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1. Physical Preliminaries

We review some fundamental concepts from Newtonian Mechanics.

1.1. Time and Space

Probably the two most fundamental ideas of physics are time and space. These are things we have an intuitive
understanding of by observing the world around us—an exact definition is outside the realm of physics, and probably best
left to philosophy. What is important to note, however, is that we can only measure time and space with respect to some
reference point. Le., we must define a coordinate system, with some reference point in space, or some reference time,
before we can talk about distance or time taken. This is the idea behind a reference frame: some set of reference points
and coordinate axes such that space and time can be defined precisely.

Define position to be a particular point in space within some reference frame. Now, supposing we have a coordinate
system giving us a concrete notion of time and space, suppose we have a ball at position P at time ¢, and suppose at
another instant, we measure that the ball has moved to position P + AP at time ¢t + At. We may wonder how fast the ball
is going, and in which direction. This is the idea of velocity. In particular, we might say that in the time in between our
measurements, the ball moved AP in time At, so its rate of change of position per unit time is

JAN o

At
Yet, this is not particularly precise—it gives us an approximate idea of how fast the ball was moving at time ¢, but the ball
could have sped up or slowed down within the time interval At—we have no way of knowing. To ensure a more accurate

sample, we can try shrinking At, so there’s less chance of fluctuations in the rate of change of position. We finally make
this precise when At becomes infinitely small; this is how we formally define velocity:

. AP dP

v= lim — = —

At—0 At dt

This general process is called finding the instantaneous rate of change, known as a derivative. Finally, we define
acceleration to be the derivative of velocity, i.e., it’s the rate of change of the rate of change of position:

2= Tim Av_dv
T oats0 At dt

1.2. Galilean Transformations

1.3. Newton’s Laws

The foundation of classical mechanics is comprised of Newton’s Three Laws, which we present out of order.

1. Through observation of the world, physicists found that in general, objects do not accelerate, a tendency we call inertia.
By “in general”, we specifically are operating under the assumption that objects are not interacting with other objects
outside a given system. Newton’s First Law states that there are special reference frames where this assumption holds,
called inertial reference frames (IRFs).

An important point of emphasis: Newton’s First Law only tells us that these reference frames exist, not that every
possible frame of reference is inertial. So, the logical statement
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PHYSICAL PRELIMINARIES NEwTON’s LAws — 1.3

no interaction =—> no acceleration
and the logically equivalent statement

acceleration = interaction,

only hold true when we are in an inertial reference frame. Further, we say nothing about the converse; if there is an
interaction in an inertial frame, there may or may not be acceleration.

3. Another observation physicists made is that in an isolated system consisting of two objects, the objects interact in a
particular way: they accelerate towards each other. That is, suppose we are in an inertial reference frame consisting of
two isolated objects. Newton’s Third Law states that the objects will accelerate, subject to:

1. Their accelerations will be opposite in direction (toward one another)
2. The ratio of their accelerations will be constant over time

Suppose we have Object 0 and Object 1 given as above. According to our law, the ratio of their accelerations is some
constant
a
2.
i
Since the accelerations are opposite in direction, notice ¢ will be negative. Now define the mass of Object 0 to be m,,
some arbitrary reference point.

Then define the mass of Object 1 to be

Notice that this definition implies mass is large when the other object is accelerating more quickly than the current
object, and it’s small when the current object accelerates more quickly. Thus, we can naturally interpret mass as a
measure of resistance to acceleration, that is, inertia. Further, for every object whose mass we might want to measure,
we can repeat this same process, as long as we can find a proper inertial reference frame. In other words, by doing these
experiments with two isolated bodies, we can define a mass for every object we want.

The next step is to be more precise about the idea of “interactions”. Since we observed that in this interaction, Object 0 is
accelerating, and we found that mass is some resistance to acceleration, it is natural to define a new concept, called
force, to be the product of the two.

F = ma.

We are also motivated by a desire to write the equation defining mass more simply; by defining F, = mya, and F; =
m,a,, the equation becomes

Notice the logical chain here: we started with empirical observations, wrote down a law, and then some definitions
naturally followed to make it easier to describe the phenomena. In particular, it is essential to realize that force and mass
are ways to concisely describe what Newton’s laws are saying, and are not necessarily more fundamental concepts.

2. The Second Law states that if an object of mass m in an inertial frame experiences some forces {Fl}ze » Where each
F; represents the force exerted in an isolated system with no other forces, then the acceleration a of the object
satisfies

Ftot - ZFz = ma;

that is, we have a superposition law: the total force exerted on an object with many interactions is the same as if
considered each pair of objects as an isolated system.
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PHYSICAL PRELIMINARIES NEwTON’S LAws — 1.3

The most important thing to remember about these laws is that, while they may appear similar to mathematical axioms,
the key difference is that they are based on empirical observation. It is at all not self-evident that inertial reference frames
exist, for example; careful observation of real-world phenomena suggests that it is so. Unlike mathematics, we cannot do
physics by writing whatever definitions wherever we please. They must come from experiment.

1.4. Energy

Suppose we wish to determine the motion of a generic particle due to the action of particular force. By Newton’s Laws, we
merely need to solve the differential equation

F = ma.

Path integrating both sides with respect to position gives

/F-dr:m/a-dr

dt dt
dr dv
= — | —dt
" (dt )
=m/v-dv
1
=§mv2

We define this new quantity on the right to be kinetic energy, and call the quantity on the left work. The reason we
specify this energy as “kinetic” is that it is fundamentally coming from the motion caused by the object’s acceleration, as
opposed to another type of energy, called potential energy, that comes from work. While we can loosey describe energy
as some measure of motion or potential motion of a particle, it is perhaps best to think of energy as some mysterious
quantity that proves to be extraordinarily useful in doing physics. Work then, can be thought of as a change in energy
resulting from the action of a force over a distance.

Thus, we have just found a key result:

The work W done by a force is equal to the change in an object’s kinetic energy:

W =AK.

