝑚
+ 𝑚𝜔2

2
𝑞2 𝑞 = √2𝜂2

𝑚𝜔
sin 𝜂1, 𝑝 = √2𝑚𝜔𝜂2 cos 𝜂1

Here 𝜂1 is our angular polar coordinate, and 𝜂2 is our radial polar coordinate.

𝑚𝜔𝑞2 + 𝑝2

𝑚𝜔
= 2𝜂2 sin2 𝜂1 + 2𝜂2 cos2 𝜂1 = 2𝜂2 ⟹ 𝐻 = 𝜔𝜂2 𝑚𝜔𝑞

𝑝
= tan 𝜂1

Then

𝜕𝑞
𝜕𝜂1

= √2𝜂2
𝑚𝜔

cos 𝜂1,
𝜕𝑞
𝜕𝜂2

= √ 1
2𝑚𝜔𝜂2

sin 𝜂1

and

𝜕𝑝
𝜕𝜂1

= −√2𝑚𝜔𝜂2 sin 𝜂1,
𝜕𝑝
𝜕𝜂2

= √
𝑚𝜔
2𝜂2

cos 𝜂1

We should get

𝜕𝑞
𝜕𝜂1

𝜕𝑝
𝜕𝜂2

− 𝜕𝑝
𝜕𝜂1

𝜕𝑞
𝜕𝜂2

= 1; 𝜕𝑝
𝜕𝜂1

𝜕𝑞
𝜕𝜂2

− 𝜕𝑞
𝜕𝜂1

𝜕𝑞
𝜕𝜂2

= 0

which shows that the polar coordinates are indeed a canonical transformation.

Then

̇𝜂1 = 𝜕𝐻
𝜕𝜂2

= 𝜔; ̇𝜂2 = −𝜕𝐻
𝜕𝜂1

= 0.

9.3. Poisson Brackets

Definition: Poisson Bracket

One particular quantity comes up a lot in Hamiltonian mechanics:

{𝐴, 𝐵} = 𝜔𝛼𝛽
𝜕𝐴
𝜕𝜉𝛼

𝜕𝐵
𝜕𝜉𝛽

= 𝜕𝐴
𝜕𝑞𝑘

𝜕𝐵
𝜕𝑝𝑘

− 𝜕𝐴
𝜕𝑝𝑘

𝜕𝐵
𝜕𝑞𝑘

We define this to be the Poisson bracket.

We can in fact describe our original coordinates using Poisson brackets with the Hamiltonian.

Example

{𝜉𝛼, 𝐻} = 𝜔𝛽𝛾
𝜕𝜉𝛼
𝜕𝜉𝛽

𝜕𝐻
𝜕𝜉𝛾

= 𝜔𝛽𝛾𝛿𝛼𝛽
𝜕𝐻
𝜕𝜉𝛾

= 𝜔𝛼𝛾
𝜕𝐻
𝜕𝜉𝛾

= ̇𝜉𝛼

Now if 𝜂 is a canonical coordinate, we have
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{𝐴, 𝐵} = 𝜔𝛼𝛽
𝜕𝐴
𝜕𝜉𝛼

𝜕𝐵
𝜕𝜉𝛽

= 𝜔𝛼𝛽
𝜕𝐴
𝜕𝜂𝛾

𝜕𝜂𝛾

𝜕𝜉𝛼

𝜕𝐵
𝜕𝜂𝛾

𝜕𝜂𝛾

𝜕𝜉𝛽
= 𝜔𝛾𝛿

𝜕𝐴
𝜕𝜂𝛾

𝜕𝐵
𝜕𝜂𝛾

.

Thus we get a condition for having a canonical coordinate:

𝜔𝛼𝛽 = 𝜔𝛾𝛿
𝜕𝜂𝛼
𝜕𝜉𝛾

𝜕𝜂𝛽

𝜕𝜉𝛿
⟺ {𝜂𝛼, 𝜂𝛽} = 𝜔𝛼𝛽

Proposition: Properties of Poisson Brackets

1. {𝐴, 𝐵} = −{𝐵, 𝐴}
2. {𝐴, 𝐵 + 𝐶} = {𝐴, 𝐵} + {𝐴, 𝐶}
3. {𝐴, 𝐵𝐶} = 𝐵{𝐴, 𝐶} + 𝐶{𝐴, 𝐵}
4. {𝐴, {𝐵, 𝐶}} + {𝐵, {𝐶, 𝐴}} + {𝐶, {𝐴, 𝐵}} = 0 (Jacobi identity)

Proof:
1. Follows from the antisymmetry of 𝜔.
2. Linearity property of differentiation.
3. Follows from product rule.
4. Follows from first law of antisymmetry

⬜

Consider a coordinate transformation

𝜂𝛼 = 𝜉𝛼 + 𝜀{𝜉𝛼, 𝐺}

where 𝐺(𝜉1, …, 𝜉2𝑛) is called the generator. This basically tells us the change in 𝜉𝛼 under the transformation generated by
𝐺. Note that since {𝜉𝛼, 𝐺} = −{𝐺, 𝜉𝛼}, we can also view this is the change in 𝐺 under the transformation generated by
𝜉𝛼.