It initially seems like we are making these definitions for no reason: why do we care about these quantities, when we
alreadd(y) understand forces? The reason that energy is useful is that for particular systems, it is conserved, i.e., invariant
with respect to time. This means that at each point in a physical system, we can calculate the total energy, and make
deductions about quantities based on that. This, of course, leaves an important question: why is it conserved? The
fundamental reason is temporal symmetry, which will be explained later on in our coverage of Noether’s Theorem.

PAGE 5 OF 35



PHYSICAL PRELIMINARIES ENERGY — 1.4

1.5. Conservative Forces

It turns out that the key property of forces that make energy calculations easy is that the work done by the force is
independent of the path taken. Forces that satisfy this are called conservative.

By the Fundamental Theorem of Calculus for Line Integrals, we then have

/rl F.dr = —U(r;) + U(ry).

0
or equivalently,
F=-VU.
where U is some potential function. Combining this with the work-energy theorem gives
K,+U,=K,+U,

for a system subject to a conservative force, a particularly simple statement of the conservation of energy. Note the reason
for the sign convention on U is so that we have sums in the above equation.

1.6. Momentum and Angular Momentum

1.7. Harmonic Oscillator
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2. Mathematical Preliminaries

2.1. Coordinate Systems

We very often want to choose a coordinate system that makes a particular problem as easy as possible. While Cartesian
coordinates &, ¢, 2 are comfortable and familiar, they are not well-suited to every task. We thus discuss the other most
commonly used coordinate systems in physics.

Consider an arbitrary vector. We want to define unit vectors # and 6 in such a way that

r =2+ yy = rr.
In particular, from geometry we want
r = /22 + 42 = r cos O& + rsin 0g.
with 0 = atan2(%). Thus in Cartesian coordinates, 7 should be
1 (r cos 0) _ (cos 9)
r \rsinf sin 0

and being orthonormal in a right-handed coordinate system, we have 6= (—sin 6, cos ).
| J

We now wish to determine the Euclidean line element in polar coordinates. Recall the Euclidean metric in Cartesian

coordinates:
dt? = da? +dy?.
From the definition of polar coordinates in terms of Cartesian coordinates, we see that
dx = cos fdr — r sin 6d0; dy = sin @dr + r cos 6d0
so that our line element becomes

ds? = (cos @dr — 7sin 0d0)? + (sin fdr + r cos d0)?
= cos? §dr? +r?sin? 6 d§? +sin? 0 dr? +r?2 cos? d9?
=dr? +r?d6?.
Finally, we now want to express a generic position vector and its derivatives in polar coordinates. We have
r = (z,y) = r(cosb,sinf) = r
i = (&,9) = 7(cosb,sin ) + rf(—sin b, cos 0) = i + 00
i = (&,j) = #(cos 6, sin 0) + 27-0(— sin 0, cos 0) + rf(—sin 6, cos ) — r62(cos , sin 6)
= (# —r6?)# + (rf+ 276)0.

Note this equation for i will be expanded upon in the later section on non-IRFs.
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MATHEMATICAL PRELIMINARIES COORDINATE SYSTEMS — 2.1

2.1.1. Cylindrical Coordinates

2.1.2. Spherical Coordinates

2.2. Multivariable Differentiation

Let f : R™ — R"™ be a function such that each of its first order partial derivatives exists on R". Then the Jacobian matrix

of f, denoted Jg, is the m X n matrix whose (4, j) entry is gﬂ{l

J

8h ... 9h

VTf B, oz,

J. = (2L ... 00\ g = S g
f — \ Oz, ox,, ) — T - 61'“ : 8);
A\Y 9im 9Im

fu) \n .

Then, the Jacobian is the best linear approximation to f at x; the linear map h — J(x) - h is called the total derivative of

f at x.

In our case, we will frequently be dealing with scalar-valued multivariable functions, meaning m = 1. In particular, it will
often be the case that each v € R" is can be written as functions of a single variable, ¢. That is, we write f =
f(z,(t),...,z,,(t)). Thus, for f : R" — R, we have

=1 K

is our total derivative, with h = (dz, ...,dz,,). Thus we have

df < 9f dw,
dt & Ox; dt

We also want to deal with the case where we have a composition of functions.

In single variable, calculus, recall we had

For general differentiable functions f : R™ — R* and g : R™ — R™, the total derivative is
Jpog () = Jp(8(x)) g (%)-

Here, we are taking the product of a £ X m matrix with an m X n matrix, so our result is a £ X n matrix.

- J

Again, the case that will be important for us in the future is the k = 1 case. Suppose f = f(zq, ..., z,,) is a differentiable
function of m independent variables, where each z; = z,(t, ..., t,,) is a differentiable function of n independent variables.
Then

oz, Oxzy
ot ot,, m m
of of of of . . of Oz of Oz,
o= (2L o 28) =it = (2 o 2E)| 5 Z(Z__...Z__
° o . g Ox,, Ot Ox,;, Ot .
g Oz, oz, g Oz, oz, oa, oa,, = Be O = 22 Ot
ot, v ot,
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MATHEMATICAL PRELIMINARIES MULTIVARIABLE DIFFERENTIATION — 2.2

In particular, the general result is

9f _ - 0 0w
Ot; & Oz Ot

2.3. Calculus of Variations

Define a functional F' to be amap F' : X — F, where X is some function space and the field F is either R or C. Define
an operator f to beamap f: X — X, a mapping from a set of functions to itself.

A typical example of a functional is a definite integral

Flz] = /ttl o(t) dt

0

for some z € X. In particular, we are often interested in functionals which act as a metric on our space, such as the path
length function in R2:

T=x,, Ty
2[y] :/ v/ dz? + dy? :/ V1+y (z)?de.

If a continuous function f on an open interval (a, b) satisfies the equality

b
/ F(@)h(z)dz = 0
for all compactly supported smooth functions & on (a, b), then f is identically zero.

Proof: Suppose f(§) # 0 for some & € (a, b). Since f is nonzero, it is nonzero with the same sign for some ¢, d with
a < ¢ < § < d < b. Without loss of generality take f(£) > 0. Then we can find an h that is positive on (c, d) and zero
elsewhere, so that the integral is nonzero, a contradiction.

O

2.4. Euler-Lagrange Equation

We want to find extrema of a general functional J[f] with respect to f. We are particularly interested in an integrand of
the form L(z, f(z), f'(z)), where we assume L is twice continuously differentiable.

Consider that if f is maximal, then any boundary-preserving perturbation to f, increases J (if f;, is a minimizer) or
decreases J (if f, is a maximizer).

Let our perturbation be given by
fe=f+en

where e > 0, f : R — R is fixed, and we can vary the compactly supported smooth function n : R — R. Note that we
impose the condition n(a) = n(b) = 0 so that we only consider paths which go between the endpoints. Now define
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MATHEMATICAL PRELIMINARIES EULER-LAGRANGE EQUATION — 2.4

b
®(e) = JIf +en =/ L(z, f(z) +en(x), f'(z) + en’(z)) dz.

a

We want to find a sufficient condition for f being an extremum. Thus, assume f is an extremum of J[f]; that is, ®(0) is an
extremum. Thus e = 0 = % = 0Vn.

Following our characterization of extrema, differentiate with respect to e:

b
% [ Lo, £@) + (o), (@) + e (@) d

b
6 / /
— [ L@ f(@) +en(e), £/ (@) + o' () do
where in the previous step, we used Leibniz’s Integral Rule to interchange limits. To evaluate this partial derivative, recall
the final result in the previous section:

0L _9Lds 0L of@+en@) 0L 3(f'(a)+en(a)

0c 0z 0e = O(f(z)+en(z)) Oe o(f'(x) +en'(z)) Oe

= (0 g e ()
9(f(z) + en(z)) A(f () +en'(z))

so our integral becomes

b
= | |15 0 )+ en(o), £/ (@) + e/ @) + 1 (0) s o, (o) + ena) (&) + enf (@) | da

By our assumption, an extremum is achieved when € vanishes. Now we integrate the second term by parts and apply the
boundary conditions:

oL b

"[oL ) d oL , /
(= /a [a_f($,f($)7f (IE)) — @a_f/(x’f(w)’f (:I:))] n(x) dx_i_l:n(x)a_f’(x’f(x)’f (x)):|

a

bror , d 0L ;
=/a [a—f(x,f(x),f (a:))—aa—f,(m,f(a?)»f (m))]n(w) dz

which, by the Fundamental Lemma, yields the Euler-Lagrange Equation:

oL d 0L
7@ @ f @) = g oz

= (2, (2), /(@)

Note for a given extremum, satisfying the Euler-Lagrange Equation is necessary but not sufficient. Le., every extremum
satisfies Euler-Lagrange, but the converse is false.

Because it will be important later on, we wonder what happens if L depends on additional variables; consider
L(z, fy(z), fi(z), ..., f,,(z), f/ (z))). Now, consider a perturbation in one of the coordinates,

b
Jf1y o fi Hen . fu]l = / L(z, fi,....f; +en, fl+en, .., f)dz.

a
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MATHEMATICAL PRELIMINARIES EULER-LAGRANGE EQUATION — 2.4

Following the logic, we see the same equation holds for the new L—but crucially, this is predicated upon the
assumption that it is possible to vary f; independently in the first place. If there were a relationship between the f;’s,
we would get a more complicated equation.

2.5. Geodesics

Armed with the Euler-Lagrange equation, we now wish to tackle general shortest path problems.

A geodesic is a curve representing the locally shortest path between two points on a Riemannian manifold.

Formally, a curve v : I — M from an interval / C R to a metric space M is a geodesic if Jv > 0 such that V¢t € I3 a
neighborhood J of ¢ in I such that Vt,,t, € J we have

dy(t), 1 (t))
ty — 1]

We interpret this as follows: For every t, if we zoom in far enough, the path v becomes a straight line up to some
constant factor. In fact, if we zoom in so that At becomes infinitesimal, we see what is effectively a derivative, albeit
with respect to two different metrics in the general case. Thus, the curve has constant velocity, which should make
sense, as a curve that speeds up or slows down should not be optimal.

\

|

In general, geodesics can be found by using Euler-Lagrange and identifying local minima.

Suppose we want to find the shortest path between two points on the surface of a sphere.

Take a polar angle 6 and azimuthal angle ¢ as the coordinates, with constant radius R. The infinitesimal distances are
dsy = Rdf and ds, = Rsin6dy, implying

ds? = R2d6? + R%sin? 0dp?.

It turns out to be easier to use 6 as a variable of integration, since the first term in the Euler-Lagrange equation
vanishes. In particular we write

b
3=R/ v/ 1+ sin2 6y’ do

with corresponding Euler-Lagrange equation

oF d oF

— — ——— =0 with F = /1 +sin? §¢p’2.
55  d6 0y’ Wi + sin“ 6y

We could solve this for a particular

Vs
\

2.6. Fourier Transform

2.7. Legendre Transform
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3. Lagrangian Mechanics

3.1. The Lagrangian

We want to now use the Euler-Lagrange equation to solve mechanics problems. To do this, we want to find some function
L(t, z, ) such that evaluating the Euler-Lagrange equation gives Newton’s Second Law for a particle subject to
conservative forces,

d, . dU

&(mx) =~

Comparing with the form of Euler-Lagrange, we see we must have

oL . 9L dU

o dz’
Solving the first equation by separation of variables gives

1
L= imi”z +g(t, x).

Now since U is purely a function of z, our second PDE means we do not have to consider ¢ dependence in our solution,

meaning without loss of generality let g be a function of = alone. From here we deduce

dg dU
9z dz = g(z) = —U(z),
implying that
L=T-U

works. This is called the Lagrangian of our system, and it gives us a powerful new formulation of mechanics. Importantly,
because we did not consider our PDE solution in full generality, it is not unique in its implication of Newton’s Second Law.