Example

Suppose

𝜉1 = 𝑞, 𝜉2 = 𝑝, 𝐺 = 𝑝.

Then

𝜂1 = 𝑞 + 𝜀{𝑞, 𝑝} = 𝑞 + 𝜀[𝜕𝑞
𝜕𝑞

𝜕𝑝
𝜕𝑝

− 𝜕𝑞
𝜕𝑝

𝜕𝑝
𝜕𝑞

] = 𝑞 + 𝜀

𝜂2 = 𝑝 + 𝜀{𝑝, 𝑝} = 𝑝

Thus the transformation generated by momentum is translation.

Now consider a general transformation of the Poisson bracket of two transformations:

{𝜂𝛼, 𝜂𝛽} = {𝜉𝛼 + 𝜀{𝜉𝛼, 𝐺}, 𝜉𝛽 + 𝜀{𝜉𝛽, 𝐺}}

= {𝜉𝛼, 𝜉𝛽} + {𝜉𝛼, 𝜀{𝜉𝛽, 𝐺}} + {𝜀{𝜉𝛼, 𝐺}, 𝜉𝛽} + 𝑂(𝜀2)

= 𝜔𝛼𝛽 + 𝜀[{𝜉𝛼, {𝜉𝛽, 𝐺}} − {{𝐺, 𝜉𝛽}, 𝜉𝛼} − {{𝜉𝛽, 𝜉𝛼}, 𝐺}] (via Jacobi identity)
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Now {𝜉𝛽, 𝜉𝛼} = 𝜔𝛽𝛼 which is constant, so the final term goes to zero. Also swap {{𝐺, 𝜉𝛽}, 𝜉𝛼} = {𝜉𝛼, {𝜉𝛽, 𝐺}}. Thus
the entire thing becomes 𝜔𝛼𝛽.

Definition: Active vs Passive Transformation

An active transformation takes the system and leaves the coordinates fixed, whereas a passive transformation
moves coordinates some way and leaving the system fixed. These are obviously linked: an active transformation is the
inverse of a passive transformation.

Consider an arbitrary quantity 𝐴, some function of position and momentum, such as the energy of the system. Then under
an active transformation, it changes by

𝛿𝐴 = 𝐴(𝜂𝛼) − 𝐴(𝜉𝛼) = 𝜕𝐴
𝜕𝜉𝛼

𝜀{𝜉𝛼, 𝐺}

= 𝜀 𝜕𝐴
𝜕𝜉𝛼

𝜔𝛽𝛾
𝜕𝜉𝛼
𝜕𝜉𝛽

𝜕𝐺
𝜕𝜉𝛾

= 𝜀𝜔𝛼𝛾
𝜕𝐴
𝜕𝜉𝛼

𝜕𝐺
𝜕𝜉𝛾

= 𝜀{𝐴, 𝐺}

If we make some transformation and the Hamiltonian does not change, i.e., 0 = 𝛿𝐻 , then we should get a symmetry. We
can also consider using the Hamiltonian as the generator, in which case the change in any property has to do with time.

THe Hamiltonian generates time translations. In other words, the generator is conserved. That is Noether’s Theorem in the
Hamiltonian setting.

Note the final term is usually zero.

Theorem: Noether’s Theorem (Hamiltonian Setting)

Suppose {𝐺, 𝐻} = 0 and 𝜕𝐺
𝜕𝑡 = 0. Then 𝐺 is conserved, and the transformation generated by 𝐺 is a symmetry.

Proof: Let 𝐴 be some quantity of the system. Then

d𝐴
d𝑡

= 𝜕𝐴
𝜕𝜉𝛼

d𝜉𝛼
d𝑡

+ 𝜕𝐴
𝜕𝑡

= 𝜕𝐴
𝜕𝜉𝛼

𝜔𝛼𝛽
𝜕𝐻
𝜕𝜉𝛽

+ 𝜕𝐴
𝜕𝑡

= {𝐴, 𝐻} + 𝜕𝐴
𝜕𝑡

Now under our assumption, we have that 𝐴 is conserved.