Given a mechanical system described by N dynamical generalized coordinates g (t), with k = 1,2, ..., N, define its

action by

ty
S[qk(t)] = / dtL(ta QI7q27'-'aQ17q‘27"')'
t

a

(We assume the particle begins at some position (¢y, ¢, -..),, at time ¢, and ends at position (gy, g5, -..), at time ¢;,.)
Also note that this is a generalized version of the function J[f] shown previously.

Now the least action principle states that, for trajectories g (t) where S is stationary, i.e.,
ty
ta

then the g, (t)’s satisfy the equations of motions for the system with the given boundary conditions. Note this is just

the proof we did earlier a—if to first order 65 = 0, then S is an extrema, and thus the Euler-Lagrange equations apply.
| & J

PAGE 12 oF 35



LAGRANGIAN MECHANICS THE LAGRANGIAN — 3.1

3.2. Cyclic Coordinates

When deriving the form of L, recall we assigned

oL .
2z~ "
which is the particle’s momentum. This inspires us to define
_ 0L
= g,

to be the generalized momentum of the particle.

Now, consider the situation in which g, is not present in the Lagrangian. Then g, is called a cyclic coordinate. This is
important because we observe that in the Euler-Lagrange equation,

B oL B d 0L
dgy,  dtOg
that if
oL
— =0
3%
we must have
dp, _ OL _
dt — 0q,

so py, is constant through time, i.e., it’s a conserved quantity.

3.3. The Hamiltonian

Take the total derivative of the Lagrangian with respect to t:

dL(ge,dpt) OL OL, OL.
a0t T og T ag

Note we are using Eisenstein summation convention; i.e., a sum over k is implied for each term. Notice it shares two terms
in common with

L5 ) = 4 ) =g Ly
d¢ kﬁ‘?k kﬁ‘?k Fdt 0qy, kaéhc ka%'
The difference of the equations is

dL(qy, 4 t) d(. aL) oL

@ a\%ag ) T

oL d oL
—_— — — L -, — = U.
o ( s aq,) 0

This inspires us to define the Hamiltonian H of the particle to be
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LAGRANGIAN MECHANICS THE HAMILTONIAN — 3.3

H = qpp — L
so that we can rewrite our previous equation as
oL  dH
ot dt’

Importantly, if L is not a function of time, then the Hamiltonian is conserved.

What does the quantity actually mean? Observe
. o(Tr—-U
n=y22=0 zqk__:rw
% Ak

Now, let r(gy, t) be a position vector of a particle in an inertial frame. We can say that

_ dr(qy,...q,,t) Or or
B dt =t Z

SO

1 1 1 or Or or

T CREE LR T SRS TS 9
which we rewrite as

S s e X e

Now, indexing over the terms in the original expression by ¢, we find
or 6r i
Sif 2%2 " g s
a4 + q'z oy’
Z 9y Z ; dqy, k]

or
=9 — S
mv T
Thus overall,
or
H=T+U— C—
aF mv En

So, we see that the Hamiltonian is really the total energy, minus the dot product of momentum and some change in
position with respect to time. This term becomes zero when, for example, there are fixed constraints on the problem.
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4. Symmetry and Noether’s Theorem

4.1. Constraint Forces

Consider a mechanical system parameterized by N coordinates g;,, with P algebraic relations between the coordinates (due
to constraint forces), given by

C[(‘h, q27 ocog qN7t) - 07

with [ € {1, ..., P}. These are called holonomic constraints. Notice we effectively have N — P degrees of freedom,
rather than V.

For example, suppose we have a block on a table. With the height at the table defined to be z = 0, we introduce the
constraint that the block always lies on the table, i.e. C(z) = z = 0. Thus the Lagrangian becomes

1 1
L= gm(3? +§? + %) — mgz = Sm(s” + §°),

leaving us with two unknowns.
L J

However, immediately doing this is not necessarily great, for a few reasons:

1. It may be difficult to eliminate the coordinate from the Lagrangian if the relations are more complex;

2. We may be interested in finding the constraint force at play rather than discarding it. Le., what if we wanted to know
the normal force magnitude for the block?

To get around this, we introduce a way to delay implementing the constraints. Recall from the section on the Calculus of
Variations that the Euler-Lagrange equation only holds if we are able to vary the equations independently, meaning that
we can not directly plug the new equations into the Lagrangian.

Instead, we consider a new Lagrangian defined by
P
L'=L+)» )G
1=1

where we have introduced P degrees of freedom labeled A\; with [ = 1, ..., P. These are called Lagrange multipliers. In
the previous example, our Langrangian would become

1
— Em(ﬁ + 9%+ 22) —mgz + A\ 2

Now assuming the constraint equations are not satisfied a priori, we have N + P degrees of freedom. The equations of
motion are thus:

d (oL oL’

=0

d (8L’> oL d <3L) L <. 9C
— N=— =
6qk =1 OQk

dt\dq,) g, dt\ g,

This last term can be written as
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SYMMETRY AND NOETHER’S THEOREM CONSTRAINT FORCES — 4.1

d (0L 0L &, 0C
3t (o) =%

— | - = A, —L
94y, dqy, =1 la%

where we have defined the F;’s as the generalized constraint forces for our system. It turns out that this definition of L’
gives exactly the solutions we desire, but the details are out of scope.

4.2. Symmetry

Define a symmetry be to be transformation that leaves the action unchanged in time. Start with the typical action
§= /dt L(q,q,t).

Now apply some transformation given by Ag, (¢, ) and 6t(¢, g). This is very similar to our derivation of the Euler-

Lagrange equation, but slightly more general, since we consider variations in time as well as variations in g;.

Being slightly less formal this time, the variation in the action is

55:5(/Ldt) =/5(Ldt)=/dt5(L)+/6(dt)L

Now we have that the variation in L due to the step Ag,, is

oL 0L oL . . oL oL d
Oaq L= ot 0+ 3_quk + a_quk = Bq I+ a_q&AQk

while the variation in L due to the step 4t is

dL

05, L = —0t.
ot dt
Then, the variation in d¢ due to the time step Jt is
0y o d
d(dt) =dt 5 dt o (0t)
Thus overall we have
8L ol dL d
65 = /dt ;(aqk + 5 thqk> ot— +Ldt(6t)]

L oLd d
_/dt zk:(@qk ey thqk> +E(L5t)]

as a general variation in the action due to the transformations Agy (¢, ¢) and 6t(¢, q).

4.3. Noether’s Theorem

This leads to one of the most important results in mathematical physics.
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SYMMETRY AND NOETHER’S THEOREM NOETHER’S THEOREM — 4.3

I For every symmetry, there exists a quantity that is conserved under time evolution.

Proof: Suppose we have a given symmetry {dt(¢, q), Ag, (¢, q) }. Then we get

oL d d
oS = /dt[ ( Agy + —— 33 thqk> = a(Lét)] = 1,

Now pick the curves g, that satisfy the Euler-Lagrange equation:

dor oL
dtdg,  dg;,

Thus
[~/ d (0L oL d d

d

Now since the integration interval is arbitrary, we must have
d
—0=0
dt @

where

oL
= —Aq, + Lét.
04y, g

We call this quantity () the Noether charge.

.

We also have the following partial converse:

Suppose

0S = /dtd—K for some K.
d¢

Then 6t(t, q), dq;(t, q) is a symmetry, and Q) — K is a conserved quantity.

Proof:
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5. Central Forces

5.1. Two Body Problem

A central force on a particle is directed away or toward a fixed point and is spherically symmetric about that point. Thus,
the force and potential have no dependence upon 6 or ¢: we can write F = F(r) and U = U(r). A typical example is
gravitational attraction

mym

F=-G—2¢.
r

Now consider a general two body central force problem. Define the coordinates ry = (x,¥;, 2;) and ry = (24, Y5, 25) with
corresponding center of mass coordinates

m-r; + mor
R:11 22'

cm
my + mqy

Also define the relative coordinates
r=r,—ry.
Then we have
cm

r, =R —%r and r2:Rcm+%r,

with M = m; + m,. The total kinetic energy is

1 . 1 .
T §m1r1 + §m2r2

1 Mo . 1 myq .
= 3 (Rew = 7%) + 52 (Rew + 1)

1 2m m2 . 1 m m? .
=M (R?m = Mzr 4 Mgﬂ) 4 5™ (Rfm 4F er 4 Mgﬂ)
= 1MR2 + —pi?

2 a9

where
o= mimy

is called the reduced mass of the system.
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6. Non-Inertial Reference Frames
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7. Coupled Oscillators

7.1. Introductory example

Consider a system of two masses with mass m, where we use z; to measure the position of the first mass from the left and
Z, to measure the position of the second mass from the left. The first mass is attached to the left wall by a spring with
constant k, the second mass is attached to the right wall by a spring with constant k, and they are attached to each other
with a third spring of constant &’. Suppose the distance between the walls is L, so that our Lagrangian becomes

1

. 1 . 1 9 1 2 1,
L = §mx12 + immgz — Ek(:vl —ay)" — E(L—mQ —a5)" — §k (xg — 1 — aq9)

2

where a, a,, a;5 are the rest lengths. Suppose the masses are at equilibrium. Then we can write
kAL, + K Al =0
as the horizontal force on mass 1. If we move mass 1 some Az; = g; from equilibrium, we get
k(AL +q) + K (Al + 1) = F = kg + K g

so we can treat the system more simply as offsets from equilibrium. (Note we could have also just done this from the
beginning, and chosen our coordinates so that displacements were relative to equilibrium points, but this illustrates why
doing this works.) With this new coordinate system in place, our Lagrangian becomes

1 . 1 . 1 1 1, 2
£ = omdi + gmd; — skai — skes — 5k (0 — 1)
where we noted that 2, = ¢, since x and ¢ differ by a constant offset. Thus the Euler-Lagrange equation gives

0=—kqy + k(g — q1) — mdy
0= —kgy — k(g3 — q1) — mdy

This implies
0=—k(q, + q2) —m(d1 + §3)-
If we define ; = ¢, + ¢,, we get
0= —k¢; —mé,

which is finally tractable. Solving this ODE clearly gives

: , | k
o= cle“/gt - c{e_“/gt =A, cos( —t+ 51) .
m

Now if we subtracted the equations instead of adding them, we should get
0=—k(g2 —a1) = 2K'(q2 — 1) = m(G> — G1)
= —k& — 2K, — mé2

where we assigned £, = ¢, — ¢;. Then solving the ODE gives
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CoUPLED OSCILLATORS INTRODUCTORY EXAMPLE — 7.1

i [Er28 ; Z k+ 2k
£, = cye’ B2k’ +che™ = A, COS( + . 52>.
m
Observe that we can now recover ¢; and gy:
A A
q = 71 cos(wit+d;) — 72 cos(wyt + d5)

A A
gy = 72 cos(wt +d;) + ?2 cos(wyt + d5).

Note it turns out that £; and &,, considering the system as an aggregate, are often easier to work with and interpret. Le., we
can think of ; as a center of mass coordinate and &, as a relative motion coordinate.