⬜

Note this version of Noether’s Theorem allows us to go in the reverse direction as well, since

𝛿𝜉𝛼 = {𝜉𝛼, 𝐺} ⟹ 𝛿𝑞𝑘 = 𝑓𝑘(𝑞, 𝑝) ⟹ 𝑓𝑘 = 𝜕𝐺
𝜕𝑝𝑘

= {𝑞𝑘, 𝐺}

9.4. Applications in Quantum Mechanics
Suppose we have some equation with Poisson brackets {⋅, ⋅} and replace it with the commutator 1

𝑖ℏ [⋅, ⋅]. Then this is a valid
quantum mechanical system.
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Example

Suppose {𝑞, 𝑝} = 1. Then

[𝑞, 𝑝]
𝑖ℏ

= 1

which we recognize to be the canonical relation between position and momentum in quantum mechanics.

Example

Consider the transformation

d𝐴
d𝑡

= {𝐴, 𝐻} + 𝜕𝐴
𝜕𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟

Hamiltonian formulation

⟹ 𝜕𝐴
𝜕𝑡

=
[𝐴, 𝐻̂]

𝑖ℏ
+ 𝜕𝐴

𝜕𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟
Heisenberg Picture

which we recognize as the Heisenberg equation of motion. Note that the Heisenberg picture of quantum mechanics
expresses everything in terms of operators, whereas the Schrödinger picture expresses everything in terms of a wave
function.

In addition, the way in which the Schrödinger equation was developed was analogous to Hamiltonian mechanics following
from Lagrangian mechanics. Physicists initially wanted to find a PDE in 2𝑁 + 1 variables.

This is the idea behind the Hamilton-Jacobi Equation:

𝐻(𝑞𝑖,
𝜕𝑆
𝜕𝑞𝑖

, 𝑡) + 𝜕𝑆
𝜕𝑡

= 0

where 𝑆 is some generating function. 𝑆 is some function of position and time, and somehow encodes the state of the
system. This is similar to how in quantum mechanics 𝜓 encodes the state of the system.

Example

For a free particle, the equation becomes

1
2𝑚

(𝜕𝑆
𝜕𝑞

)
2

+ 𝜕𝑆
𝜕𝑡

= 0.

The new momenta 𝑃  are the integration constants we get from solving, and the new coordinates 𝑄 are given by 𝜕𝑆
𝜕𝑃 .
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Proposition

The Schrödinger equation falls out of the Hamilton-Jacobi equation.

Proof: Begin with the ansatz 𝑆(𝑞𝑖, 𝑡) = 𝑊(𝑞𝑖) − 𝐸𝑡 and 𝐻(𝑞𝑖, 𝜕𝑊
𝜕𝑞𝑖

, 𝑡) − 𝐸 = 0. Then using Cartesian coordinates,

𝐸 = 1
2𝑚

(𝛁𝑤)2 + 𝑉

Compare that to the Schrödinger equation,

− ℏ2

2𝑚
𝛁2𝜓 + 𝑉 𝜓 = 𝐸𝜓

Now if we suppose 𝜓 is an arbitrary complex number

𝜓(𝐫) = 𝑒𝐴(𝐫)+ 𝑖
ℏ𝑊(𝐫)

and plug in we get

𝛁𝜓 = 𝜓(𝛁𝐴 + 𝑖
ℏ

𝛁𝑊).

Thus

∆𝜓 = 𝛁 ⋅ 𝛁𝜓

= 𝜓(𝛁2𝐴 + 𝑖
ℏ

𝛁2𝑊) + 𝜓(𝛁𝐴 + 𝑖
ℏ

𝛁𝑊)
2

= 𝜓[𝛁2𝐴 + 𝑖
ℏ

𝛁2𝑊 + (𝛁𝐴)2 − 1
ℏ2 (𝛁𝑊)2 + 2𝑖

ℏ
(𝛁𝐴) ⋅ (𝛁𝑊)]

≈ 1
2𝑚

(𝛁𝑊)2 + 𝑉 𝜓 = 𝐸𝜓

if ℏ is small. This is called the small ℏ limit of 𝜓. This tells us that the function 𝑊 , which we want to solve for in
classical mechanics, is exactly the phase 𝑊  of the complex number. It turns out that 𝑆 is in fact the action of the
classical mechanical system.

This is one way in which quantum mechanics reproduces classical mechanics in the macro limit.

⬜
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11. Special Relativity
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