7.2. Generic Lagrangian as an Oscillator

Suppose we have a Lagrangian

L=T-U-= Z fij(ql, ooy QN)Qz'q]‘ - Ueff<ql7 ) qN)

iij

We can Taylor expand around equilibrium (VU = 0) as follows:

.. g . 1 0°Uyy
L~ fyl, 44 + g, e (9 — @, eq) @iy + -+ —Vestl  — Em (4 = i, e0) (95 = @5, e0) + -
X eq.
1 . 1 . Uy
— §MijQiqj — §Kijqiqj with Mij = Zfij]eq and Kij = 8qiaeqj

so we can treat this as a generic coupled oscillator. We call M;; the “mass matrix” and K;; the “spring constant matrix”.
With matrix notation, we write this

1 ~ ([,
L=3q" Mq-34"Kq

with ¢ = (¢;, go, ---, ¢y ). In our previous example, we had
~ (m 0 o (kK K
M= (o m) K= ( —k’ k+k’)'
7.3. Continuum Limit

Consider a system of n masses connected by springs, similar to the example in the previous section except arbitrarily large.
It seems like an interesting math problem to figure out what happens; physically, this is also interesting because we can
model a continuous material as a large number of tiny masses connected by springs. For example, a solid object is made up
of molecules held together by some forces we can model as springs. Explicitly, suppose we take a mass and continuously
split it into two half masses connected by a spring, and repeat recursively. This is the idea of the continuum limit.

Let’s consider the Lagrangian of the system. Indexing the masses by Z, it should be

1 . 1 2
L= Z(imxf - ik(@”z‘ﬂ — ;) >
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CoUPLED OSCILLATORS CoNTINUUM LIMIT — 7.3

Now, make the replacement
{z;(t)} — n(t, z); z, (t) = n(t,z = na),

so we rewriting our many functions in terms of a single multivariable function. Suppose z,_, = 0 at equilibrium, and z,, =
an at equilibrium. Thus the Lagrangian becomes

r=% (Gt 2)? = Sttt + a) = n(t,2))?).

Now Taylor expanding 7, we have

0
U(ta$+a) & n(tax) + 8_Z(t’m)a+

SO

L= (Gmi — 30 @)?)

rod

_ Im ., 1 /2)
—/dx(zan 2ka77

where a = dz and we define ' = %. Now define the mass density y = “* and the Young’s Modulus Y = ka (which is the
like the stiffness, making it so we have a fixed spring constant as we divide into smaller pieces.)

1 1
S = dtdz( =urn? — =Y ’2>
// $<2’“”7 2 1

We call the integrand here the Lagrangian density. The Euler-Lagrange equation for a multivariable function is

_oc aoc doc
- On  dton dzon’

Thus the action is

In our case we have
0=0—puj+Yn”

which becomes the wave equation

0%y 10% N

oxr2 12 ot

where v = 4/ % Note this has the general solution
n(t,x) = fla — ot) + gl + v).
Using a finite difference method, we can approximate

82t ~ 77(75» Lo + 6) + 77(757 Lo — E) . 277(75» xO)
dxt g2

using a second order central difference. Now define
& = Byay

with some transformation
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CoUPLED OSCILLATORS

CoNTINUUM LIMIT — 7.3

fi(k) = / de f(z, kyn(),

where we are looking for a transformation that will simplify our system. Thus we have

0% f 1.

This means we need

82
o = A(R)F (k)

The standard example that satisfies this is to choose

1 ;
z, k) = ——e k= Fourier transform
fla k) = = ( )
Thus our PDE becomes
1.
UES _kzﬁ - _2777
)

which we note is exactly the harmonic oscillator. Thus

,r~] — Cefikvt+igo

Note this means that 77’s are exactly the normal modes. Further, the inverse Fourier transform is

7.
= | dk etk
! / Vor
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8. Scattering

Consider a setup where we have some target, fire some particles at it, and we observe how the particles react. Then, we can
learn some information about the target. We call this general experiment scattering. For example, vision is a scattering

experiment, or even tossing a ball into a dark crevice to determine if it’s a hole.
Suppose we have some incident particles N,,, with random initial conditions being fired at a target. Suppose the target is a
sheet covered in holes, with some number density of targets n,,. Our goal is to know how many particles were scattered

N,

sc?
for example. The reason we use a sheet instead of a single hole is that practically speaking, we cannot isolate to a single

versus the number that made it through the hole. Note this is a similar setup to the Rutherford gold foil experiment,

hole or object we’re interested in, so our best bet is to use a sheet and control for this.
Define the cross-section by

L N

Neor Vi

mc

g =

For a more specific experiment, suppose we have incident particles modeled by spheres with radius r;, and our sheet is
modeled by a sequence of vertical spheres with radius r,. Thus if we consider the particles as point particles, the effective
cross sectional area covered by the sheet is

%
ntarﬂ-(rl + TZ)
Then let A is the total area of the beam.

Now suppose o is non-constant: we might have some o,, = > o, in that case. Or, infinitesimally,

do 7l do
= || —=dlii= —d 0)d
o /dQ /{)/_ldQ(cos)gD
where df2 is the differential solid angle (a measurement of the field of view a given angle covers on a sphere). Le., take the

cone generated by some square angle d{2: the area of the spherical cap d A relates to d2 by d{2 = ‘i—‘;‘. Solid angles are
measured in steradians, equal to one square radian.

Now consider a ring with radius b and thickness db. Thus we have

doy,. = 2mbdb

and
dQ) = 27 sinfdo

since we have symmetry in (. Now recall that from our work in central forces,

_ it 2E¢?
€= =
with
p—__'0
1+ecosp
we can use the fact that £ = pvyb and
do b db
dQ  sinfdf’
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SCATTERING

Then we eventually get
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9. Hamiltonian Mechanics

9.1. Introduction

Consider the Euler-Lagrange equation

oL d (0L

Oq, dt\9q, )
Recall we called g—q.l; the generalized momentum, and c’?—qu the generalized force, giving us a direct analogue of Newton’s
Second Law. Now when we work with Cartesian coordinates, we can simply say p = mv, so working with momentum is
really the same as working with velocities. Thus, we could formulate mechanics in terms of forces causing accelerations;

from the chapter on non inertial frames, however, we know that when we don’t use Cartesian coordinates, or have a non-
inertial frames, then we get terms that aren’t necessarily accelerations.

Thus, it is better to think fundamentally as mechanics as forces causing changes in momentum. This is the core idea of
Hamiltonian mechanics-rather than consider a spring system Lagrangian

. 1 . 1
L(t, qx, 4x) = 5””‘12 - 5’“12

where velocity is one of our coordinates, we instead assign p = mq < ¢ = %, so that the Hamiltonian becomes

, 1 | 2
HZPka_szﬂ__m(ﬁ) +_kq2:p_+—kq2
m 2 m 2 m

This allows us to write the action as

Thus the instantaneous action is

d(dqy) _ 8_H — 8_H

12
6S = Slqy, + g, Py, + 0pi] — Slag, Pi] = / ——0py, + Py,
t

1

t
2 qu dpk 8H 8H t

= —2op, — —0q, — —0q, — —0p, dt dqy |2
/t at Pk T qg 0% 84, qx Bpr Py At Py, Qk‘tl

1

Note as opposed to Lagrangian mechanics, saying that position and momentum are independent is more justified than
saying position and velocity are independent.

Note our boundary conditions are dg;(t5) = dg(t;) = 0. By comparing coefficients, we find that

doy _OH = dp, OH
dt ~ dp,’ dt gy

These are called Hamilton’s Equations. Thus we think of gTi as the velocity, and —gTPZ as the force.

In our case, these equations become

. b .
¢g=—, Dp=—kgq
m
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HAMILTONIAN MECHANICS INTRODUCTION — 9.1

Note in practice, we will usually determine the Hamiltonian based on the Lagrangian, since it is not always 7"+ U.
Thus instead of one simple equation and one very complicated one, we have two moderately complicated equations.

This formulation gives us a key advantage: rather than having n second order differential equations, Hamiltonian
mechanics gives us 2n first order differential equations. It is significantly easier to numerically solve first order ODEs than
second order ODEs.

Further, while in Lagrangian mechanics, we were working in configuration space, which is just position and velocities.
Meanwhile, when we are doing Hamiltonian mechanics, we work in phase space, meaning that our coordinates are
position and momentum. The reason that this is an advantage is that p is not necessarily mgq - it may be another term,
meaning that far more trajectories in phase space are possible than trajectories in configuration space.

Thus the tangent line to the physical trajectory in phase space is
( OH OH )
Op,” Og
In the case of our old problem, we would plot the vector field
(2, —k‘q) .
m

This gives an elliptical shape, implying that the motion is an ellipse. This tells us immediately that the motion of a spring
system is a harmonic oscillator.

9.2. Coordinate Transformations in Phase Space

Notice that in the previous derivation, we used p = mg, which only applies in Cartesian coordinates. We often want to
make some coordinate transformation, transforming our equations of motion appropriately to account for the fact that
they’re no longer Cartesian.

In Lagrangian mechanics, if we made a change of coordinates

oL 9q;
an =25, 0q; 0Qy, Z

J

9q;
kafk(%,---,(hv); B, = J

Thus, we see the momentum is merely a function of the new coordinates, so that (), uniquely defines our system.
However, this is not the case in Hamiltonian mechanics—here, position and momentum are separate coordinates.

Thus, to make an arbitrary transformation in Hamiltonian mechanics, we first want to remove the distinction between
position and momentum in phase space, so that we can standardize notation.

Thus we develop unified coordinates. In particular, assign
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HAMILTONIAN MECHANICS COORDINATE TRANSFORMATIONS IN PHASE SPACE — 9.2

£ = q, if1<kE<N
o \ppn f N+1<k<2N

For example, in the N = 2 case, we assign

§&1=q1, & =0, & =p1, §4=Dy

so that the equations of motion become

: o0H . 0H . 0H . 0H
b=, b=, G=—on, E=—2—
oggt P oag T e Tt 0
In general, the equations of motion are
: 0H 0 I
0w =Wos=— With w,gz= Ll NXN).
¢ 5856 b (_INXN Onxn

For example for N = 1, & = (31 é) and for N = 2,

0 010
o= 0 001
-1 000
0 —100
Now consider some change of coordinates
Mo (&1, -5 &an)

and then applying the chain rule gives
, on,, : on,, OH on,, OH 0On; on,0ns0H = OH
o = —& = — ) Wgyor = — ) w — = W o o— = Xaso—
! %: T %: 0¢s ; 1o, zﬁ: 0¢g ; o %: 015 €, ﬁ% 7Y BE, O, D\ o

This is becoming an ungodly mess, so we restrict to transformations where ¥ = @. We call this the symplectic condition,
and corresponding transformations are called canonical transformations; the resulting coordinates are called canonical
coordinates.

Note that this is the same kind of thing we do in special relativity: there, we restrict to working in inertial frames, only
making Lorentz transformations, so that our equations of motion don’t look insanely complicated. We call @ the
symplectic matrix.
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HAMILTONIAN MECHANICS COORDINATE TRANSFORMATIONS IN PHASE SPACE — 9.2

Consider the equations of motion

2 2

2
g=fr q> q:“%sinnl, P = +/2mwn, cos 1,

2m 2

Here 7, is our angular polar coordinate, and 7, is our radial polar coordinate.

2

qu2 + % = 21, sin? 7y + 27, cos? N =20, = H =wn, mw% = tann,
Then
dq 21, 9q 1
o, Vomw S on, B 2mwn, h
and

We should get

which shows that the polar coordinates are indeed a canonical transformation.

Then

OH .  OH

Uit 8772 w Up) 37]1

9.3. Poisson Brackets

One particular quantity comes up a lot in Hamiltonian mechanics:

GUOE GG L CE
o o0&, 35,3 04y Op,  Opy, Ogy,

{A,B} =w

We define this to be the Poisson bracket.
|

We can in fact describe our original coordinates using Poisson brackets with the Hamiltonian.

o0&, OH OH OH
JHY =wg, —2— =w 0o = Woyam— = &0
{ga } By agﬁ 35’7 By ap 8@, & 8{7 £

Now if 7 is a canonical coordinate, we have
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HAMILTONIAN MECHANICS PoissoN BRACKETS — 9.3

0A OB A On, OB On, 0A 0B

AB} =w 30— = W, 53— =W s
4 BY = was g Be, = “3n BE, om, 0, ~ oy, om,

Thus we get a condition for having a canonical coordinate:

_ On,0ng _
Wag = %58_578_{5 ~ {%”’75} = Wap

Proposition: Properties of Poisson Brackets

. {A,B} = —{B, A}

.{A,B+C}={A,B}+{A,C}

. {A,BC} = B{A,C} + C{A, B}

. {A,{B,C}} +{B,{C,A}} + {C,{A, B}} = 0 (Jacobi identity)

N O R R

Proof:

1. Follows from the antisymmetry of w.

2. Linearity property of differentiation.

3. Follows from product rule.

4. Follows from first law of antisymmetry

Consider a coordinate transformation
No = &a + {0 G}

where G(&;, ..., &, ) is called the generator. This basically tells us the change in £, under the transformation generated by
G. Note that since {¢,,,G} = —{G, &, }, we can also view this is the change in G under the transformation generated by

€

Suppose
&1=¢, &=p, G=p.
Then
» » 0q0p 0OqOp|
nl_q+€{q’p}_q+€[8q8p Bp g =qg+e

Ny =p+e{p,p}=p

Thus the transformation generated by momentum is translation.
_ y,

Now consider a general transformation of the Poisson bracket of two transformations:

{na,nﬂ} = {ga + €{€a7G}’£B + €{£ﬁ’G}}
= {€a:8p} + {0r6{8s, G} } + {e{éa, G} 65} + O(e?)
= was +£[{a, {gﬁ, G}}— {{G,gﬁ},fa} — {{§B,§a}, G}] (via Jacobi identity)
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HAMILTONIAN MECHANICS PoissoN BRACKETS — 9.3

Now {55, §a} = wpg, which is constant, so the final term goes to zero. Also swap {{G, fﬁ}, fa} = {éa» {55, G}} Thus
the entire thing becomes w, 5.

An active transformation takes the system and leaves the coordinates fixed, whereas a passive transformation

moves coordinates some way and leaving the system fixed. These are obviously linked: an active transformation is the
inverse of a passive transformation.

Consider an arbitrary quantity A, some function of position and momentum, such as the energy of the system. Then under
an active transformation, it changes by

A
SA = A(n,) — A(E,) = %s{ﬁa, G}

0A 0, 0G 0A 0G

— e —=e T ——— =¢{A
“BE, P 0E, 0,  “Uerdg, 08, 1 h

If we make some transformation and the Hamiltonian does not change, i.e., 0 = § H, then we should get a symmetry. We
can also consider using the Hamiltonian as the generator, in which case the change in any property has to do with time.

THe Hamiltonian generates time translations. In other words, the generator is conserved. That is Noether’s Theorem in the
Hamiltonian setting.

Note the final term is usually zero.

I Suppose {G, H} = 0 and %—? = 0. Then G is conserved, and the transformation generated by G is a symmetry.

Proof: Let A be some quantity of the system. Then

dA_ 0Ade, [0A_0A OH 94, .. 04
dt — 0¢, dt ' ot 0¢, “Poe, ot ot
Now under our assumption, we have that A is conserved.
0
N J
Note this version of Noether’s Theorem allows us to go in the reverse direction as well, since
oG
68 = {80 G} = 0q;, = fi(a,p) = fr = B, = {a, G}
k
9.4. Applications in Quantum Mechanics
Suppose we have some equation with Poisson brackets {-, -} and replace it with the commutator --[-, -]. Then this is a valid

quantum mechanical system.
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HAMILTONIAN MECHANICS APPLICATIONS IN QUANTUM MECHANICS — 9.4

Suppose {q,p} = 1. Then

(4, 9]
WAy
ih

which we recognize to be the canonical relation between position and momentum in quantum mechanics.

\

|

Consider the transformation

dA 04 oA [AH| 094

P+ - £_=7 97
dt 4,8} + ot ot in o
Hamiltonian formulation Heisenberg Picture

which we recognize as the Heisenberg equation of motion. Note that the Heisenberg picture of quantum mechanics
expresses everything in terms of operators, whereas the Schrodinger picture expresses everything in terms of a wave

function.
\ J/

In addition, the way in which the Schrédinger equation was developed was analogous to Hamiltonian mechanics following
from Lagrangian mechanics. Physicists initially wanted to find a PDE in 2N + 1 variables.

This is the idea behind the Hamilton-Jacobi Equation:

08 oS

7

where S is some generating function. S is some function of position and time, and somehow encodes the state of the
system. This is similar to how in quantum mechanics 1 encodes the state of the system.

For a free particle, the equation becomes

105\ 98 _
2m \ 0q ot

The new momenta P are the integration constants we get from solving, and the new coordinates ) are given by %.

\

|
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HAMILTONIAN MECHANICS APPLICATIONS IN QUANTUM MECHANICS — 9.4

Proposition
The Schrodinger equation falls out of the Hamilton-Jacobi equation.

Proof: Begin with the ansatz S(g;,t) = W(q;) — Et and H (ql, %‘;V, t) = 0. Then using Cartesian coordinates,

1
E=—(Vw)?+V
2m( w)® +

Compare that to the Schrodinger equation,

hZ
——V% + Vi = Ey

Now if we suppose 1 is an arbitrary complex number
P(r) = A +iW(r)

and plug in we get

Vi = zp(VA-i- %VW).

Thus
AYp =V -V

(V2A+ ;LV2 ) +w<VA+ %VW)2
~4|v

V244 v2W+(VA> —ﬁ(VW) hi(VA)-(VW)

2—(VW) +Viy=Ey

if 72 is small. This is called the small 7 limit of ). This tells us that the function W, which we want to solve for in
classical mechanics, is exactly the phase W of the complex number. It turns out that S is in fact the action of the
classical mechanical system.

This is one way in which quantum mechanics reproduces classical mechanics in the macro limit.
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10. Chaos Theory
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11. Special Relativity
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